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Predicting structural energies of atomic lattices
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The complexity of current ab initio quantum-mechanical calculations of the total energy of given
distributions of atoms on a periodic lattice often limits explorations to just a few configurations. We
show how such a small number of calculations can be used instead to compute the interaction ener-
gies of a generalized Ising model, which then readily provides predicted energies of many more in-

teresting configurations. This is illustrated for A1As/GaAs systems.

I. INTRODUCTION II. METHOD

The prediction of the stable crystal structure of a given
compound has traditionally been carried out either
through phenomenological Pauling-type approaches, ' or
by crystal-packing algorithms with semiclassical atom-
atom potentials, or more recently, by directly searching
the minimum of the quantum-mechanical total energy of
the ion-plus electron system. While the latter ab initio
approach has the advantage of directly rejecting the way
in which the electronic structure selects certain equilibri-
um crystal configurations, it is also, by far, the most
difficult. Involving repeated ("self-consistent-field" ) solu-
tions of a Schrodinger equation within some basis of M
orbitals per atom, it requires as many as (MN)' opera-
tions for each X-atom configuration, yielding also an
enormous amount of intermediate data (e.g. , XM eigenso-
lutions) whose informational content for the problem at
hand is rather small (one value of the total energy per tri-
al structure). Since even the more restricted problem of
finding the ground state of a substitutional binary AB al-
loy involves as many as 2 possible configurations on a
crystal lattice with X sites, this approach has been limit-
ed in the past to study, just a few, O(10) structures with a
small number of atoms per unit cell. We show here how
one can simply and accurately explore in an ab Enl tio
fashion the total energy of the various lattice
configurations of a binary substitutional alloy, given the
total energies of only —O(10) lattice configurations.
This is done by extracting, from a limited number of such
quantum-mechanical calculations, the "building blocks"
of cohesion: the contributions of Xf difT'erent clusters of
atoms to the "glue" holding the solid together. After es-
tablishing convergence of the total-energy expansion in
terms of Xf clusters, we can predict energies of new
structures (which are often too difficult to calculate
directly) by assembling these building blocks in different
geometrical ways. The efFort involved is just linear in Xf,
comparison of the predicted energies with those obtained
(when possible) by direct calculations demonstrates the
accuracy of this approach. This opens a practical way
for exploring quantum mechanically the stability of a
large number of /artice configurations, including ordered
superstructures and random alloys.

P(cr)=X QDFIIF(o )pF, (2)

where DF is the average number of figures I' per site.
Each figure F=(k, m ) has k vertices, separated by up to
an mth neighbor distance, e.g. , F=(2,m ) denotes pairs
(2, 1), (2,2), (2.3), etc. between first, second, and third
neighbors, respectively, while F= ( 3,m ) and F= (4, m )

denote the corresponding three-body (triangular) and
four-body terms. Many previous applications of the
Ising-type Hamiltonian of Eq. (2) have not calculated
pI, from a microscopic theory. Instead, it was often
postulated that a given set of interactions describe some
generic physical systems; nearest-neighbor pair interac-
tion models (k =2, m = 1) are one of the popular ideali-
zations of Eq. (2). The general expansion (2) can, howev-
er, be made useful for predicting structural energies of
solids to the extent that a reasonably rapidly convergent
series of interactions Ipl, I can be calculated a priori.
Knowledge of just a few such building blocks would then
suSce to describe many more structures.

Writing Eq. (2) for pure o. = A and pure o =B and sub-
stituting back into Eq. (2) gives

The idea of a "cluster expansion" of a physical proper-
ty P(cr) of any given configuration o of A and 8 atoms
on a X site lattice is not new. It is the cornerstone of all
Ising-type Hamiltonians in statistical mechanics.
Indeed, one can rigorously expand any lattice property
P(o ) in terms of the contributions p~ of all elementary
clusters or "figures" f (i.e., a given selection of k& sites
out of the total X sites) as

2N

P(o ) = g II&(o )p& (1)
f=1

where II&(cr ) is the product of the "spins" S; at the ver-
tices of f (S;=+1 if site i is occupied by atom 8, and
S;= —1 if occupied by A; we assume that there are no
"broken bonds" or vacancies). This sum can be reduced
by including in it only the symmetry inequivalent figures
F, replacing 11&(o.) by its sum NDF IIF(o ) over the
equivalent figures in the lattice:
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P(cr ) = [(1—x )P( A )+xP(B ) j+bP(o. ),
where the excess property is

EP(o)=. g g Dk [III, (cr ) i) j—pk
m&Ok&1

(4)

and i) =1 when k is even and ii=(2x —1) when k is odd.
%e see that this cluster expansion needs to capture only
the deference AP(o ) between the property P(o ) of some
structure 3

& „8 and the linearly weighted sum over the
same properties in the pure 3 and 8 lattices. Indeed,
such differences are often much smaller than P(o ) itself,
e.g. , for P=molar volume, Vegard's rule states that
AP =0, for P=total energy, the formation enthalpy AP is
often only —10 of P, and for P=optical band gap, the
"bowing parameter" AP is usually less than 10% of P.
Moreover, Bieber and Gautier " and Sluiter and
Turchi@ ' calculated AP(o. ) of Eq. (4) for binary
transition-metal alloys using an empirical tight-binding
model Hamiltonian, finding that the I pz I series indeed
converges rapidly.

A number of previous attempts at the problem tried to
expand P(a ) [rather than the smaller b,P(o. ) j, or
identified pk with interatomic interaction potentiab.
Depending on the type of solid, such potentials could be
long ranged (e.g. , Coulombic), rendering the series slowly
convergent. Instead, we will identify the left-hand side of
Eq. (4) with the excess total electron plus ion energy of a
periodic structure o., calculating this AP quantum
mechanically by summing explicitly over all potentially
long-range interactions. In practice, we will use the
1ocal-density formalism as implemented by the first-
principles pseudopotential method, obtaining, thereby,
the self-consistent Born-Oppenheimer energy of structure
o.. Having integrated out the electronic degrees of free-
dom, we will then invert the problem, searching for a set
of ejj"ective interaction energies (not potentials) Ipk
which produce through Eq. (4) the independently calcu-
lated tb.P(o)j for a r.ange of periodic structures Io j.
We will then consider a hierarchy of figures (k, m ), estab-
lishing how many are needed to accurately describe the
excess energies of structures outside the set ta. j used to
determine Ipt, j. To do so we perform the following.

TABLE I. Calculated formation energies (in meV/4 atoms) of various ordered A~8~ structures
( A =A1As, B=GaAs). The structures can be characterized as superlattices of repeat periods (p, q ) in
various orientations given in this table, except for the luzonite AB, (predicted energy, 10.31; direct cal-
culation, 10.42) and A3B (predicted energy 10.31; direct calculation, 10.16) which are not superlattices.
We use the pseudopotential calculated excess energies of six structures, denoted by an asterisk (includ-
ing pure AlAs and GaAs), to extract six interaction energies (in me V) po l

= + 5.2762,
p l l =0.0000 p2 l

= 0.8056, p2 2
= —0.0362, p2 3

= —0.0265, and p2 4
= —0.0025. These six values

were then used to predict, via Eq. (4), the energies of the remaining 21 structures. In each case we list
the predicted value and below it the value obtained directly from the ab initio calculation. The stan-
dard deviation for 21 predictions is 0.13 meV, close to the relative precision ( -0.1) of the underlying
ab initio calculation.

Orientation
formula

CP
10.74*
10.74

[001]

CA
13.74*
13.74

[110]

CA
13.74*
13.74

[201)

CA
13.74*
13.74

[113]

Cp
10.74*
10.74

AB2 nl
7.39
7.41

/31

9.57
9.70

yl
11.39
11.62

yl
11.39
11.62

yl
11.39
11.62

(x2

7.39
7.50

P2
9.57
9.88

g2
11.39
11.66

y2
11.39
11.66

p2
11.39
11.66

A83 Vl
5.54
5.49

Zl
7.18
7.12

Yl
8.75
8.68

Fl
10.19
10.31

8'l
8.77
8.78

A, Bz V2
5.72
5.65

Z2
7.48
7.48

Y2
10.64
10.48

CH
13.50
13.50

8'2
12.16
12.l3

V3
5.54
5.55

Z3
7.18
7.22

Y3
8.75
8.65

F3
10.19
10.13

W3
8.77
8.74
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(i) Define a set of %, periodic crystals A B represent-
ing a range of compositions and atomic plane orienta-
tions G; Table I and its caption give 27 examples (includ-
ing the binaries) for the fcc symmetry.

(ii) Calculate quantum mechanically from band-
structure theory the excess total energy b,E(s) of these
X, periodic structures. Here, the ion-ion, electron-ion,
and electron-electron (Coulomb, exchange, and correla-
tion ' ) interactions are treated self-consistently in an ab
initio fashion. The electron-ion terms are represented by
nonlocal pseudopotentials; the wave functions are ex-
panded in a basis set of M =150 plane waves/atom, and
all Hamiltonian matrix elements are computed by extend-
ing all integrals and lattice sums to convergence. Since
for the example studied here (A =A1As and 8 =GaAs)
the end-point compounds have equal molar volumes, all
calculations are done at a fixed (theoretically obtained)
equilibrium volume. Great care was exercised to assure
that the calculated excess energies b.E(s) have the same
precision (within 0.1 meV/atom) for all structures; we use
precisely equivalent basis sets, Brillouin-zone sampling, '

and stringent self-consistency conditions. These calculat-
ed energies AE(s) for all ordered structures (defined in
Table I and its caption) are shown in Fig. 1; they exhibit
a nonintuitive distribution of energies whereby certain
atomic-plane orientations [e.g. , (111)]have the lowest en-
ergies, others [e.g. , (201)] have the highest ones.

(iii) To examine the expansion (4), we first fit all of the
X, =27 calculated excess energies to a set of Xf (X, in-
teractions [pz J, systematically extending the range of

i
'

I
'

i

14i-
! CA

CH

QW2
~ j2

CP

m 8

(k, m ) to obtain convergence. Using only Nf =13 terms
produces an excellent fit" with the root-mean-square er-
ror of 0.097 meV, comparable to the intrinsic relative
precision of the ab initio calculations. More importantly,
these interactions pk show convergence with the size of
F, e.g., the pair (k =2) energies decay with interatomic
separation m: they are —0.8075, —0.0279, —0.0225,—0.0051, —0.0001, and —0.0075 for m =1, 2, 3, 4, 5,
and 6, respectively. The same is true for the three-body
terms p3 i =+0.0075 p3 ~

= —0.0021, and p3 3=+0.0003, while the four-body terms are rather small:
p4, i =+0.0009 and p4 2

= —0.0034.
(iv) Given this rapid convergence, we now select the

figures that give the largest contribution Dk pk to the
energy and use these to predict the energies of other
structures. In addition to the normalization terms (0, 1)
and (1,1), we use the pair interactions (2, 1), (2,2), (2,3),
and (2,4) [the (2,4) pair has a higher multiplicity DF than
the (2,6) pair]. Using just these six figures and X, =6
structures, denoted in Table I by asterisks, we obtain by
direct matrix inversion of Eq. (4) a set of six interaction
energies, given in the caption of Table I. These are now
used to predict the energies of the remaining 21 struc-
tures, whose energies were not used in the determination
of the pf's. Table I shows that direct calculations on only
6 configurations can be used to predict the quantum
mechanically calculated excess energies with useful pre
cision: the prediction error (0.13 meV; a similar value is
obtained by selecting other structures) is just slightly
larger than the intrinsic precision of the direct calcula-
tion. This analysis shows that the informational content
of the complex total-energy calculations on various
Al Ga As + structures depicted by the symbols in Fig.
1 can be reduced to -6 interaction energies and that
these su%ce to predict the structural energies of other
configurations. Of course, the rate of convergence will
depend, in general, on the chemical nature of the solid
and may vary when long-range elastic or screened elec-
trostatic interactions are present. Our previous studies'
show that the same set of structures and interaction ener-
gies do apply, however, to many other III-V and II-VI in-
ter semiconductor compounds. Applications to
transition-metal alloys' indicate that a similar conver-
gence can be obtained. This opens the way for calcula-
tions of formation energies for lattice structures that are
too complicated to be treated by direct ab initio methods.
A few examples follow.

III. APPLICATIONS

A. Random Al& „Ga„As alloys

0
0.2 0.4 0.6 0.8 1.0

GaAs Composition x AIAs

FIG. 1. Ab initio calculated formation energies of the various
AlpGa~Asp+~ ordered structures of Table I. The solid line
gives the calculated energy AEz of the random Al, 6-a As al-
loy. The symbols refer to the structures defined in Table I.

W'e can predict the formation energy AE& of a random
A i B„alloy by replacing 111, (o ) in Eq (4) by its
configurationally averaged value (2x —1)". Using the in-
teraction energies [pf ] from the %, =Kf =6 set we get
the excess energy of the random alloy depicted in Fig. 1

by the solid line. (Using instead the larger set with
%+=13 interactions produces differences ~0.05 meV. )

The value at x =
—,
' is within the experimentally deter-

mined range. ' A ground-state search' with the Ising
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Hamiltonian (4) using our interaction energies [pk
shows that the system will phase separate into
A1As+GaAs at T=O. Note that, despite this, some or-
dered structures have a lower formation energy than the
corresponding random alloy at the same composition
(Fig. 1), hence metastable ordering could exist.

40—

1
]

I
i

I
i

I
l

I

p layers of AC
in continuous BC

[201] 36.65

B. Suyerlattices

It is possible' "to predict from Eq. (4) the formation
enthalpies of (A1As) (GaAs) superlattices as a function
of the repeat periods (p, q) and layer orientation G sim-

ply by calculating the geometrical correlation functions'
III(p, q, G) and using the interaction energies that were
determined previously from our fit (Table I). For repeat
periods (p,p) we obtain the order of the formation
enthalpies bE(111)& bE(001) & EE(110)& bE(113)
& bE(201). In the few cases where our hE can be com-
pared with direct ab initio superlattice calculations (for
structures not included in our basis set), the agreement is
good, e.g., for the p =q =3(111)oriented superlattice the
result obtained from our cluster expansion, 11.4
meV/cell, is in very good agreement with the extensive
first-principles calculations of Bylander and Kleinman, '

yielding 11.6 meV/cell.

C. Quantum wells

I 30—

U)

c 20
CO

~~
(Q

I )0

[113]„25.96

[110] 22.15

[001] 14.95

[111] 11.44

l i I i I i I

2 3 4 5
Number of AC layers, p

FIG. 2. Predicted interfacial energies of quantum wells con-
sisting of p layers of AC embedded in a continuous BC barrier.

The cluster expansion can be used to extract the inter-
facial energy for the interesting case of
(BC) (AC)z(BC) quantum wells, i.e. , p layers of AC
embedded in a continuous barrier made of' BC. The re-
sults are shown in Fig. 2. We predict that a [ill]-
oriented well is the most stable while the [201] is the least
stable in this series; the energy of the latter converges
rather slowly to its asymptotic limit. The di6'erent be-
haviors versus p and, for Axed p, versus orientation Cx can
be understood in terms of the number of mixed A-8 atom
pairs at the interface for each geometry. '

D. Isovalent antiyhase boundaries

Another interesting application is the determination of
the energy of an antiphase boundary (APB) in a given or-
dered structure. We have considered an APB in which
the atoms of the mixed sublattice (isovalent A and B
atoms in A i B C) are interchanged across the inter-

face. This type of APB was found to occur experimental-
ly in high densities (mostly perpendicular to the growth
direction), both in lattice-matched' and in lattice-
mismatched ordered ternary compounds. Direct first-
principles supercell calculations of such APB energies
would be difficult, requiring O(30—40) atoms/cell (Ham-
iltonian matrices of square dimensions of 6000X 6000) in
order to separate the contributions of two consecutive
APB's. We have considered the effects of differently
oriented APB's on the formation energy of the ordered
CuPt (CP) structure (the monolayer GaAs-A1As superlat-
tice oriented along the [111]direction) and of the ordered
CuAu (CA) structure (monolayer superlattice along the
[001] direction). We define the APB energy 6AFB(G) as
the difference between the energy of the (CP + APB) sys-
tem and that of the perfect CP structure. Since there are
two APB's per cell, the energy associated with each is

TABLE II. Calculated APB energies (in ergs/cm ) for di6'erently oriented APB's in the CuPt or-
dered structure of A1GaAs2. For nonstoichiometric APB's, the value given is the average of the ener-
gies of the two Ga and Al APB's [Eqs. (5) and (6)].

Stoichiometric

Cupt

Nonstoichio metric

orientation
energy

111
+ 1.658

001
—0.170

110
—2.388

110
+2.019

113
+0.679

111
—5.988

orientation
energy

101
—2.074

CuAu
110

—2.375
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6APB= z [bE(CP+2APB) kE(CP)]

for stoichiometric AP8's while for nonstoichiometric
APB's we define an average APB energy as

~APB z ( ~APBi +~APBz )

=
—,
' [EE(CP+APB, +APB2) —bE(CP )], (6)

where APB, refers to the Al APB and APB2 to the Ga
APB. The average energy for nonstoichiometric APB's
can be found by selecting unit cells containing both types
of APB's, so that the overall stoichiometry of the com-
pound is preserved. Table II gives the APB energies of
the CuPt and CuAu structures of AlGaAs2 at the limit
where the two APB's in each cell are suKciently removed
from each other so that E~pg no longer depends on their
separation.

For the stoichiometric APB's in the CuPt structure we
find that the (111)and the (110) oriented APB's increase
the formation energy, while the (110) and (001) APB's
reduce it, hence, they could occur spontaneously. This
energy change increases with the APB density. Often a
high APB density gives rise to a new ordered compound:
for example, (110) APB's separated by two atomic planes
in the CuPt structure generate a 2X2(001) superlattice

(the Z2 structure of Table I), while a (001) APB separat-
ed by two double layers gives the Y2 structure (Table I)
observed experimentally. In the nonstoichiometric
case, the presence of (113) APB's is unfavorable, while
the (111) APB's, generating new (111) superlattices with
double-layer periods, reduce the CuPt formation energy.

For the ordered CuAu structure, we see that the two
inequivalent (110) and (101) APB's lower its formation
enthalpy. This is consistent with the observation' of
(110) APB's in spontaneously CuAu-type long-range or-
dered Al Ga, „As alloys.

In summary, we have shown that combining ab initio
total-energy calculations on a few ordered structures with
a statistical mechanical cluster expansion could be used
to explore the stabilities of a wide range of
configurational degrees of freedom in solids.
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