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Abstract

This novel approach combines a discrete variational treatment of all potential terms arising from the su-
perposition of the spherical overlapping atomic charge densities with a rapidly convergent Fourier series rep-
resentation of all multicenter nonspherical potential terms. The basis set consists of the exact numerical atomic
valence orbitals, augmented by charge transfer states, virtual atomic states, and single analytic Slater orbitals
for increased variational flexibility. The initial potential is a non-muffin-tin overlapping atomic potential in-
cluding nongradient local density exchange and correlation terms, Full seif-consistency is obtained by a pro-
cedure that combines an iterative scheme within the superposition model with a self-consistent optimization
of the Fourier components of the nonspherical charge density terms. Ground-state properties such as structure
factors and cohesive energy are computed. The results for diamond show very good agreement with experiment.
Comparison of the results with the Hartree-Fock calculation is discussed.

1. Introduction

It is now widely recognized that energy band theory has become a powerful and so-
phisticated method for studying a wide spectrum of solid-state properties. The prolifer-
ation of energy band schemes and their application to increasingly diverse problems attests
to the current popularity of band theory. Increasingly too, however, its very success in
describing a host of sophisticated new solid-state experiments has led to a “tide of rising
expectations” which the various existing computational energy band schemes (such as
APW, OPW, KKR, etc.) have been hard pressed to satisfv. In addition to challenging ex-
periments performed on important materials having complex crystallographic structures,
these new experiments have demanded not only theoretical descriptions of high-resolution
eigenvalue phenomena, but also detailed and precise solid-state wave functions with which
to determine the expectation values of different observable operators. Such a demanding
test of the predictions of one-electron theory has the additional virtue in permitting, by
their comparison with experiment, accurate determinations of the relative magnitude
and importance of many-body effects in real solids.

In this paper we describe a new approach to the fully self-consistent solution of the
one-particle equations in a periodic solid within the local density functional formalism
[1]. It is specifically designed and developed to incorporate special features with which
to overcome difficulties encountered by other methods. Specifically, as will be shown
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in detail, the method combines a discrete variational treatment of all potential terms
(Coulomb, exchange, and correlation) arising from the superposition of spherical
atomic-like overlapping charge densities, with a rapidly convergent three-dimensional
Fourier-series representation of all the multicenter potential terms that are not expressible
by a superposition model. The basis set consists of the exact numerical valence orbitals
obtained from a direct solution of the local-density atomic one-particle equations. To
obtain increased variational freedom, this basis set is then augmented by virtual (nu-
merical) atomic orbitals, charge-transfer (ion-pair) orbitals, and “free” Slater one-site
functions. The initial crystal potential consists of a non-muffin-tin atomic superposition
potential, including nongradient free-electron correlation terms calculated beyond the
random-phase-approximation. The Hamiltonian matrix elements between Bloch states
are calculated by the three-dimensional Diophantine integration scheme of Painter and
Ellis [2], thereby avoiding the usual multicenter integrations encountered in the LCAO
tight-binding formalism. Self-consistency is obtained in two states; in the first stage
(charge and configuration self-consistency), the atomic superposition potential and the
corresponding numerical basis orbitals are modified simultaneously and nonlinearly by
varying (iteratively) the atomic occupation numbers (on the basis of the computed
Brillouin-zone averaged band population) so as to minimize the deviation Ap(r) between
the band charge density and the superposition charge density. This step produces the
“best” atomic configuration (for the employed numerical basis orbitals) within the su-
perposition model for the crystal charge density and tends to remove all the sharp “lo-
calized” features in the function Ap(r) by allowing for intraatomic charge redistribution
to take place. Having obtained a low-amplitude smooth function Ap(r) that contains zero
charge, we proceed in the second stage of seif-consistency to solve the three-dimensional
multicenter Poisson equation associated with Ap(r) through a Fourier series represen-
tation of Ap(r). The solution of the band problem is repeated until the changes in the
Fourier coefficients of Ap(r) in successive interactions are lower than a prescribed tol-
erance. The calculated observables include the total crystal ground-state energy, equi-
librium lattice constants, electronic pressure, X-ray scattering form factors, nuclear
contact densities, momentum density, one-electron band structure, and interband os-

cillator strength.

2. Scope and Definition of the Problem

The method we describe here is designed to solve effective one-particle equations using
a simplified form for the exchange and correlation functional for interacting electron
systems due to Hohenberg and Kohn [1] and a general LCAO expansion in a self-con-
sistent non-muffin-tin scheme. The method has a different starting point from that
characterizing the Hartree-Fock scheme as applied to solids 3, 4] in that it relies on
replacing the usual Hartree-Fock exchange operator by the first few terms in the ex-
pansion of the functional derivative of the total exchange and correlation energy of an
interacting electron system [1]. Carrying out a fully self-consistent calculation on real
solids within this approach would thus provide a way of comparing the predictions of the
local density functional (LDF) formalism both with previous Hartree-Fock calculations
and with experiment. Since the basic effective one-particle equations in the LDF formalism
have been extensively discussed by Hohenberg and Kohn [1], Kohn and Sham [5], and
others, we will only briefly state the main results and define and equations to be

solved,
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The general Hohenberg-Kohn theorem states that the ground-state wave function,
and hence all ground-state properties of an interacting electron system, are functionals
of the electron density p(r) and that in the presence of an external potential vey(r) the
ground-state total energy can be written as

E[,O(I‘)] = erm(l')p(l')dl' + G[P(r)] (1)

where G[p(r)] is a universal functional of p(r) and is independent of the external potential
Vext(r). Identifying vex(r) (for a polyatomic system) as the nuclear-nuclear Coulomb
potential plus the electron-nuclear potential, the total energy can be written (aside from
the constant nuclear-nuclear term) as
4 1 o(r)
Elo] = S0 [ £ 2o+ L | ar+ Tulo] + Elo(o)]
m |t =Ra| 2 e =r'|
(2)

where Z,, denotes the nuclear charge of the particle at site R,,, T;[o(r)] denotes the
kinetic energy of the noninteracting electron system, and Eyclp(r)] denotes the total
exchange and correlation energy of the interacting inhomogeneous electron system.
Applying a variation with respect to p(r) and replacing the functional derivative of
T, [p(r)] with respect to the density p(r) by the exact kinetic energy operator, one obtains
the one-particle equation
I Za p(r') ] BE clp(n)])
-—V2+[Z——+ ————dr |+ ———— ;(r) = ¢ (r) (3)
, 2 m |t — Rnl [r—r| ap(r) |7’ R

where p(r) is related to the eigenfunctions ¢;(r) of the first ooc occupied levels in the
ground state by

o(r) = i: V(0 (r) (4)
2

The key problem in using Equation (3) is, of course, the lack of a knowledge of
E[p(r)] and its functional derivative. Exc[p(r)] can be expanded in the well-known

gradient series [5-8] as
Elp(D] = So()eclp(n)] + e[p(r)] + Cilo(r)]p™A(r)(Vo(r))? + - - )dr (5)

where ¢, [p(r)] and e [p(r)] are exchange and correlation energies per electron of a
uniform electron gas with local density p(r), and Cs[p(r)] is the first gradient coefficient
given by Rasolt and Geldart [6]. Retaining only nongradient terms in Equation (5) yields
for the functional derivative of E.[p(r)] the exchange and correlation parts of the
chemical potential Fex[p(r)] and Feorr[p(r)]. respectively,

5E e
SExcle@] _ p (p(6)] + Feanslo(®)] ©)
bp(r)
where
4 3 1/3
Fulp(n)] = 5 exo(0)] = —(; p(r)) (7

Several attempts have been made to calculate Feor[p(r)] by widely different methods.
The agreement between the various estimates is usually to within 103-10"2 Ryd in the
range of metallic densities ([7] and references therein). We have adopted the results of
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Singwi and coworkers [8] for Feorr[p(r)] as fitted numerically to the analytical form

[71:
B
Feorr[p()] = = ——In (1 + X71) (8)
TaA

where X = r;(r)/A4; (4x/3) ri(r) = p(r)~",and 4 = 21, C = 0.045, B = 0.7734, and «
= 0.52106 are numerical constants. Equation (3) with the functionals of the type given
in Equations (6)-(8) have been previously solved for atoms [9] and some molecules [10]
(in a spin-polarized scheme), yielding very good results for charge densities and total
ground-state energies. The total ground-state electronic energy is given by
P, L B dr’] dr

m |T=Rn| 2]r=r|

E= KE+fp{r)[

+ fo(r)[ec[p(r)] + e[p(r)]] dr (9)

where KE is the kinetic energy and
3 /3 1/3
elom] = = 3 (Zo(0) (10)
w

The results of Singwi and coworkers [8] for the electron gas correlation energy, as fitted
to an analytic form [7], yield

elo(r)] = =Cl(1+ X3 In (1 + X~1) + X[2 = X2 = 1|3} (11)

In this paper we describe a method for solving Equation (3) with the forms of Equations
(6)-(8) for periodic solids. The solution would be repeated both for a pure exchange
functional (Feore[p(r)] =0) and for Fex[p(r)] + Feorr[p(r)] to faciliate comparisons with
other calculations. The method is completely general in that it enables treatment. of
general solids with no restriction on the form of the potential.

In what follows we will discuss the proposed method in terms of (/) the basis functions
used to expand ¥;(r), (2) the construction of the potential, (3) the approach used to
compute the Hamiltonian elements, and (4) the method for obtaining self-consistency
in the solution. We will finally discuss some of the results obtained with the method to
date on diamond. Further applications to solid neon, LiF, boron nitride, and TiS» are
underway.

3. Method

A. Basis Functions
The basis functions used in our scheme can be conveniently classified into four

types.
(@) Self-consistent numerical-local orbitals (NLO) for the occupied states in the
atoms. These are calculated by direct numerical integration of the central-field one-

particle equations for each atom « (in atomic units):
1
['5 L 5 ga(r)] xai(r Yor. @) = enxni(r. 7@ (12)

Here ¢, denotes the atomic-like eigenvalues, and x ,(r,{f -, Q%}) are the NLO that
depend parametrically on the assumed population numbers f5 ; of all V,. occupied



SELE-CONSISTENT SOLUTION OF ELECTRONIC BAND STRUCTURE 387

one-electron levels 7’1’ and on the net ionic charge Q% of site o. The ionic charge Q«is
simply related to the nuclear charge Z= by

Noc
Qe=2z"- Z‘;ﬁ.l (13)

The potential g,(r) for site a is taken in the local density formalism as
galr) = v&(r) + v&(r) + Viore(r) + A(r) (14)

where Ueo(r), Vex(r), and veorr(r) are the Coulomb, exchange, and correlation potentials,
respectively, derived from the total ground-state electronic charge density of the ath

atom:
o (r) = ‘fﬁ.;[xﬁ_f(r, Fon 0] (15)

through the ath-site Poisson equation and the local exchange and correlation functionals
Fex[p*(r)] and Feore[p*(r)] defined in Equations (7) and (8). A(r) is an additional po-
tential term, chosen to tailor the NLO {x ;(r)} for their use in a variational calculation
in the solid. One may thus generate through Equation (12) atomic basis functions that
are less diffuse than regular atomic orbitals by taking A(r) as a Latter tail correction
[11], a square-well potential [12], or by adopting an Adams-Gilbert localizing term [13]
A(r), modified for local density equations. It is to be noted that the e,; have no direct
physical meaning and that Equation (12) is used only to generate basis orbitals that would
effectively span the occupied manifold in the polyatomic system.

Equation (12) is solved self-consistently (for a fixed set of population numbers {f; |
and ionic charge Q=) by recomputing the one-site potential g.(r) on the basis of the
density p(r) found at each iteration stage. The resulting orbitals x5 ,(r) thus depend
not only on the population of the n,/th level, but also on all other occupied states. We note
that the set x2 ,(r), obtained in a tabular form, is not fitted to any analytical basis (Slater
orbitals, Gaussian orbitals, etc.) but instead is used directly in our variational calculation
in the solids in order to avoid loss of accuracy and the well-known disadvantages of the
usual analytical orbitals in LCAO-type variational calculations on polyatomic systems.
This numerical basis set will subsequently be optimized nonlinearly in the crystalline
variational calculation by varying the set {f%, Q°} and repeating the solution of Equation
(12) so as to obtain increased variational freedom. The NLOs form a very compact and
flexible basis set whose quality, as estimated from molecular calculations [12, 14] and
from our present experience, is at least comparable to a double-zeta Slater set.

(b) Numerical virtual one-site orbitals. These are just the solutions of Equation (12)
for the unoccupied levels. It is to be noted that while the occupied NLOs are likely to be
efficient in spanning the occupied manifold in periodic systems due to the atomic-like
character of the low-lying crystalline states, there is no reason for the virtual solutions
to be equally effective.

The extremely diffuse character of the high-energy virtual orbitals [even after some
contraction has been obtained by proper choice of A(r) in Equation (12)] makes them
both numerically inconvenient (due to the need to perform lattice sums extending to a
rather long range) and variationally unimportant (since the long-range character of the
crystal states is already efficiently reproduced by the medium-range basis functions in
the presence of translational symmetry). In practice we limit our virtual numerical basis
set to include only the first two to four virtual levels, up to (and including) the first po-
larization function. In cases where linear dependence between the Bloch basis functions
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is introduced by a virtual state, it is discarded. It should be mentioned that due to the
nonlinear optimization of the numeric basis orbitals in our scheme, some of the formerly
virtual orbitals become fractionally populated during iterations, and hence their short-
range character is recovered.

Basis sets of the type (2) and (b) described form our standard working basis for com-
puting the one-electron eigenvalues in the solid. In further calculations this set is aug-
mented by the following two additional sets.

(¢) Numerical charge-transfer (ion-pair) orbitals. A limited configuration mixing
along the lines of valence-bond methodology is obtained by placing on each site several
NLO sets, corresponding to different Q<. [Thus in the diamond calculation to be described,
in addition to neutral (= = 0) NLOs and virtual functions, we place on each carbon atom
two additional NLO sets corresponding to the numerical orbitals of anionic and cationic
carbon.] Although the eigenvalue spectra (band structure) are not expected to change
much since the 0% = 0 NLO set plus the virtual numeric set are already extremely effi-
cient, many-electron observables, such as the total ground-state energy, might require
such an enlarged set.

(d) Free uncontracted Slater orbitals with high nl quantum numbers and medium-
range exponents. These are added to increase variational freedom in the virtual space
when the addition of extra virtual numerical orbitals [type (b)] is excluded due to their
high diffusivity. We note that due to the complete avoidance of analytical and semi-
analytical algorithms for computing the Hamiltonian matrix elements (see below), we
are able to treat very general basis functions with no additional computation costs, thus
efficiently exploiting the variational efficiency offered by exact numerical orbitals.

B. Initial Crystal Model Porential

The initial crystal potential used for the first iteration in our self-consistent scheme
is the usual superposition model of overlapping spherical atomic potential given by su-
perimposing the individual atomic densities p«(r) [Equation (15)]:

KON
pP(r) = 3 3 p*(r=R, = dy) (16)
a=| m=|
so that pUP(r) transforms like the totally symmetric T} representation of the space group
in question. R, for m = 1, - ¥ labels the mth unit cell position vector and d,, for a =

1, -, h denotes the relative location of the «th inequivalent site in the unit cell. In Equation
(16) and in further equations we will omit, for brevity, the notation {/, @<} for the
parametric dependence of the basis set and charge density on the assumed atomic electron

configuration.
The Coulomb potential is partitioned into two parts. The short-range Coulomb su-

perposition potential V3§c(r) is simply related to the superposition charge density p*“P(r)
by the Poisson equation and is treated as a discrete lattice sum:

AN
V?iuif(:(r) = Z Z Ugu(r - Rm - dﬂ) (i-])
a=]l m=|

where v¢, (r) denotes all contributions to the atomic Coulomb potential that are found
to fulfill the relation rv2, (r) < 10~* for r larger than a threshold value R,. The lattice
sums in Equation (17) are performed up to a maximum range R., = R, (typically 15-25
a.u.). All the remaining long-range parts in the atomic Coulomb potential are treated

as point ions (with charge 0%) and summed to yield
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h = o
Me) = 3 5 — (18)

The sum in Equation (18) is performed to convergence by the Ewald method [15].
The exchange model potential V"(r) is obtained by applying the local density exchange
functional Fex[p(r)] to the superposition charge density pUP(r):

3h N 1/3
V(1) = Foc[pP()] = - [; 3 3 oot = Ry = da)] (19)

The correlation potential V34P.(r) is similarly obtained by applying the correlation local
density functional Feore[p(r)] [Equation (8)] to the model charge density

Vin(n) = Feore[pP(r)] (20)

It is important to note that due to the nonlinearity of the exchange and correlation
functions Fex[p(r)] and Feorr[p(r)] (as opposed to the linearity of the Poisson equation),
V39P(r) and V3eh(r) can no longer be represented as a sum of one-center atomic-like terms
as is the case for V&c(r). Many LCAO techniques, as well as scattered-wave X« methods,
are possible only if the potential is representable as a sum of single-site terms, in which
case the functionals Fex[p*"P(r)] and Feorr[p*UP(r)] are either linearized arbitrarily [16]
(for example, V32P(r) = Z, ZoF ex[p*(r = Ry — d,)] or apportioned into a muffin-tin
form [17). To avoid such extreme approximations, one might also project numerically
Fex[p®P(r)] and Feore[p*P(r)] onto a single-site fitting basis [18, 19]. Such an approach,
aside from involving some loss in accuracy, would require specially designed auxiliary
fit functions for each functional appearing in the superposition potential (for example,
exchange, correlation) and would tend to become intractable for systems involving a large
range of n,/ values in the ground-state charge density [19]. Due to the numerical inte-
gration algorithm used in our scheme, none of these approximations to the potential are
required, and we use the full superposition potential:

psep(r) = Vie(r) + ViRc(r) + Val(r) + Vik(n) (21)

in a variational calculation. The superposition potential V5UP(r) is completely defined
by specifying the atomic numbers (Z%, a = 1, -, h), the assumed space group. and the
occupations {f%,, Q% a = 1, -, A}.

The main shortcomings of the superposition potential in simulating the self-consistent
crystal potential (determined from the crystal eigenstates) seem to arise from three major
limitations.

(1) The expansion in Equation (16) involves only one-center terms whose origin is
fixed to coincide with existing atomic sites. One would hardly expect the three-dimensional
muiticenter crystalline potential to be amenable to an accurate projection into such limited
single-center sets.

(2) The choice of population numbers {7 ,} and ionic-charges Q< that determine the
self-consistent atomic charge densities [Equation (15)] to be used in constructing VsUP(r)
remains unrelated to the actual population taking place in a crystalline bonding situa-
tion.

(3) Although psuP(r) transforms like the totally symmetric representation of the space
group in question, it is constructed from spherically symmetric site densities p*(r), while
actual crystal densities might have nonspherical site components that are not describable
by an overlapping model such as Equation (16).
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In what follows we will treat the multicenter terms that are not amenable to a one-site
superposition model [limitation (/)] in an exact fashion by supplementing the superpo-
sition potential by a Fourier representation of the remaining terms (see Section 3D). This
will also automatically take care of the nonspherical terms [limitation (3)]. We will also
optimize both the superposition potential and the associated basis functions by varying
the set {f;; ;, 0} on the basis of the calculated crystal potential and charge density [limi-
tation (2)]. Thus by relaxing limitation (2) we will eventually construct the “best”
self-consistent atomic superposition potential, while in relaxing limitations (/) and (3)
we will go beyond the superposition model to a fully self-consistent solution.

It is perhaps worth noting that the initial superposition potential employed in our
scheme is already self-consistent with respect to the variational basis set employed in
the crystal calculation [Equations (15) and (16)-(20)], since our numerical basis set
[sets (a) and (b)] solves the one-site eigenvalue equations. This implies that if the su-
perposition density p*“P(r) comes very close to the crystal density (obtained from the band
eigenstates), the model is approximately self-consistent. In other LCAO-type calculations
the superposition potential is generally unrelated to the basis set, but rather to an inde-
pendent atomic model (such as Hartree-Fock).

C. Marrix Elements and the Variational Problem

Having defined the variational basis set and the initial model crystal potential, we set
up the LCAO variational equations for the solid in the usual way. Bloch crystal basis
functions ®,.(K.r) are constructed for each atomic-like orbital x and inequivalent site

@ as
N
D (Kr)=N"1/2% ¢iKRm x3(r —R,, — d,) (22)
where K labels the irreducible translational representation of the relevant space group
and u denotes collectively all atomic-like quantum numbers. The crystal eigenstate
¥, (K,r) belonging to the factor-group representation j is expanded in terms of the Bloch

functions as

h
YK = $ Y Cooj(K)Buo(Kr); =1, hn (23)

a=] u=1

The secular iy by hn problem is defined for each K as

h
Y Y (Huas(K) = Spans (K) & (K)]Cny (K) = 0 (24)

a=] u=|
where H, .. and S, s are the Hamiltonian and overlap matrix elements in the Bloch
function representation:

Hyoos = {®,a(K,1)| V(r) = % 72| 5 (Kor)) (25)

Sua.ud e <q’,ua (K,l’)l cbl‘d(Ksr))

and ¢;(K) denotes the one-electron band structure of crystal state j. Since our atomic-like
basis functions x2(r) are nonorthogonal on different sites, the matrix S is nondiago-
nal.

For many years the numerical implementation of LCAO-type first-principle calculations
was severely hindered by the difficulties in computing matrix elements of the form (25).
When the Bloch functions are written in terms of the atomic-like orbitals X.(r) and the



SELF-CONSISTENT SOLUTION OF ELECTRONIC BAND STRUCTURE 391

crystal potential is expanded into terms centered around the various atomic sites, many
three-center integrals and crystal-field integrals have to be computed. The neglect of
many of these integrals in most of the early LCAO calculations has been responsible for
the misleading term “tight binding approximation” to general LCAO expansion tech-
niques.

The matrix elements H,,,3(K) and S,a.,5(K) are computed directly from the Bloch
basis functions by using the Diophantine numerical integration scheme developed by
Haselgrove [20] and Conroy [21] and adapted to molecular [22] and solid-state [23]
calculations by Ellis and coworkers. The procedure involves defining a set of integration
sampling coordinates |r;} in the crystal unit cell, an associated set of weight functions
{w;}, and the use of the three-dimensional multicenter potential function ¥(r;) and Bloch
functions ®,,(K,r;) in direct numerical form to obtain

M

SIS r,o(Kn)V(O)@us(Kor) = 2 wiua(Kor) V(1) Bus (Kor) (26)

The convergence properties of the Diophantine scheme and the choice of numerical

sampling points and weights have been the subject of numerous discussions in the liter-

ature [22, 23] and will not be repeated here. Using a numerical basis set as described above

and 2000 sampling points, we obtain convergence of the valence bands of diamond to

within 1 mRyd or less and convergence to within 2 mRyd for the first four conduction

bands. A similar convergence is obtained for a typical transition-metal compound like
TiS,, using 4200 integration points.

In using the Diophantine integration scheme with our numerical basis set, several
additional characteristics were revealed. Since the basis functions [sets (a) and (b) in
3A are chosen to be exact eigenstates of a given atomic-like one-center potential ga(r)
[Equation (12)], the crystal Hamiltonian operating on a Bloch state yields

H|®,a(K) = (VER(r) + VIR(r) + VEA(E) + VEh(D)| £ua(Kir)) + I /KR

X2 (r =R, = do) € — gadr — Ry — d )= V| @ (KrD) + T|®.(Kr)) (27)

where ¢, is the relevant atomic eigenvalue. In this scheme V(ir)|®,.(K,r)) and
T|®,.(K,r)) are combined numerically at each integration point r; prior to integrating
the Hamiltonian matrix elements (&|H|®). It is thus seen that the positive kinetic energy
term [second term on the right-hand side of Equation (27)] is allowed to algebraically
cancel the attractive potential term (first term on the right-hand side) before integration
is attempted. Thus to the extent that the charge density derived from the uth atomic basis
orbital contributes to the crystal ground-state potential, a great deal of numerical can-
cellation between large terms of opposite signs takes place [especially near the ath core
in the solid, where the potential greatly resembles g.(r)] leaving finally a rather smooth
H® function to be integrated. Note that a similar but arbitrary cancellation is the basis
of the pseudopotential method and the cause of its success.

Since the exchange potential is treated no differently than the Coulomb potential, the
cumbersome Fourier transform of p(r)!/3 and the slowly convergent Fourier-series
representation of the full core + valence charge density p(r) needed in Fourier transform
methods for computing LCAO matrix elements [24, 25] are avoided.

D. Self-Consistency

Although the superposition model potential [Equation (21)] is constructed in our
scheme to be self-consistent with respect to the basis set, it is not self-consistent with
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respect to the crystal eigenstates. The key problem in generating a refined crystal potential
on the basis of the ground-state crystal charge density

Toc
p(r) = % Zl ¥ (Ko (Kr) (28)
j=
is the solution of the three-dimensional multicenter Poisson equation associated with
p7¥(r). While the model superposition density [Equation (16)] is a sum of (radial) one-site
terms [and hence the associated Poisson equation needed to determine V3#c(r) is trivial],
p<™¥(r) has only the totally symmetric factor group symmetry. Since the term “self con-
sistency”” has been used rather loosely in some previous band-structure calculations, we
will discuss various possible degrees of self-consistency (SC) in what follows, along with
the description of our own particular method to attain SC. We will thereby distinguish
between charge and configuration self-consistency and full self-consistency.

(a) Charge and configuration self-consistency. The simplest way to avoid the inte-
gration of a multicenter Poisson equation associated with p°™(r) is obviously to expand
the latter in terms of single-site functions. Having obtained the Coulomb potential in
this form, one can recalculate the band structure. By charge and configuration self-
consistency we mean a consistent relation between the crystal potential and the crystal
charge density via the Poisson equation (for the Coulomb part) and the exchange and
correlation functions Fex[p(r)] Feore[(r)], respectively, in which we limit the crystal
density to sums of one-center terms located on atomic sites.

As indicated previously, depending on the various degrees of approximation involved
in simulating the crystal density p°¥(r) by a superposition density

N h
pHUR(r) = Zl Zl > aipi(r — Ry — dy) (29)
m=] a= L

there will exist a residual density Ap(r) = p<7¥(r) — psUP(r) that is not amenable to fitting
by a single-site basis located on atomic sites. In Equation (29) a; and p; denote the ex-
pansion coefficients and the fitting functions, respectively. A great deal of charge and
configuration self-consistent calculations on molecular and solid-state systems are based
on various modifications to the form (29). Thus the multiple-scattering Xa (MS-Xa)
method [17] projects the crystal density p°¥(r) onto a muffin-tin single-site spherical
basis, the LCAO-Xa method of Sambe and Felton [19a] uses contracted Gaussians for
pi(r), the LCAO band approach of Chaney and coworkers [18] replaces p;(r) by angular
dependent function of the Cj, (r) Y1, (6.®) type, the molecular discrete-variational method
(pvM) of Ellis and coworkers [22a] and various forms of the iterative extended Hiickel
(1IEXH) method [26] use for a; the Mulliken or Lowdin population of the states {y;(r),
i = 1, », 0o and atomic-like densities for p;(r), and so forth. Since in all of these methods
Ap(r) is neglected and convergence is examined only with respect to the restricted form,
the only valid way to estimate the quality of the converged results is by evaluating the
residual Ap(r) and its possible effects on the final results. Unfortunately, this has hardly
ever been done in these calculations. It is thus important to realize that when convergence
is obtained under these circumstances, the result corresponds to a given self-consistent
solution under a particular choice of partitioning the multicenter density into single-site
(spherical) terms (neglecting the residual Ap(r). One would thus hardly expect the
converged results, obtained by a Mulliken partitioning of charge, to resemble those ob-
tained by Gaussian basis fit functions, etc. Since there exists an unlimited number of ways
of partitioning pc™¥(r) into lattice sums of one-site terms [the final goal of charge and
configuration self-consistency being to minimize Ap(r) over space]. the only relevant
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criterion for chosing a partitioning scheme seems to be efficiency in representing p°¥(r)
and a possible physical significance of the projection set. Our particular choice of par-
titioning scheme is just the population-dependent atomic superposition density:

N h Noc
)= T E 2 fut DG = R = des i, QD] (30)
m=i ax= n,
We will thus vary the crystalline potential and the variational basis set x5 ,(r), by changing
iteratively the population numbers f5; and the atomic (ionic) charges Q% to minimize
in a least squares sense the deviation

o= é pr(r)zdr 31)

The main reasons for this choice are as follows.

(1) Using this choice we retain the self-consistency between the crystal potential and
the basis set at each iteration state. Thus both the basis set and the crystal potential will
be completely defined by the set {f}; ;, 0%} with no extra auxiliary basis functions. Aside
from computational convenience in keeping a single functional set; this is, admittedly,
just an aesthetic argument.

(2) To provide a natural way to perform, aside from a linear variation (by solving the
secular equations), also a nonlinear variation on the basis set. We will thus resolve the
atomic-like equation (12) for each atom in the unit cell at each (or every several) itera-
tion(s), using a new {f ,, 0%} set determined by the requirement that the resulting su-
perposition charge density be close to the obtained crystal density in a least squares sense.
As it turns out, a nonlinear variation of the basis set proved to be necessary only when
substantial fractional electronic populations were promoted into previously unpopulated
(virtual) orbitals. Under these circumstances recalculation of the atomic self-consistent
orbitals yielded much more contracted orbitals for the formerly virtual states, thus ren-
dering them useful in the crystalline variational calculation. By contrast, ordinary atomic
virtual orbitals are discarded from the basis set when linear-dependence problems caused
by their diffuse nature become severe. Since such charge promotions do not occur in every
iteration, it is necessary to regenerate an optimized numerical set only after several it-
erations.

(3) To be able to select among all possible solutions of an atomic-like Hamiltonian
of the form given in Equation (12), the best superposition potential (in the least squares
sense) and the associated atomic-like basis functions, to be used in future non-self-con-
sistent calculations within the superposition model.

(4) To prepare the residual Ap(r) [obtained after step (a) in the self-consistency has
been completed] in a way best suited for “*full” self-consistency [step (b) in self-consis-
tency]. This will be discussed in some detail in the next section.

In performing step (a) of self-consistency, we compute in a general iteration the basis
functions {x:(r)] [Equation (12)] and the superposition Coulomb potential VEgc(r),
Vi'fe(r) [Equations (17) and (18)] for an assumed set {f}; ;, 0%} and use the crystal density
obtained from the previous iteration to compute Fe,[p¥(r)] and Foorr[p7¥(r)]. Having
obtained a new set of basis functions and a new potential, the band problem is repeated
to yield a new crystal density calculated from all occupied bands at a limited number
of K points in the Brillouin zone. In the present calculation we determine p°™(r) using
the six nearest volume points for the face-centered cubic lattice [27]. This seems to be
sufficient to obtain the charge density with reasonable accuracy for insulating systems
like those treated here [27, 28]. Different prescriptions for choosing a small number of
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TABLE I. Standard deviation o(e) [Equation (31)] measuring the average number of electrons that
are ‘misplaced’ in the superposition model for the crystal charge density before and after

charge and configuration self-consistency.

System and Initial Non-Self Self-Consistent
No. of Electroms Consistent
per cell Configuration a(e) c(e)
2, 25 2
Diamond, 12e C:ls"2s 2p 0.1534 0.098

B:1522522pL
Cubic BN, 12e 3 2 1 0.2951 0.101
N:1s"2s 2p

L:lsZZS1

LiF, 12e 0.2279 0.0%0
F:1522922p5

Ne, 1l0e Ne:1522322p6 0.003 0.003

points to be used in efficiently representing the average of a periodic function, like p(r),
over the Brillouin zone [29, 30] are presently being tested. Having chosen insulating and
semiconducting systems to work on, relieves us presently from the necessity of recalcu-
lating the Fermi energy at each iteration. Typical results for the standard deviation o
obtained during the iteration history in step (a) of self-consistency are shown in Table
I. Generally. three to eight iterations were needed to obtain these results.

(b) Full self-consistency. Although it proved possible in some systems to carry out
step (a) of self-consistency so that the final Ap(r) is made to be very small (in which case
an essentially self-consistent result is obtained, see [18] and the Ne results shown in Table
1], it is desirable to provide a general scheme for treating the full density p*¥(r) = p“P(r)
+ Ap(r) self-consistently in cases where the complete crystal density p*™¥(r) cannot be
effectively projected into an atomic-centered expansion. In order to illustrate our method
of obtaining step (b) of self-consistency, we will discuss first some aspects of the results
obtained in step (a).

The solid lines in Figures 1 and 2 show the function Ap(r) obtained in the first iteration
of the charge and configuration self-consistency for boron-nitride and diamond, re-
spectively, plotted along the bonding [111] direction. The assumed electronic configu-
ration in the superposition models was 1522522p9, where g = 1,2,3 for boron, carbon,
and nitrogen, respectively. It is seen that aside from a buildup in the crystal density relative
to the atomic superposition density in the interatomic region (indicating covalent bond
formation), the function Ap(r) is also characterized by some rather sharp features, lo-
calized near the atomic sites. Similar features have been identified by Lubinsky and
coworkers [31] in their non-self-consistent calculation on SiC (see [31, fig. 5]). The
dashed curves in Figures 1 and 2 show the Ap(r) functions for boron-nitride and diamond,
as obtained at the convergence limit of charge and configuration self-consistency. It is
observed that the sharp localized features near the atomic sites are almost entirely
eliminated, while the interatomic bond charge buildup stiil persists. This would indicate
that in carrying out charge and configuration self-consistency to convergence, we have
effectively accounted for the bonding effects originating from intraatomic charge re-
distribution, while the interatomic bond formation is largely not amenable to an atomic
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Figure 1. Comparison of the charge density difference Ap(r) for boron nitride, calculated
along the bonding [111] direction, between the zeroth iteration (solid curve) and the final
iteration (dashed curve) in the charge and configuration seif-consistency.

superposition model description even after the latter is optimized with respect to the
population numbers in a least squares sense. The function Ap(r) obtained at the final
iteration of the charge and configuration self-consistency, called the residual Ap(r), has

the following properties.
(1) It encloses zero charge since by construction

SAp(r)dr=0 (32)

(2) It is minimized over the unit cell space (through the least square procedure using
the numerical atomic fit functions); thus

S Ap(r)2dr = min (33)
{3) Itisasmooth function of space coordinates [this can be controlled, if so desired,
by performing the least squares fitting in Equations (30) and (31) in a weighted

form].
These properties of the residual Ap(r) make it particularly suitable for a rapidly con-

vergent Fourier series representation. We thus proceed in step (b) of self-consistency
by calculating the Fourier transform Ap(K,) over a set of reciprocal lattice vectors (RLV)
K, (using a Diophantine three-dimensional integration):

1 )
sp(K) =< fe"“"’&p(r)dr (34)
where Q is the unit cell volume. The Coulomb potential associated with Ap(r) is thus
simply given by

K,
AVln) = 3 — 4WL2) e~ Ker (35)
Ks%0 K

The term K, = 0 is excluded due to condition (32). The sum over the RLVs is rapidly
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convergent both due to the smooth form of Ap(r) and due to the additional K factor
in Equation (35). The exchange and correlation potentials are simply given by

Vex(r) = Fex[p%UP(r) + Ap(r)]

Veorr(r) = Feore[p™P(r) + Ap(r)] (36)
- The solution of the band structure is then repeated with the new potential
Vcry(r) = Vfc(r) + AVeo(r) + VLre(r) + Vex(r) + Viorr(r) (37)

The resulting charge density is used to compute a new Ap(r) and Ap(K,), and the itera-
tions are continued until the relative change in the Fourier components Ap(K;) in suc-
cessive iterations is smaller than a prescribed tolerance [usually 10~ in Ap(111)]. If
the first step of self-consistency is properly carried out, only a few iterations are required
in step (b) (for example, two to four for diamond) and only the first few stars (5-10) are

DISTANCE ALONG [I11]

Figure 2. Comparison of the charge density difference Ap(r) for diamond, calculated along
the bonding [111] direction, between the zeroth iteration (solid curve) and the final iteration
(dashed curve) in the charge and configuration self-consistency.

required in the expansion (35). Ap(K;) for higher numbers of RLVs reflects the residual
core difference charge, and is hence negligibly small since it has been absorbed in p“P(r)
in step (a) of self-consistency. It is noted that in the described method slowly convergent
Fourier series resulting from transforming the full core + valence density [24, 25] are
completely avoided as are the cumbersome integrals resulting from a Fourier transform
of p(r)!/3 that appear in schemes that compute the iterated exchange potential [Equation
(36)] in reciprocal rather than in real space.

Our self-consistent band approach thus combines the flexibility in handling general
basis functions and crystal potentials (offered by the Diophantine integration scheme
as applied to LCAC matrix elements in the Bloch representation) with convenience in
handling charge density terms that are not amenable to a superposition representation
(offered by the Fourier transform approach). In what follows we will illustrate some
examples for the results obtained to date with the above-described method.
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4. Illustrative Results on Diamond

To illustrate the performance of the method described above we describe some results
obtained for diamond. Although a great deal of theoretical work has been done on the
electronic structure of diamond within the local exchange formalism (among others we
note the APW work of Keown [32] and Neto and Ferreira [16b], the OPW work of Bassani
and Yoshimine [16a], the OPW pseudopotential work of Kleinman and Phillips [33],
and the LCAO work of Painter, Ellis, and Lubinsky [34]), none of these were carried to
self consistency. To illustrate the various levels of self-consistency one might obtain in
this problem, we have carried out step (a) of self-consistency in three different ways.

(/) The crystal charge p°¥(r) is partitioned at each iteration step into a superposition
density psUP(r) using a Mulliken population analysis:

N A
oML = T X T M5, [xa(r = Ry = do (M5, Q)] (38)

m=1a=1| nl

where M2, is the Mulliken gross-atomic population [35] of all occupied states contribution
to the n,/, o« basis function. Having determined M, (by adding the contributions from
all occupied bands and averaging over the six special K points mentioned in Section 3D),
we compute the superposition short-range Coulomb potential arising from pigf, (r)
[Equation (17)] while the exchange and correlation potentials [Equations (19) and (20)]
are computed directly from p°¥(r). The solution of the band structure is repeated until
the populations M calculated from successive iterations agree to within 1073 e. At the
final iteration we compute the standard deviation opmyr according to Equation (31).

(2) The same procedure is repeated using the Lowdin populations Ly, [36] during
the iteration process. At the final iteration we compute o ow.

(3) The third method of carrying out the charge and configuration self-consistency
is by simply using the superposition model given in Equation (30), where the population
numbers /% are allowed to change freely so as to minimize the squared deviation o
[Equation (31)]. The final ¢ value obtained in this calculation is denoted by amN.

All three calculations were performed at a lattice constant of 3.5669 A using a minimal
numeric set of 1s, 2s, and 2p orbitals with no correlation added and 2000 integration
points. In each case the basis functions were nonlinearly optimized at every iteration.
The resuits are summarized in Table IL. It is immediately recognized that although
convergence in the populations (and eigenvalues) can be readily achieved using either
the Mulliken or the Léwdin partitioning of the total charge density, the self-consistent
results obtained by these schemes do not minimize the deviation between the superposition
charge and the crystalline charge as obtained directly from the eigenvectors. Furthermore,
the “converged” results differ markedly from each other (a 2p to 25 hybridization pop-
ulation ratio of 2.77 in the Mulliken case and 3.83 in the Léwdin case) and from the
minimum deviation results (a hybridization ratio of 1.70). Although in this case the
Mulliken prescription seems to be somewhat more efficient in lowering the charge de-
viation than is a Lowdin scheme (omuL < oL6w), both methods are rather inadequate
for obtaining true charge and configuration self-consistency. It is also to be noted that
even a direct minimization technique yields a rather large residual charge difference
(1.22% of the 8 valence electrons or 0.82% of the total of 12 core + valence electrons are
misplaced, on the average, by the “best” superposition density). This indicates the need
to incorporate the density terms that are not amenable to a superposition representation
in a fully self-consistent treatment. The details of the full self-consistency treatment in
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TABLE II. Self-consistent electronic populations and final standard deviations as obtained by
iterating on Mulliken charges, Lowdin charges, and through a direct minimization method.

ls(e) 2s(e) 2p(e) a(e)

SC Mulliken 2,000 1,062 2.938 0.1595
Populations

SC Lowdin 1.999 0.939 3.060 0.1895
Populations

Free Minimization 2.000 1.482 2,519 0.098

diamond will be given elsewhere. Here we discuss some of our results and compare them
with those obtained by the restricted Hartree-Fock treatment of Euwema and coworkers
[4a, 37].

Table III shows the calculated X-ray structure factors for some of the lowest A,k./
reflections in diamond, as obtained as a convergence limit of the full self-consistency it-
eration treatment, using a numerical basis set of 1s, 2s, 2p, 3s, 3p, and 34 for carbon
[sets (a) + (b), Section 3A]. The results are compared with experiment [38, 39] and with
the Hartree-Fock results of Euwema and coworkers [37]. It is seen that the local density
formalism predicts the ground-state charge density in diamond rather well. In particular,
the weak 222 forbidden reflection that arises only from the contribution of the “bonding”
charge (a superposition charge would yield exactly zero for that reflection) is reproduced
remarkably well. The 222 form factor, as calculated by a minimal numeric set (the cal-
culation being carried to full self-consistency), is only 0.076, indicating the importance
of including virtual states even in ground-state bonding. In view of this sensitivity of the
structure factor to an increase in the basis set, it would seem that the Hartree-Fock results
would come into closer agreement with experiment, if some polarization functions were
included into the s-p Gaussian set.

The results for the form factor with exchange and correlation (Table I11, column 4)
show a somewhat larger form factor as compared to the calculation with exchange only
(column 23), indicating a contraction in the density. The effect, as can be seen from the
table, is rather small and no conclusion as to the importance of the correlation term seems
to be possible in this case. Calculations of the Compton profile of diamond are underway.

TABLE III. Comparison between experimental and calculated structure factors for diamond. £(0,0,0)
is normalized to six electrons.

Present Work Present Work
Reflection| Exp (38] Exchange Only | Exchange + Correlation HF [37]
111 3,32 3.273 3,280 3.30
220 1.98 1,992 1.995 L.93
311 1.66 1.720 1.722 1.67
222 0.14440,015% 0.137 0.139 0.08
400 1.48 1.494 1.493 Ly55

*
Measured by Renninger Ref. [39].
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These will serve to further check the predictions of the local density formalism of the
ground-state wave functions.

We next discuss the cohesive energy of diamond which is measured to be 7.6 eV /atom
[10]. The Hartree-Fock results for the binding energy lie between 4.6 and 5.0 eV, de-
pending on the various calculation parameters in the s-p Gaussian set [37]. The details
of calculation of the crystal total energy under the LDF formalism are given in the Ap-
pendix. The total energy of the free carbon atom is calculated in a non-spin-polarized
fashion* using the direct numerical integration scheme of Herman and Skillman [41].
The binding energy of diamond using a minimal numeric set with no correlation effects
included (6300 integration points, « = 2/3) is 5.17 ¢V, and the virial ratio —2KE/PE
is 1.0023. When the same calculation is repeated using the correlation functional in the
potential [Equation (20)] and total energy expression [Equation (9)] for both the atom
and the crystal, a binding energy of 10.46 eV is revealed. In this case the virial theorem
does not hold any longer due to the different scaling of the correlation functional as
compared with the exchange functional (compare [42]). The no-correlation calculation
is repeated with a minimal numeric set augmented by free Slater orbitals of 3s and 3p
symmetry (with Slater exponents of 1.4 and 2.642, respectively). This yields a virial
constant of 1.0021 and a binding energy of 5.21 eV. The major improvement in the cal-
culated binding energy is brought about by the inclusion of an ion pair into the basis set
[set (c) in Section 3A] in addition to the neutral carbon minimal numeric set. Inclusion
of this set yields a virial ratio of 1.0004 and a binding energy of 7.29 eV (11.92 ¢V is
obtained when correlation is included). Calculations of the cohesive energy are usually
very tedious due to the need to use a large number of integration points in order to
maintain reasonable accuracy in the various integrals involved [Equations (45), (50),
and (51)]. Even with the large number of integration points used in this work, the accuracy
of the binding energy is estimated to be no better than 0.15 eV. Further calculations are
planned to obtain the equilibrium lattice constant in diamond. The fact that the virial
ratio obtained in a calculation at the experimental lattice constant is very close to unity,
would indicate that the theoretical equilibrium lattice parameter would be in close
agreement with experiment.

Judging from the calculated structure factors and binding energies, it would thus seem
that both the Hartree-Fock and the local density formalism are capable of yielding good
results for ground-state observables. The differences between the quality of the various
basis sets used are perhaps more significant than the different treatment of the exchange

in the two methods.

Appendix
Calculation of the Total Energy

The calculation of the total energy per unit cell of an infinite solid is fraught by the
well-known difficulties of the divergency in the individual electron-electron, electron-
nuclear, and nuclear-nuclear terms and by the need to perform very accurate three-
dimensional integrals on numerical forms of the potential. This problem has been treated
previously by De Cicco [43] and Rudge [44] in a form that is mainly suitable for a
muffin-tin partitioning of the potential (in which the three-dimensional integrals are
reduced to radical one-dimensional integrals). For the sake of convenience, we repeat
the derivation for a general form of the potential.

* Spin-polarization corrections to the atomic total energy are being calculated.
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The total ground-state energy, in the LDF formalism, is given by the total electronic
energy [Equation (9)] plus the nuclear-nuclear repulsion term:

Z.Z3
Von = (39)
Efnzﬁilkn+da_Rm_dﬁl
maw ng

We use the following notation for the various potential terms. The electron-nuclear
potential Ven(r) is given by
Za

Viplr) = = T o 40
== e (40)
the electron-electron potential Ve.(r) is
r')
Vel = § 2T @1)
r=r'|

and the exchange potential V,(r) is
y 343 1/3
V) = = (Z0(0) (42)
4 \r

and a similar equation for the correlation potential ¥(r), based on the definition (8).
In terms of these quantities, the total electron plus nuclear energy is given as

Ewt =KE + [ p(r) [Ven(r) +% Veelr) + Vex(r) + Vcorr(r)] dr + Vg (43)

The kinetic energy term KE is given usually by the direct expression, using the crystal
eigenvectors y;:

_lvz
2

KE =3 (40
/

w,m) (44)

where the sum is over all occupied states in the Brillouin zone. Alternatively, using the
fact that ; is an exact eigenfunction [Equation (3)] of =1/2 V2 + [Voe(r) + Vee(r) +
4/3 Vex(r) + Veorr(r)], the KE might be equivalently calculated from

KE =5 ¢ = £ (6) | Vaelt) + Var0) + 5 Vi) + Vo) |ar (49
J

We next modify the potential energy appearing as the second term in Equation (43),
recognizing that Vo /N, Ve./N,and V;,/N are divergent as V goes to infinity. We thus
partition the potential energy in the following form:

PE =2 [(oOVaelr) + Verlr)lr + B J ot Vactrrdr + V,m]
+ § p(O Vel + VeornD)ldr  (46)

In this form divergencies in the individual terms are grouped to vield three finite terms,
each linear in IV, so that a total energy per cell, E/N, can be defined. The two first terms
in Equation (46) represent the total electrostatic energy in the system, £, and are given

by
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Eclec = % f f drde'|r —r'|~! [p(r) + T Z.6%(c =R, - da)]
uc @ na

X [p(r’) $ 3 '2563(1" - R, - dg)] (47)
m.g

Each term in the square brackets in Equation (47) represents the total electronic + nu-
clear charge, and the prime on the second sum indicates exclusion of the self-interaction
a = B, n = m term. The electrostatic energy can be written in terms of a Coulomb elec-
tronic potential

Ve(r) = Vee(r) + Ven(r) = f de'le =]~ [p(l”) + ¥ Zaor' = Ry = da)]
(48)

in the following way:

uc o

| 1
=1 z 3= R, —
Eclec 5 fﬂ(r) V,_.(l')dl’ + 5 % Z Zq0°(r R, d,)

x{£|r-r'|—l[p(r')+ 5 zﬁas(r'—Rm—dﬁ)]}dr (49)

mi = na

The first term in Equation (49) is just the first term in Equation (46). The term in curly
brackets represents the sum of the electron-nuclear potential at site o due to all nuclei
except the nucleus a, plus the electron-electron potential. To simplify its form, we first
calculate the total electrostatic potential at site « due to all charges (electron and nuciear)
except the ath nucleus itself, and add to it the electron-electron potential at site « that
was omitted in the previous term. We thus obtain

1
Eeiec = 2 f.o(r)Vc(r)dr + % Z T Zo[Vial+ Vee(r = Ry, = do)]8%(r = Rya)

uc o
(50)

where the “‘vacancy electrostatic potential” at site «, Viac(a) is
Vvac(a) = Z Vee(r = Rm = dﬁ) + Ven(r -Ry - d,@) (51)

m=na
Performing the trivial integrations yields
1 |

Eae =5 [ p0Velr)dr + 5 T ZuVancler) + Veele)) (52)

The potential energy is thus given by
PE = Eejec + § p(r)[Vex(r) + Veor(r)]dr (53)

The individual terms in Equations (50) and (51) are readily calculated by performing
three-dimensional Diophantine integrations. The convergence is usually rather slow,
and a large number of points (6000-10,000) have to be used to obtain stable results for
the cohesive cnergy.

It should be noted that the potential terms appearing in the kinetic-energy equation
(45) can be any input model potential that was used to solve the eigenvalue problem
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[Equation (3)], while the potential terms appearing in Equations (50) and (51) correspend
to those obtained from the crystal charge density. These two types of potential terms
are thus equivalent only at the limit of full self-consistency. One should also note that
the Coulomb potential terms calculated from the crystal density (by solving the associated
Poisson equation) might contain an arbitrary integration constant. However, this constant
is canceled in performing the sum in Equation (50). The calculation of the ground-state
energy of isolated atoms (or ions) to be used along with the crystal total energy per cell
to compute the cohesive energy is performed in the usual way, described in other refer-

ences in detail (for example, [41]).
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