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Summary
High-technology electronic devices are based on highly
specialized core materials that make their operation pos-
sible : semiconductors. Unfortunately, the range of mate-
rial properties that make high-technology devices work
is extremely narrow, since the sheer number of useful
semiconductors is small. Hence, a major challenge has
been to predict and develop new, potentially useful
semiconductors. We describe here how the use of state-
of-the-art techniques in both quantum and statistical
mechanics can lead to predictions of new, stable, and
ordered semiconductor alloys. A number of laboratories
have already grown experimentally these new materials;
efforts to characterize their useful material properties are
ongoing in the United States, Japan, and Europe. This
work describes the theoretical methodologies of our ap-
proach, and shows how supercomputers make possible
the quantum-mechanical architectural analysis of new
materials.

Introduction

Simple semiconductors such as Si, Ge, GaP, GaAs, InP,
and A~As have traditionally been used as core materials
for a wide range of electronic and optoelectronic de-
vices, including integrated circuits, lasers, light-emitting
diodes, solar cells, and various light-detectors. Since the
existing number of such simple semiconductors is small
[0(10)], they provide but a limited range of material
properties (bandgaps, carrier mobilities, lattice param-
eters). It has hence been a common practice to form
solid solutions (of composition x) AxB 1 _ of the parent
compounds A and B, attempting thereby to obtain tech-
nologically useful material properties that are interme-
diate between those of pure A and pure B. Unlike the

parent crystalline semiconductors A and B, however, the
alloys A.,B 1 - are disordered, and hence generally have
lesser electron mobility, and are structurally unstable to-
ward low-temperature disproportionation into their bi-
nary constituents (their mixing enthalpy AH is positive,
so their free energy dH - TS is negative only at suffi-
ciently high temperature T, where the - TS entropy
term overwhelms AH). Until recently (Panish and
Ilegems, 1972; Stringfellow, 1973), it was believed that

all such isovalent semiconductor alloys between A and B
(where A and B are either IV-IV, III-V, or II-VI semi-

conductors) exist either as disproportionation products A
+ B, or as disordered solid solutions A,,B I - ,. More re-
cendy we have predicted theoretically that hitherto un-
known, long-range, ordered stoichiometric inter-semicon-
ductor compounds AnB m can be thermodynamically
stabler than the disordered alloy below some growth
temperature T, (Srivastara, Martins, and Zunger, 1985;
Zunger, 1986; Martins and Zunger, 1986). Such or-
dered compounds form a novel class of semiconductors
in that their crystal structures are unprecedented in con-
ventional semiconductor physics (they can appear in te-
tragonal CuAuI-Iike, rhombohedral CuPt-fike, or chalco-
pyrite-like modifications, see Fig. 1); their band struc-

tures (hence, bandgaps, effective masses, etc.) differ ei-
ther from the average of the constituents or from

those of the disordered alloy; and many of them are
thermodynamically stabler (i.e., have lower ~ than the
disordered alloy of the same composition; some are even
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stabler than the phase-separated systems (Dandrea et al.,
1990).

Since our original prediction, more than 20 obser-
vations of such long-range, ordered, inter-semicon-
ductor compounds have been made (see Zunger and
Wood, 1989, and compilation of references therein). It

now appears that this phenomenon of long-range, or-
dered, inter-semiconductor phases is likely to be the rule
rather than the exception in semiconductor physics.

It is obvious that direct calculations of the internal

energies of such systems will not suffice to model their
properties and stabilities. First, these are often stable

only at finite temperatures, so usual quantum-mechan-
ical calculations (appropriate to T = 0) do not suffice
and a full thermodynamic theory is required. Second,
even on a fmed lattice with N points, there are 2N ar-
rangements (&dquo;configurations&dquo;) of A and B atoms. Since
this can be a truly astronomical number, it is impractical
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to calculate directly the energies of such a large number
. 

of configurations in an effort to delineate the stability of
ordered and disordered (or phase-separated) configura-
tions. Hence we set out to formulate a general theory of
thermodynamic stability of A 1 _ xB alloys using a combi-
nation of quantum and statistical mechanics. The objec-
tive was to advance a detailed theory of electronic prop-
erties and phase diagrams of inter-semiconductor
phases.

We first describe the essential physics, the mathe-
matical approach, and the computer algorithm used for
identifying stable structures.

Statement of the Physical Problem
The energy of any configuration Q (any arrangement of
atoms A and B on a lattice with N sites) can be written as
an Ising-like expression

where f is an elementary &dquo;figure&dquo; with kf vertices, (i.e., a
certain selection of k f sites out of the total N lattice sites)
and II¡( 0’&dquo;) is the product of spins at the vertices of
f(S = + 1 if the site has an atom B, and - if A):

Equation (1) can be written for any property that is de-
fined for all 2N possible configurations IT, for example,
energy, molar volume, and bulk modulus. This assertion
is based on the orthogonality properties of the products
lit (IT) (Sanchez, Ducastelle, and Gratias, 1984):

.áf1d

Since the energy E(Q) is defmed for any configuration (T,
we can define the interaction parameters if by using
Eq. (1) and Eq. (3), which give

Equations (1) and (5) serve well to define the phys-
ical content of a microscopic alloy theory. What is
needed is the following:
1. A microscopic theory of the basic cluster interactions

VI}’ In general, V¡} depend on the chemical
properties of A and B, their relative sizes, the alloy
composition, and the Bravais lattice (e.g., fcc, bcc).
We will hence formulate a self-consistent electronic
structure theory whereby {Jf} are computed
(quantum mechanically) from band theory.

2. An examination of the convergence of Eq. (1) with
respect to the range of interactions. This was

reported by Ferreira, Wei, and Zunger (1989) and
will be only briefly noted here.

3. Having established an ab initio and practically
complete set of interactions fifil one needs next to
search all 2N configurations to establish the
compounds that form a T = 0 ground state.

4. Finally, a finite-temperature theory is constructed
whereby one finds the temperature and composition
ranges where certain phases are stable (a phase
diagram). This is done through the cluster variation
method (CVM) and Monte Carlo simulations.

Since steps 1, 2, and 4 were described recently in
some detail, we will give only a brief description and ref-
erences to these items, and focus in more detail on step
3, that is, the description of a new computer algorithm
for finding ground states.

Approach

THE CLUSTER EXPy4NSION

Expansions such as Eq. (1) are useful only when they
converge reasonably rapidly in the sense that the inter-
actions are nonnegligible only for atoms that are not far
apart. To increase the speed of convergence, it is pos-
sible to make the interactions volume-dependent (Con-
nolly and Williams, 1983); hence Eq. (1) reads

in which case the equilibrium volume is determined by
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or, to separate an elastic piece G(x) from E(cr) (Ferreira,
Mbaye, and Zunger, 1988)

The sum in Eq. (1) can be reduced by symmetry.
Letting R be an operation of the space group of the
lattice (e.g., 05 of the fcc lattice), we have

that is, if we operate on the configuration (1, we obtain
the configuration Ra with the same energy.
Furthermore,

that is, operating on the figure and on the configuration
leads to the same product of spins. Then, from Eq. (5)
we obtain

implying that all figures related by symmetry have equal
interaction energies. It is hence convenient to define the
&dquo;lattice average product&dquo; (denoted by a bar):

where Ngo is the number of operations R of the space
group (go = 48 for fcc). Equation (1) then reads

where the sum is over the prototype figures F which are
not related by symmetry to any other figure in the sum,
and NDF is the number of figures related by symmetry
to the prototype figure F. Figure 2 shows some main
prototype figures for fcc and bcc lattices, respectively.

DETERMINING THE INTERACTION ENERGIES J~
In many applications of the Ising model to alloys, the
interaction energies {JFI of Eq. (12) were taken as ad
hoc parameters (Kikuchi et al., 1980). Since we wish to
understand the way in which the microscopic electronic
interactions drive the stability of particular (ordered or

Fig. 2 Description of the
basic figures used in the
cluster expansion for (a)
fcc and (b) bcc
systems J2, K2, L2, M2, and N2
are pair interactions between first
second, third, fourth, and fifth

neighbors, respectively, while J3 and
K3 are three-body terms and J4 and
K4 are four-body terms.
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BIn many applications of the Ising
model to alloys, the interaction en-

ergies were taken as ad hoc param-
eters. Since we wish to understand

the way in which the microscopic
electronic interactions drive the sta-

bility of particular configurations, we
next develop an electronic theory for
evaluating the interactions.&dquo;

disordered) configurations, we next develop an elec-
tronic (quantum mechanical) theory for evaluating the
interactions U F}’

To the extent that a finite and &dquo;small&dquo; set of func-
tions {J F(V)} can capture, through Eq. (12), the essential
energetics of arbitrary configurations u on a given sub-
stitutional lattice, we can determine (/~(V)} from the
total energy of a corresponding set of simple periodic
structures (Connolly and Williams, 1983; Srivastara,
Martins, and Zunger, 1985; Ferreira, Wei, and Zunger,
1989). Specializing Eq. (12) to such ordered structures
fsl, we have

The left side of Eq. (13) is defined as the excess energy of
s with respect to the same amount of pure constituents:

Here, AnAm or B,,B. denote the pure A and B solids,
respectively. Note, therefore, that the scale of 8£(5, V) is
not that of the total energy of a given structure (-106
eV for GaAs), or that of the cohesive energy (-5-7 eV
for binary semiconductors), but rather the relative energy
of AnBm with respect to its constituents (~10-2 eV). The
large constant terms appearing in E(s) (e.g., the sum of
atomic energies) are cancelled in the construct of
Eq. (14). We calculate 8£(s,V) in the local density forma-
lism (LDF) (Hohenberg and Kohn, 1964) as imple-
mented by the general potential, linear augmented
plane wave (LAPW) method (Wei and Krakauer, 1985)
or by the pseudopotential plane wave method (Ihm,
Zunger, and Cohen, 1979). The total LDF energy in-
cludes kinetic energy, interelectronic coulomb, ex-

change, and correlation terms, as well as the ion-ion and
electron-ion interactions:
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where

Here, Ni is the occupation number of level i below the

Fermi energy EF; p(r) is the electronic charge density ob-
tained from the self-consistent single-particle wave func-
tions ; Za is the atomic number of atom a at Ra; V 1 (Ra)
is the coulomb potential at Ra due to all elec-

trons and nuclei except the charge Za at Ra; V,
and Vxc are, respectively, the coulomb and electronic ex-
change-correlation potentials; and Exc is the exchange-
correlation energy density. Solution of Eq. (15) requires
first the solution of the Schrodinger equation, including
(three-dimensional) coulomb, exchange, and correlation.
This is the single most expensive step in the calculation.
The charge density is determined self-consistendy and
variationally from the semirelativistic (i.e., retaining all

relativistic terms but spin-orbit interactions) local density
Hamiltonian. For each unit cell volume V, we minimize
the total energy with respect to the cell-internal atomic

coordinates, thereby obtaining relaxed energies. To en-
sure effective numerical cancellation of systematic errors
in Eq. (14), we use for AnBffl’ AnAm, and BnBm precisely
equivalent basis sets and integration methods, and
sample the Brillouin zone by sets of wave-vectors k
which are geometrically equivalent in AnBm, AnAm, and
23~6~. We use for the zincblende structure the two spe-
cial k points (Chadi and Cohen, 1973) and equivalent k
points are used for all other structures. Convergence
tests with respect to k point sampling show that the
error in AE is less than 5 meV per four atoms.

COMPUTATIONAL DIFFICULTIES IN THE
QUANTUM MECHANICAL STEP

The excess total energy of structure s, Eq. (14), is of the
order of ---10-2 eV per atom; difference of excess en-
ergies between different structures are of the same
order or smaller. Yet, the directly calculated total elec-
tron plus ion energy, E in Eq. (14), is of the order 105 to
101 eV per atom. Hence, extremely converged and pre-
cise calculations are needed. This energy is obtained by
solving a Schr6dinger equation with basis sets of the
order of Nb = 103 basis functions. Storage of the rele-
vant Hamiltonian matrices requires I to 1.5 million
words and their diagonalization times scales as N3 (how-

&dquo;The charge density is determined
sehf consistently and variationally from
the semirelativistic local density
Hamiltonian. For each unit cell

volume, we minimize the total energy
with respect to the cell-intemal
atomic coorrlinates, thereby obtaining
relaxed energies &dquo;
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ever, our iterative diagonalization algorithm described
by Wood and Zunger [1985] scales only as -N2). For
each structure we have to iterate the Schrodinger equa-
tion to self-consistency (NI = 5-7 iterations per geom-
etry). This is done using an efficient Jacobian update
algorithm (Bendt and Zunger, 1982). At each iteration
we have to sample the charge density at Nk ~-- 10 points
in the Brillouin zone. Each sampling requires diagonali-
zation of the Nb x Nb Hamiltonian. The energy has to
be optimized then with respect to atomic relaxations, re-
quiring NR -~- 5 geometry attempts per compound. This
is done using the quantum mechanical force algorithm
(Ihm, Zunger, and Cohen, 1979). The number of struc-
tures treated is Ns - 10. The work involved scales as N,
x N x Nk x NR = 10 x 6 x 10 x 5 = 3,000
diagonalizations of the Nb x Nb Hamiltonian, where the
precision required (see order of magnitude of the en-
ergy differences above) is very stringent. Calculations for
a single compound take 20 to 50 CRAY Y-MP hours
(depending if it has localized d electrons or not).

CONVERGENCE OF THE CLUSTER EXPANSION

As Connolly and Williams (1983) have shown, for a
nonsingular detIIT¡(s)I ~ 0 in Eq. (13), knowledge of N,
equations of state 6.E(s, V) provides the Ns interaction
energy functions

This permits expression of the excess energy of general
configurations IT of Eq. (6) as a linear combination of

equations of state of periodic structures

where the weights are

The key problem is to find a set of structures {s} and
figures IFI that effect rapid convergence of Eq. (13) and
Eq. (16). The procedure used is as follows: we select a

set of N, periodic structures Isl (Fig. 1), compute the ex-
cess total energies fAE(s,V)l from electronic structure
theory in Eq. (14) and Eq. (15), and obtain from Eq. (16)

the N, interaction energy functions f J f( V )} for the
figures f depicted in Figure 2. This set is then used in
the series expansion of Eq. (13) to predict the total en-
ergies (AE(5’,kJ) for another set {s’} ~ Isl of periodic
structures. This prediction is compared with the directly
calculated values of ~E(s’,V) from electronic structure
theory. The difference between the energies fAE(s’,V)l
obtained from the series expansion prediction and the
&dquo;exact&dquo; (e.g., LAPW) excess energies is then minimized
by varying the number and types of figures {F} used in
Eq. (12), establishing the minimum sizes of figures re-
quired to produce a given maximum error we are pre-
pared to tolerate. Our study of isovalent zincblende
semiconductor alloys (Ferreira, Wei, and Zunger, 1989;
Wei, Ferreira, and Zunger, 1990) showed that to achieve
a relative error of only a few percent in AE requires
retention in Eq. (12) of up to fourth fcc neighbors and up to
four-body interactions. These include eight J h,rn terms (Fig.
2): (1) a normalization term Jo, 1 ; (2) a sites-only term
Ji , 1; (3) four pair interaction terms,J2,1,J2,2,J2,3’ and
J 2,4’ between first, second, third, and fourth fcc

neighbors, respectively (abbreviated in what follows and
in Figure 2 as J2, K2, L2, and M2, respectively); and (4)
a three-body J3,1 (~J3) and a four-body J4,1 i ( f 4)
nearest-neighbor term. Our previous study (Ferreira,
Wei, and Zunger, 1989) has also established an optimal
set of structures {sl consistent with the above require-
ments. Figure 1 depicts these structures, gives their
space groups, ordering vectors, Bravais lattices, and the
notation used to designate them.

THE E-G REPRESENTATION

In what follows, it would be convenient to use the

volume-dependent representation of Eq. (12) along with
an equivalent (&dquo;E-G&dquo;) representation in which {y~(V)}
are transformed into a volume-independent set fvfl.
This is done by separating Eq. (12) into &dquo;chemical&dquo; (E)
and &dquo;elastic&dquo; (G) pieces. For a general configuration Q at
the equilibrium volume V eq = V ( ac ) , this separation
reads

This is done (Ferreira, Mbaye, and Zunger, 1987, 1988;
Ferreira, Wei, and Zunger, 1989) by requiring that
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3U(s,kJ have the same value for the first three volume
derivatives as AE(SV) of Eq. (13). In these references we
have shown that this yields

where

and

Here B and V are the bulk modulus and molar volume,
respectively. With Z(x) defined as above, 3U(s,kJ of
Eq. (19) has all the required properties of 3E(s,%J. Be-
cause the function 3U(s,V) has the virtue that its

volume-dependent term is linear in composition, the
configurational energy can be separated as

where vF are volume-independent interactions energies
given, in analogy with Eq. (16), by

Equations (22) and (23) are obtained from first-prin-
ciples electronic structure calculations, much like

Eq. (12), but are more convenient for ground-state
searches.

SEARCHING THE GROUND STATE

At this point, we have a formulation of the configura-
tional energy E(o-) as a series expansion either in
volume-dependent energies, Eq. (12), or in volume-inde-
pendent energies plus a &dquo;source&dquo; term, Eq. (22). In ei-
ther case, the basic interaction energies are described
through a quantum-mechanical formulation of the total
Born-Oppenheimer energy, Eq. (15), that is, by Eq. (16)
for ~JF(V)~, or by Eq. (23) for IvFl. In both cases, the

-Our study suggests that the Memiody-
namic properties of bulk isovalent
zincblende semiconductor alloys can
be quantitatively understood in terms
of a general Ising model with up to

føul1h-neighbor interactions. The

global trends can be understood by
separa6ng the excess enthalpy into a

volume-dependent form and a sum
over volume-independent configura-
tional enengies.&dquo;
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Fig. 3 Schematic plot of
the chemical ground
state line 4.E &dquo;&dquo;-ro( (J’......>,
which is the second term
in Eq. (22), the elastic
energy G(x~, and their
sum DE(Q&dquo;,w,) Note that at

compositions y between the vertex
points of .1Ech&dquo;,,(Umnl, the system can
lower its energy by local
decomposition, whereas the vertex
points X,, X2, and X3 are focally stable
with respect to decomposition and
hence will produce metastable long-
range ordering.

input to these calculations is the equation of states
JAE(V)L of a set of ordered intermetallic A-B systems.
These are determined from self-consistent local density
calculations, as described above. As the next step, we
wish to find the ground-state configuration that has the
lowest AE(u,V).

The ground state for a Hamiltonian as Eq. (12) or
Eq. (22) is a classical problem in magnetism and in the
theory of alloys. For fcc alloys, the most complete search
for the ground state was given by Kanamori and Kake-
hashi (1977); for bcc, it was given by Finel and Ducas-
telle (1984).

At this point we should define what we understand
by the ground state of the alloy. Let 0&dquo;, a, and /3 be three
configurations with concentrations of B atoms x(u), x(a),
and x((3) in the order

If E(Q) is larger than the linear average of E(a) and
E(p), that is,

then configuration Q does not belong to the ground
state because a mixture of the phases a and r3 would
have a lower energy. A plot of the ground-state energy
as a function of the concentration x has a similar charac-

teristic shape shown schematically in the bottom part of
Figure 3. It consists of straight line pieces between
&dquo;breaking points,&dquo; which correspond to some ordered
(periodic) configurations of atoms. Any configuration Q
could be represented in Figure 3 by a point {x(o-), E(Q)~.
This point would be above the ground-state line (GSL) if
Eq. (24) and Eq. (25) are satisfied for a certain pair a, r3.

Though restricted, the Kanamori-Kakehashi study
is very enlightening. For 0 ; x ; 0.5 and any ratios
v2.2w2,4 and z~~,~,Iz~2,4, they found that, with the
number of atoms per cell ~ 16, only 40 configurations
can be ground states (i.e., breaking points of the GSL).
These periodic structures have different numbers M of
atoms in the unit cell. Table 1 shows the number of

Kanamori-Kakehashi ground-state structures as a func-
tion of their unit cell sizes M. One sees that, in general,
ground-state structures have rather small unit cells: only
eight possible breaking points have unit cells with more
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than 12 atoms per cell (or 12 fcc sites). Moreover, con-
figurations with large unit cells, though theoretically be-
longing to the GSL, might be very difficult to grow be-
cause they require a long-range correlation between
atomic positions. For these two reasons it is practical to
study the ground state, restricting ourselves to those
configurations with unit cells of limited sizes.

Our calculation of the ground state then proceeds
in two steps. First, we construct a file of all fcc-based and
bcc-based configurations with unit cells smaller or equal
to a certain maximum size ( 10-15 sites). In this file, for
each configuration, we store the values of TIE for the
figures F of Figure 2. In the next section we describe a
systematic procedure to construct this file, without

missing any configuration, and without repetitions.
Second, once the file is constructed, the ground state for
a given set of interactions IvFl is found as follows:

1. For each configuration u read f rIF1 from the file
and calculate E(Q).

2. Compare E(o-) and x(v~), according to Eqs. (24) and
(25), with the configurations a and 13 that, up to this

point, were found to be breaking points and are
closest in concentration to a.

3. If Eq. (25) is not satisfied for pairs a and 13 that
satisfy Eq. (24), configuration a is a new breaking
point.

4. If Q is a new breaking point, scan the previously
determined breaking points a and 13 to see whether
any of them are now excluded from the GSL due to
the introduction of u.

CONSTRUCTING A CONFIGURATIONS FILE

Let al, a2, and a3 be the unit vectors of the periodic
configuration. Choosing the lattice parameter a = 2, the
unit vectors are (lmn) with

For the fcc lattice itself, the unit vectors are A 1 =

(0,1,1), A2 = (1,0,1), and A3 = (1,1,0). For the bcc lat-
tice, they are A1 = (-1,1,1), Ag = {1,-1,1), and A3 =
(1, 1, - 1). The systematic generation of periodic configu-
rations requires first a systematic generation of their
triads of unit vectors fall. This is done as follows:

Table I

Number of Kanamori-Kakehashi Ground-State

Structures as a Function of Number of Atoms

per Cell with Concentration x ~ 0.5
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1. Require that for fcc

where M is the number of fcc sites per cell (for bcc

multiply M by 2 in this and subsequent formulae).
2. Require that

3. Since adding or subtracting from a2 a multiple of a I
does not change the lattice, we require

4. One may add any integer combination of a, and a2
to a3 without changing the lattice, so that we require

with 1

and

One can then readily prove that

5. We can also make use of the rotational symmetry of
the fcc (bcc) lattice. Choose ai _ ( l 1, m ~ , n 1) so that
Eq. (34) is satisfied and

1, ~-- m n 0. (37)

6. Choose a2 = ( l2, m2 , n2) so that Eqs. (30) and (35)
are satisfied. Further, if a, - a2 = 0, choose l2 - 0;
if l2 is also zero, choose m2 ! 0; if m2 is also zero,
choose n2 > 0. Further, if m = 0, choose m2 . 0,
and if n 1 = 0, choose n2 ~ 0. Further, if l = ml,
choose 12 ::-’ m2’ and if m = n 1, choose m 2 ~ n2 .

7. Choose a3 = (ls,ms,n3) so that Eqs. (36), (31), (32),
and (33) are satisfied.

1
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The set of triads generated according to the recipes
above still contains repetition-that is, triads generating
lattices related by symmetry-despite all the require-
ments that were set. So, starting from M = 2, we gen-
erate a file of triads, and for each new triad we verify
that it is not equivalent to a previous one already in the
file. This is done in the following way. Let pl, p~, and
P3 be the unit vectors of a previous triad. If the triad

~aa~ is equivalent to {pj then it is possible to find a point
group operation R so that pi is an integer combination
of the rotated aj

Letting fgkl be the reciprocal vectors of {a’~, or

for instance

we say that fajl is not equivalent to any previous fpil if
there is no point group operation R for which

for all i and k.
Once a new triad has been found (defining a unit

cell with M fcc sites), we must study the 2m configura-
tions obtained by occupying the M sites with atoms A or
B. This study begins by finding the Cartesian coordi-
nates of the M sites.

Let fail be the primitive unit vectors of the fcc (or
bcc) lattice itself. (Do not confuse it with the primitive
unit vectors {a;~ of the periodic configuration to be con-
structed, which is the triad just found.) The M sites of
the unit cell of the configuration (basis vectors bi) are
integer combinations of the vectors Aj

Now, the unit vectors of the configuration are them-
selves integer combinations of Aj

then

Now, the determinant of the matrix is equal to the
number M of sites

One sees that in adding to any of the integers 1 ii in
Eq. (44) a multiple of M, one is adding to bi an integer
combination of the unit vectors of the configuration fail,
and therefore pointing to a position in the same sublat-
tice, but m.c~side the unit cell. Hence, the search for the
basis vectors {bj can be made by scanning the integers
lii in the range

Of course, in finding a new basis vector b;, we must
verify that it is not pointing to a site differing from a
previous basis vector bP by an integer combination of
the unit vectors, or a site in a sublattice already found.
In other words, it is necessary that at least for one of the

reciprocal vectors gj

Having established the basis vectors, the M sublattices

withy, = integer, are occupied with atoms A or B in 2~&dquo;’~
different ways. Each configuration is represented by a
number B

written as a binary. For instance, for M = 6, the config-
uration B = 13 is 001101 meaning AABBAB, or that the
second, fifth, and sixth sublattices are occupied by A,
while the first, third, and fourth sublattices have atoms
B. The corresponding spins are - I , -1, 1, 1, -1, 1.

We store in the file the configurations with concentra-
tion x of atoms B x % 0.5; the other configurations are
discarded. Since the origin can be placed anywhere, we
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also require that the spin of the first sublattice is + 1

(atom B ).
After occupying the M sublattices with atoms A or

B, it may happen that the translational symmetry of the
resulting configuration is larger than what was assumed
by the unit vector f all. For instance, in an fcc-based con-
figuration with unit vectors al = (2,0,0), a2 = (0,2,0),
and a3 = (0,0,2) there are M = 4 sublattices with bases
bI = (0,0,0), b2 = (1,1,0), b1l = (1,0,1), and b4 =

(0,1,1). If one occupies b and b2 with A’s, b3 and b4
with B’s, we obtain the CuAul configuration with just
two atoms per cell, and not the four sites originally as-
sumed. These configurations with increased translational
symmetry are discarded because they had been consid-
ered previously when calculating the configurations with
smaller values of M. The extra-translational symmetry
corresponds to a translation vector that belongs to the
full fcc translation group but is left out in the translation

group generated by f ail. Then the extra-translation
vector must correspond to one of the basis vectors fbil.
The criterion is the following: a translation b; also be-
longs to the symmetry group of the configuration if, for
all basis vectors b;,

In other words, bi + bi and bj have the same spin, or
the same atom. If Eq. (50) is satisfied for all j and a cer-
tain i, the configuration has higher translational sym-
metry than assumed and must be discarded.

Thus, given a triad of unit vectors, the 2M configu-
rations are submitted to the three tests above: namely,
x ~ 0.5; atom B at the origin; and no extra-translational
symmetry. For those configurations cr that pass these

tests, we calculate the lattice averaged spin product
HF (a) according to Eq. (11). The sum in Eq. (11) was
taken over all space group operations of the original fcc
lattice. However, this is not needed here because the

configuration Q has a definite translation group gener-
ated by the triad of unit vectors Jai), and so we just sum
over the factor group made of the 48 rotations and the
M translations with vectors {bj}’ Accordingly, the de-
nominator becomes 48 M and not 48 N. Rotating and
translating these vertices presents no problem. After the

operation R on a vertice v, the sublattice 1 of Rv is iden-
tified by verifying that

for all J. Thus, one knows the spin of the operated ver-
tices and can make the product IIRF ( Q ) and calculate
the average IIF ( Q ) .

Finally, very frequently two configurations with the
same triad of unit vectors but with different occupation
of B atoms will be symmetry-related. Since the table of
IIF distinguishes two symmetry-unrelated configurations,
according to Eq. (12), we must determine if the configu-
ration just generated has a set of IIF different from
those of the configurations previously found. If the set
coincides with that of a previous configuration, the new
configuration must be discarded to avoid repetition. Be-
cause we are working with only eight figures, and not an
infinite set of figures, we might be making a bit of over-
elimination, for it happens that two symmetry-unrelated
configurations with the same triad of unit vectors might
have equal sets of eight average IIF. This overelim-
ination is of no consequence if the interactions vF are
also restricted to the eight figures. ,

In Table 2 we show the number of configurations
for different values of the cell size M. The number in-

creases very fast with M, so that the computing time and
the storing of Fflfl file become enormous if M is taken
beyond 10. Fortunately, this calculation needs to be

done only once for fcc and bcc symmetries. On the
other hand, as exemplified by the Kanamori-Kakehashi
study, and explained in the preceding section, the upper
limit M - 10 already includes the most important con-
figurations and allows a realistic description of the GSL.
In our actual calculations we used M = 15 so that about

2~5 = 32,768 possible structures are examined for each
compound.

Results

Referring above to the section Statement of the Physical
Problem, we have carried through steps 1 through 4 for
seven semiconductor alloys. The phase diagram calcula-
tions were done using CVM (Kikuchi, 1951, 1974) with
up to four (folded) neighbor interactions and four body
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terms (Ferreira, Wei, and Zunger, 1989). We next dis-
cuss the salient features of the results.

THE QUANTUM-MECHANICAL
INTERACTION ENERGIES

Using the LAPW calculated equations of state fAE(sV)l
for the eight special periodic structures (Fig. 1) and

Eq. (16), we obtain the volume-dependent interaction
energies depicted in Figure 4 for three alloy systems.
These show the following:
1. Jo ( V ) and J 1 { V have a significant volume

dependence; Jo ( V) is much larger at x = 1/2 than all
JFOO*

2. Three- and four-body terms are rather small for
semiconductor alloys.

3. Regarding the pair (k = 2) interactions J2,.~ between
m neighbors, we find J2,1 (first-neighbor pair) to be
dominant. Yet the fourth-neighbor interaction J2,4 ~
larger than the second-neighbor (J 2,2) and third-
neighbor (J 2,3) pair interactions. This result is found
to hold for all eight semiconductor systems. This
nonmonotonicity of ,J2,,~ with m

serves as a warning against simple truncation of the
energy expansion, Eq. (12), on the basis of a
hierarchy in m.

FORMATION AND MIXING ENTHALPIES

Figure 5 shows the reduced mixing enthalpy (&dquo;interac-
tion parameter&dquo;)

for the disordered alloy at two temperatures (solid lines),
and the analogous quantity (reduced formation en-
thalpy) for the ordered compounds s at T = 0

depicted as solid diamonds.
The basic features of our results in Figure 5 are as

follows. First, for size-mismatched alloys, the (201)-type
structures such as chalcopyrite have a lower enthalpy
than the disordered alloy. We will see below that this
leads to metastable long-range ordering of size-mismatched

Table 2

Number of Configurations Having Different
Triads of Unit Vectors and/or Different Sets of

Eight 1TF in the fcc and bcc Systems as a
Function of Number of Atoms per Cell 

___

Fig. 4 LAPW-calculated

interaction energies from
Eq. (16) for three
semiconductor alloys
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Fig. 5 Calculated
reduced enthalpy for the
disordered alloy (solid
lines), see Eq. (53), and
for ordered compounds
(diamonds), see Eq. (54)

semiconductor alloys, as observed in liquid-phase epitaxy
growth (Nakayama and Fujita, 1986) of Inl_xGaxAs and
in vapor growth ( Jen, Cherng, and Stringfellow, 1986,
1987) of GaSbl-xAsx’

Second, for size-matched alloys, the disordered alloy
has a lower enthalpy than any of the simple ordered
structures studied; hence, no therrr~odynamically mandated
ordering is expected in size-matched semiconductor alloys. The
CuAuI-like ordering observed by Kuan et al. (1985) in
Al1_xGaxAs is likely to be surface-induced.

Third, the CuPt ordering recently observed in epi-
taxial growth of size-mismatched semiconductor alloys
(see Fig. 1) is characterized by a considerably higher en-
thalpy than the disordered alloy; hence, bulk effects pro-
duce neither stable nor metastable CuPt ordering in siu-mis-
m,atched semiconduc~or alloys.

Fourth, ~(x,7&dquo;) has a significant composition depen-
dence neglected by most phenomenological models (e.g.,
Panish and Ilegems, 1972). Note that when B is the

smaller of the two atoms in A1 _xBx, we find that
S~(0) < 0(1). This reflects the fact that more energy is
required to incorporate a large atom A in a small host
crystal B (i.e., x ~ 1) than to incorporate a smaller atom
B in a large host crystal A (i.e., x ~ 0).

PHASE DIAGRAMS

Figures 6 and 7 depict the calculated phase diagrams of
the eight alloy systems in the high-temperature range
where disordered alloys exist. The calculations show the
binodal (&dquo;miscibility&dquo;) line as well as the spinodal. The
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binodal is the line in the (x,T) plane where the A-rich
and B-rich disordered phases have equal chemical po-
tentials )JL. The spinodal line describes the limit of meta-
stability of the disordered phase when d2Fldx2 = dp/Ux
= 0, F being the free energy. In all cases, we find that
the thermodynamically stable ground state corresponds
to phase separation. The phase diagrams are generally
asymmetric with respect to x = 1/2.

Experimental data on the solid-state part of semi-
conductor alloy phase diagrams are fragmentary: al-

though detailed data exist on the high-temperature liq-
uidus and solidus lines, the low atomic diffusion con-
stants at lower temperatures make such studies in solid
semiconductors difficult. The recent data of Ishida et al.

(1988) for GaSb 1 _x Asx shown in Figure 6 and exhibiting
close agreement with the calculation are a notable

exception.

METASTABLE ORDERED PHASES

The persistently lower formation enthalpy of the ABC2
chalcopyrite structure relative to the disordered phase in
size-mismatched alloys (Fig. 5) suggests the possibility of
metastable long-range ordering into this structure. We
calculated the temperature limit of stability for this
phase, according to a2Fl ax2 = 0 . The results are sum-

marized in Table 3. At thermodynamic equilibrium, the
system phase separates below TMG into AC-rich plus BC-
rich mixtures, while above TM~ a homogeneous alloy
persists. If, however, phase separation is kinetically in-
hibited, metastable long-range ordering will persist
below T, (Table 3). These structures are metastable in a
very specific manner: they are more stable below T,
than the homogeneous disordered alloy, but unstable
with respect to phase separation. Note that other or-
dered structures such as CuPt or CuAul are not meta-

stable : they are unstable with respect to both disordering

Fig. 6 Calculated phase diagrams for the lii-V alloys (a)
A~,_XGa,~As. (b) GaAs~~P~, (c) In,_xGaxP, (d) In,-,~GaxAs,
and (e) GaSb,- .As. The solid (dashed) lines give the binodal (spinodal) lines.
Low-temperature ordered phases are not shown (given in Table 5). The arrows point to
the maximum miscibility gap (MG) temperatures and compositions. The circles in part (e)
are the recent experimental data of Ishida et al. (19881; the horizontal line represents the
peritectic line.
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Fig. 7 Calculated phase
diagrams for the 11-VI
alloys (a) Cd,- .H9. Te, (b)
Hg, _=2n,~Te, and (c)
Cd,_...Zn.. Te

and phase separation. This result highlights the signifi-
cance of interactions beyond first nearest neighbors: re-
taining interactions only up to first neighbors (J2) leads
to a degeneracy of the energies of the CuAul and chal-
copyrite structures.

COMPARISON OF MONTE CARLO AND CVM

SOLUTIONS TO THE ISING HAMILTONIAN

A distinct advantage of the representation of the Ising
Hamiltonian in Eq. (22) is its amenability to Monte Carlo
simulations, which are considerably more difficult when
JF are functions of volume. To assess the validity of our
folding method whereby second, third, and fourth
neighbor pair interactions are renormalized into effec-
tive nearest-neighbor interactions f(x, V), we compared
the CVM solution of this Ising Hamiltonian, Eq. (22),
including folding, to a Monte Carlo solution of the full
(unfolded) Hamiltonian.

For simplicity, we select in Eq. (22) G(x) = fi x{ 1 -
x) and remove the three- and four-body terms, that is,
v3.1 = V4.1 = 0. These simplifications lead to a phase
diagram that is symmetric about x = 1/2 and the two-
phase equilibrium occurs at the chemical potential f.1 =

0. Thus, the search for the phase equilibrium line in the
(f.1,T) plane (a very time-consuming step in Monte
Carlo) is simplified. The parameters used, appropriate
to GaSb1-xAsx, are (in meV)

Table 3

Calculated Miscibility Gap Temperatures T~, the Composition xMQ = X(T,~, and Interaction
Parameters fl,(x) of Eq.(53) at T = 800 K and the Spinodal Ordering Temperatures for a Number of
Metastable Long-Range Ordered Phases
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and fl = 948.5059 meV (four atoms).
The Monte Carlo runs were made using single

spin-flip kinetics (Styre, Phani, and Lebowitz, 1986). We
used a cell of 123 = 1,728 fcc sites, 100 flip attempts per
site, to reach steady state and 400 attempts per site to
collect data. The acceptance ratio, which is defined as

the fraction of successful flip attempts, was minimum at
700 K, when it attained a value of 19%, and it increased

rapidly as the temperature was raised.
The results are presented in Figure 8. The binodal

points were determined by starting from a random
sample with x = 0.99, letting it stabilize, and collecting
data at ~ = 0. Above 850 K and below T MG’ the spin-
flip process led to a two-phase system, and the sample
oscillated between these two phases in equilibrium.
Thus, it was impossible to determine accurately the equi-
librium concentration of each phase. Although the oscil-
lations of x are large, we observed that the probability of
finding pairs AB, which is equal in the two phases, had
small oscillations. Therefore, we used this fact to find
the critical temperature. Figure 8b presents the interac-
tion parameter at 1,000 K. In all cases, the dots, bars, or

rectangles are in size equal to or greater than the stan-
dard deviation.

Figure 8 shows an excellent agreement between the
phase diagram (9a) and mixing enthalpy (8b) obtained
from Monte Carlo and CVM solutions. We have also
included for comparison results obtained by the mean-
field Bragg-Williams (BW) approach (Bragg and Wil-
liams, 1934) in which all correlations are neglected. We
conclude that our tetrahedron CVM with folded distant-

pair interactions in no way worsens the good agreement
between standard CVM and Monte Carlo. Thus, the

folding method opens the way to the inclusion in CVM
of more realistic and complicated Hamiltonians.

THE SEARCH FOR GROUND STATES

The use of the energy expansion in terms of multisite
interaction energies and the determination of the inter-
action energies permit us to capitalize on our method to

Fig. 8 (a) Phase diagram
(binodal) using CVM with
folded distant-neighbor
interaction (full line).
Bragg-Williams (BW,
dashed line), and Monte
Carlo (MC, dots and bar)
method The Hamiltonian is given
in Eq.(22) with parameters of
Eq. (551. (b) The normalized

mixing enthalpies for
these three models The

rectangles depicting Monte Carlo
resufts indicate the size of the stan-

dard deviation in x and A~x(1 - x).
The standard deviation is smaller than

the sizes indicated by the solid circles.
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find the ground states supported by this Hamiltonian.
The stability analysis is most simply made in the (E,G)
formalism, where the configuration a has the energy
given by Eq. (22). We will refer to the second term of
this equation as the &dquo;chemical&dquo; energy ~E~,~em(Q). To
establish the stability conditions, we proceed in two steps.

First, we compare structures with fixed composition
x and search for the lowest energy at each x. In this case,
the term G(x) is irrelevant because it is common to all

structures at the same x. The GSL of the chemical en-

ergy DE~hPm(o’n&dquo;&dquo;) is obtained in the way outlined above
in the section Convergence of the Cluster Expansion.

In the second step we consider the effect of the
elastic energy G(x) on the decomposition of a phase aJ3
into two phases of different compositions, for example,

2«@(x) = a(x + w) + [3(x - w), (56)

where w is an infinitesimal composition change. Figure 3
shows schematically G(x), and the sum ÅE(crmin) of G(x)
with the GSL ~E~he~(a~;n) as a solid line. For size-niis-
matched semiconductors, the positive elastic energy G(x)
overwhelms the negative chemical energy; since the sum
of these two contributions 6E(Q~;&dquo;) is nonnegative for all
x’s, the ground state at T = 0 corresponds to a mixture
of the pure binary constituents. However, local min-
imum can exist. This can be seen by considering a com-

Table 4

Ordered Configurations Corresponding to Vertices in the Ground-State Line of Chemical Energy
~Ed,..f, ( a)

All configurations wrth up to 15 atoms per cell were considered. These configurations are superiatbces with atternating planes (p,q,r,...), i.e., p planes of A, followed by q planes of B, r
planes of A, etc., along the direction [I,m,n]. An &dquo;x&dquo; symbol in the last six columns indicates that the corresponding phase is a ground state.
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position y between two vertices of the GSL (say, 1 and 2
in Fig. 3). In this case the energy change associated with
reaction (56) is purely elastic, that is,

Since by Eq. (20) d2G/dx2 = -Z(x) where Z(x) > 0 by
Eq. (21b), this energy change must be negative, that is,

and the reaction (56) proceeds to the right (decomposi-
tion). This process can continue until one reaches a
composition y corresponding to a vertice in the GSL sur-
rounded by two minima (e.g., vertex 2 surrounded by
vertices 1 and 3 in Fig. 3). Now the energy change asso-
ciated with reaction (56) has both elastic and chemical
contributions. By Eq. (57) we have

Since the second term (‘xchemical&dquo;) is positive and linear
in the concentration fluctuation w, it will overwhelm the
elastic term (quadratic in w) for small w. In this case 3M.
is positive and reaction (56) proceeds to the left: com-

pound formation is favored. Hence, the local minima of
~E(~~ (Fig. 3) correspond to metastable long-range ord~ri-ng.
We conclude that at a general composition x, phase sep-
aration will occur until a special composition X2 is en-
countered, at which point DE (X~ ) becomes locally stable
against composition fluctuations. In perfect equilibrium
at X2, the system will overcome the barriers evident in
Figure 3 and produce the true phase-separated ground
state. However, at sufficiently low temperatures the
system cannot surmount these barriers and will exhibit

long-range ordering in the phases shown in Table 4.

This demonstrates that metastable long-range ordering
found in our phase diagram calculations is a conse-

quence of the coexistence of negative chemical energies
with (larger), positive elastic energies.

Having identified the ground-state structures, we
note that it remains to be seen whether the stability limit
temperature given by d2F/dx2 = 0 is sufficiently high to
allow growth of these ordered phases. For this purpose,

we constructed a CVM-correlation-function computer
program able to calculate the free energy of any fcc-

based structure specified by its unit vectors. The input to
the program is only the triad of unit vectors and the
occupation (with A or B) of its sublattices. The program
itself generates the space group, determines the inde-

pendent figures, finds the Kikuchi coefficients (1951,
1974) for the CVM entropy expansion using Barker’s
procedure (1953), finds the linear relations between re-
duced density matrix elements and correlation func-
tions, and determines how the non-first-neighbor pair
correlations decouple into products of point figure cor-
relations. Application of this procedure to the ground-
state structures of Table 4 provides their free energies
AF(x,T), from which the stability limit is calculated.

In Table 5, we present the stability limit tempera-
ture for phases belonging to the GSL of GaSbAs. We see
that these stability temperatures are well below current
growth temperatures.

Conclusion

Our study suggests that the thermodynamic properties
of bulk isovalent zincblende semiconductor alloys can be
quantitatively understood in terms of a general Ising
model with up to fourth-neighbor interactions and that
the LDF forms are adequate basis for self-consistently
describing those interactions. The global trends can be
understood by separating in Eq. (22) the excess enthalpy
3H(x,T) into a volume-dependent (or composition-de-
pendent) term G(x), reflecting microscopic size mis-
match, and a sum over volume-independent configura-
tional (or substitutional) energies E, reflecting events at
constant molar volume, that is, sublattice relaxation and

charge redistribution. The alloys studied then separate
naturally into two groups.

One group consists of size-matched alloys
(Ay-xGaxAs and Cdl_xHg~Te). Here, G(x) = 0, and
owing to negligible sublattice relaxation and unfavorable
charge redistribution, the substitutional energies E are
(slightly) positive. This leads to the following
characteristics.

First, the disordered alloy has a lower excess en-
thalpy than any of the short-period ordered structures.
Hence, these systems will disorder above Tl,,l~ and
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Table 5

Limiting Temperature T, of Stability for Some GaSbAs Phases Belonging to
the Ground-State Line of Chemical Energies

Calculations were made with Eq.122). We characterize each structure by the number and type of independent figures appearing n it Here,
Q means a tetrahedron, T a triangle, Pl a first-neighbor pair, D a point, and P2, P3, and P4 second-, third-, and fourth-neighbor pairs.

phase-separate into their constituents below it. No meta-
stable long-range ordering occurs. Second, above T,,~~
the systems exhibit enhancement in the populations of
the pure A4 and B4 cluster and a depletion of the mixed
clusters (&dquo;clustering&dquo;), again reflecting E > 0. Finally, the
mixing enthalpies are small and positive, reflecting G =
0 and e > 0.

The other group consists of size-mismatched alloys
(GaAsl-xPx, Inl-xGaxP, Inl_xGaxAs, GaSb1-xAsx,
Cd, _xZnxTe, and Hg1-xZIlx Te). Here, G(x) > 0 owing
to the A-B size mismatch, yet E < 0, predominantly be-
cause of an effective sublattice relaxation that leads to

bond alternation and a partial accommodation of strain.
This results in the following characteristics.

First, like size-matched alloys, size-mismatched alloys
have OH(x,T~ > 0; hence, at T = 0 they will phase-sepa-
rate when perfect equilibrium is achieved. However, if

phase separation is slow, long-range ordering will occur
in the structures identified in Table 4 at the tempera-
tures predicted in Table 5. These special atomic ar-
rangements have a lower enthalpy than does the disor-
dered alloy of the same composition. These conclusions
pertain to bulk growth (e.g., liquid phase epitaxy, or
other melt techniques), since we have addressed in this
work the thermodynamics of three-dimensionally coor-
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dinated atoms. Growth techniques involving a free sur-
face (e.g., molecular-beam epitaxy) would have a dif-
ferent thermodynamics owing to the lower symmetry
(e.g., surface clusters are likely to have different energies
than clusters surrounded by atoms in all three direc-

tions). Indeed, in the presence of surface reconstruction
effects, the energy-minimizing structure can be qualita-
tively different from that obtained by minimizing the
bulk energy. To the extent that coverage of the surface

freezes in the surface-stable structure, it could persist
metastably to macroscopic dimensions. The fact that
growth techniques that involve free surfaces exhibit

CuPt ordering (Fig. 1) is most likely a reflection of this
surface thermodynamic effect.

Second, above T MG, lattice-mismatched systems will
exhibit an excess of the mixed (A3B, A2B2, and AB3)
clusters and a deficiency in the &dquo;pure&dquo; (A4 and B4)
clusters (&dquo;anticlustering&dquo;).

Third, their excess enthalpies largely reflect strain
effects; hence, they scale approximately with the relative
size mismatch aA - aB I ~ I aA + a B I. These enthalpies
are temperature-dependent owing to the pronounced
temperature dependence of the cluster probabilities.

We conclude by contrasting our conclusions with
those suggested by other alloy models. In classic models,
based on constant interaction energies, alloys are broadly
classified into two groups.

One group, alloys for which 3H(x,T) in the disor-
dered phase is known to be positive, are said to be char-
acterized by repulsive interactions. This is said to lead to
clustering in the disordered phase and, at sufficiently
low temperatures, to phase separation. Repulsive inter-
actions and long-range ordering are taken to be mutu-
ally exclusive. All isovalent semiconductor alloys are said
to belong to this class.

The other group, alloys for which 3H(x,T) in the
disordered phase can be negative, are said to be charac-
terized by attractive interactions. This is expected to lead
to anticlustering in the disordered phase and to long-
range order at sufficiently low temperatures.

Our work shows that this classification is false: alloys
with 3H(x,T) > 0 (all isovalent semiconductors) can
show clustering and phase separation (when size-
matched) or anticlustering and metastable long-range

ordering (when size-mismatched). This reflects the fact
that there are two distinct physical sources to AH > 0:

G(x) and E, which control different aspects of the

thermodynamics.
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