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Ground-state structures and the random-state energy of the Madelung lattice
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We consider the classic Madelung problem of a lattice with N sites labeled i, each occupied by
either an A or a 8 atom, and bearing a point charge Q; that depends on the environment of i
We find that out of the 2 possible lattice configurations of this binary A~ —,B fcc alloy, the
lowest-energy "ground-state structures" are the A3B, A2B2, and AB3 ordered superlattices with

ordering vector (1,0, —,
' ). On the other hand, for the pseudobinary A|- B„Czinc-blende alloy,

the ground state corresponds to phase separation into AC+BC. Contrary to the accepted view,

the Madelung energy of the random binary alloy is found to be nonvanishing.

Calculations of the electrostatic Madelung energies Est
have long played a significant role in assessing qualitative
trends of structural preference between various crystal
types. The dependence of Est on the ion configuration in

a lattice has been used in the past to discuss the relative
stabilities of a broad range of ionic or partially ionic crys-
tals, including not only the classic' system of alkali-
metal halides, but also high-T, superconductors, organic
charge-transfer salts, intercalated graphite, semicon-
ductor alloys, metallic clusters, ' intermetallic com-
pounds, and various crystal surfaces and interfaces. 9

Consider the classic Madelung problem' of a simple
lattice (e.g., fcc) with N ~ sites i 1,2, . . . ,N, each
bearing a net charge Q; and occupied either by an A atom
(labeled with a spin variable S; —1) or by a 8 atom (la-
beled as S; +1). Each of the 2 possible lattice
configurations o has a Madelung energy Est(cr) per atom.
It can be expressed as an infinite-range Ising-type Hamil-
tonian

2m~ )R, —R, )
ZV~

'SJ
where the prime excludes the i j term, and J;J denotes
the bare Coulomb interaction energy

between charge Q; on lattice site R; and Q~ on R~. Tradi-
tional approaches to the electrostatic lattice-stability prob-
lem ' 9 have often contrasted Est (rr) of a small number of
"competing" configurations o; deciding thereby between
alternative crystal structures. However, (i) the config-
uration corresponding to the global minimum of E~(o)
(out of 2 possible configurations) on a given Bravais lat-
tice has not been identified, nor has (ii) the
configurationally averaged Madelung energy Est(R) of
the random (R) binary Ai „8„alloybeen calculated.
As recognized early on by Mott, ' both questions are cen-
tral to theories of phase stability of systems exhibiting
charge transfer, where the Madelung "ordering energy"
~st(O) E~(O) —Est(R) (of some ordered arrange-
ment 0, relative to the random alloy at the same composi-
tion) can provide a significant driving force either to phase
separation or to selective long-range ordering.

Regarding question (i), we note that classic lattice
models of statistical mechanics" are able to search
effectively for the ground-state configuration of ftnite-
range Ising Hamiltonians. However, the slow decay with
distance of J;J of Eq. (2) and the conditional (rather
than absolute) convergence of the Ising series of Eq. (1),
have not been conducive to a similar analysis for electro-
static Ising Hamiltonians. Regarding question (ii), we
note that modern theories of alloy phase stability '

based on the "site-coherent potential approximations"
(SCPA) (Ref. 13) have tacitly assumed EM(R)—=0 for
binary A i „8,systems at all compositions x. This con-
clusion reflects the simplistic assumption that at a given
composition the net charge Q; on a site i does not depend
on the environment of this site; all A atoms are assumed to
have the same net charge (and so do all 8 atoms). It then
follows that the configuration average (Q;Q~)tt in Eq. (1)
factors into the product (Q;)tt(Q~)tt which is zero (on ac-
count of global charge neutrality (Q;)R =0), hence,
Est(R) 0. However, as suspected by Mott, 'o the as-
sumption that in arbitrary atomic configurations the net
atomic charges do not depend on the environment is not
supported by self-consistent determinations of the charge
density. '

We have addressed questions (i) and (ii) by replacing
fJ;J} of Eqs. (1) and (2) by a set of renormalized interac-
tions fJ} that transforms Eq. (1) to a rapidly convergent
Ising series. Analysis of this renormalized Ising Hamil-
tonian is then used to obtain the ground-state structures
and the energy of random alloy; we find that it is finite.
We illustrate this general method for binary fcc A| „8„
and pseudobinary zinc-blende A i „8„Calloys.

%'e start by selecting a physically motivated model for
the distribution jQ;} of point charges on the various lattice
sites i. A random distribution of many A and 8 atoms on
a fixed lattice generally creates various crystallographical-
ly inequivalent A sites (and separately, 8 sites) that are
distinguished by different local atomic arrangements
around them. It then seems reasonable to assume' ' that
an atom surrounded locally by atoms of the same chemi-
cal type would have a smaller net charge than an atom
surrounded, e.g., by atoms of the opposite type. We hence
model the net charge Q; to be proportional to the number
of atoms of opposite type in the first coordination shell
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(containing Z atoms):
z

g, -~ g (S, —Sk""'), (3)
k 1

A

where S; is the spin on site i, Sk' ' is the spin on one of
the Z atoms that are nearest neighbors to site i, and A, is a
scaling constant determining the maximum charge
transfer (2'). The charge distribution of Eq. (3) has
the following properties: (i) the charges on A's and 8's
have opposite signs; different A sites (and different 8
sites) can have different charges reflecting variations in
the local atomic arrangements; (ii) electroneutrality
P;Q; 0 is naturally satisfied; (iii) Est of Eq. (1) is
symmetrical with respect to the A~8 replacement; and
(iv) it reduces to standard definitions'~ for prototype AB
ordered lattices.

We next cast Eq. (1) into a renormalized series by us-

ing the cluster expansion method's as follows: We define
a set of "figures" [f] which are clusters of atoms with kf
vertices (e.g., kf 2 are pairs) separated by up to the tnth
neighbor distance. For each figure we define its spin prod-
ucts IIf(o ) S~IS&f. . . Sk . Using the symmetry of the
(empty) lattice and the orthogonality re]ations'sl'1 be-
tween IIf(a)'s we can rigorously expand the Madelung
energy in a series of orthonormal functions as

Est (o) QDFIIF(o)JF, (4)

where F is a prototype figure (there are NDF symmetry-
related figures in the lattice),

F(o) = g 11f(o') (5)
NDF fgF

is the "lattice-averaged spin product, " and JF is the

effective interaction energy of the figure of type F. It can
be calculated by specializing EtII. (4) to a set of 1V, ordered
structures [s] and inverting' ' it. This yields a set of N,
effective interaction energies JF,

N,

JF g [IIF(s)DF] 'Est(s) . (6)
S

Equations (1) and (6) show that these effective ("renor-
malized") interactions

JV,

JF -g [11,(s)D,] -'g 11, ,(s)J;, (7)
S I,J

represent a sum over all bare Coulomb interactions J~1 of
Eq. (2). We next demonstrate that this renormalized Is-
ing series represents also a rapidly convergent expansion.
Note that to the extent that the terms of Eq. (4) are negli-
gible past a maximum figure F,„,we can determine from
Eq. (6) N, values of JF, given the exact Madelung energy
Est(s) of N, linearly-independent structures [s]. The
problem is to find F,

„
that produces a sufficiently small

truncation error. To do this, we first truncate Eq. (4) at a
trial F,„value, evaluate 1V, values of JF using Eq. (6)
[where Est (s) is calculated exactly by Ewald's method ],
and then use these JF's in Eq. (4) to predict' Est(s') for
another set of structures [s'] W jsj. In the second step we
contrast these predictions with the exact (Ewald) values
of [Est(s')]; the difference ("prediction error") is mini-
mized iteratively by increasing F,„.Because of the pair-

(8)

TABLE I. Calculated Madelung constants of fcc crystal
structures with point-charge distribution given by Eq. (3). The
first three columns give, respectively, the structure symbol, its
chemical formula (written as a superlattice A~8~, where p and q
are the repeat periods), and the superlattice orientation. The
L lq structure (Ref. 11) is not a superlattice. The fourth column
gives the exact Madelung constants calculated by Ewald's
method (denoted as ag'"), while the last column gives the pre-
dicted Madelung constants aN' using the cluster expansion of
Eq. (4}with interaction parameters J& given by Eq. (8). These
were obtained by invertion [Eq. (6)], using the top seven ("basis
set") structures in this table. The structures in the second part
of the table are linearly-dependent to those in the first part, so
their Madelung constants are predicted exactly. The third part
of the table gives the Madelung constants of the structures that
are independent; the standard deviation for these predictions is

as small as 0.00068.

Structure type Formula Orientation aN"'

Structures in basis set

aN"

A1
L1p
L 1]
cc401s

Z2
Y2

P 1/P2

A/8
AB
AB

A2B2
A2B2
A2B2

A 28/ABi

[ool]
f»1]
[2ol]
[ool]
[1 lo]
[ool]

0.0
1.594 36
0.69509
1.63664

—0.13537
0.588 82
0.448 63

0.0
1.59436
0.69509
1.63664

—0.135 37
0.588 82
0.44863

Linearly-dependent structures (examples)

L lp

DO22
Y 1/Y3
Z 1/Z3

A iB/A83
A iB/AB3
A 38/A 83
A 38/A83

[2ol]
[1 lo]
[ool]

1.19577
1.21691
0.69300
0.33090

1.19577
1.21691
0.69300
0.33090

a 1/a2

V 1/V3
W 1/W3
V2
8'2
SQS8
Random

Linearly-independent

A 28/A82
A 28/ABi
A38/AB3
A38/ABi

A282
A2B2

A2B3ApB]
Ap. 5Bp.5

structures (examples)

[111] 0.07207 0.071 33
[110] 1.20458 1.20544
[111] 0.053 51 0.05302
[113] 0.70740 0.70646
[111] —0.24053 —0.241 50
[113l 1.06725 1.065 37
[113] 0.75445 0.753 28

0.739 52 0.738 65

wise nature of the Coulomb interaction [Eq. (2)], only
pair interactions are nonzero in Eq. (4). Table I shows
that truncating F,.„atthe sixth fcc neighbor (i.e., using
seven JF's and seven basis structures given at the top sec-
tion of Table I) already gives a satisfactorily small predic-
tion error (standard deviation g =0.00068) for the
Madelung constants ast. We use the definition aM(s)
= —2rEst(s)/(16K), ~here r =J2a/2 is the nearest-
neighbor distance of the fcc lattice, and the scaling factor
is chosen as 16K so that aM (L lo) 1.59436 is the conven-
tional result for the CuAu-I(L10) structure (see Table I).
The resulting renormalized pair interactions J for the
binary fcc system (where nt is the order of neighbor dis-
tance) are

J[ —0.32393, J2 0.08281, J3 =0.06093,
J4 0 03446. J5 0.00139 Js =0 00048
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These exhibit a rapid decay with nt, in sharp contrast with

the slowly decaying bare Coulomb interactions JJ of Eq.
(2). Comparing Eqs. (2) and (7) we note that whereas

[J;Jj are positive-definite, JF could be either positive or
negative; we find [Eq. (8)] that the dominant effective
first-neighbor term Ji is antiferromagnetic (Ji & 0),
whereas the remaining interactions are ferromagnetic
(J & i & 0). The fcc Coulomb lattice is hence frustrated.

The rapid convergence and practical completeness of
this set [JF] allows us to calculate the configuration aver-

age (Est)tt =—Est(R) for the random alloy. Using in Eq.
(4) the configurationally averaged pair correlation func-
tions &IIF&tt (2x —1) appropriate to the random alloy,
we find ast(R, x) 0.73865 [4x(1 —x)], in excellent
agreement with the analytic result ast(R, x) 0.73952
[4x(1 —x)], which can be obtained by substituting Eq.
(3) into Eq. (I ) and evaluating explicitly its con-
figurational average. The excellent agreement between
the analytic result and that of the truncated cluster expan-
sion lends credence to the latter approach which was pre-
viously used' in cases where an exact result was unavail-

able [i.e., where the expansion Eq. (4) was applied to the
total electron plus ion energy of a lattice]. The dashed
line in Fig. 1 shows our calculated composition depen-
dence of Est(R, x); the horizontal solid line shows the
conventional SCPA result' ' 's obtained with uncorre-
lated charges. Contrary to the latter, our result indicates
that the random alloy does infiuence the ordering energy
hEM(O); assuming that' ' ' Est(R, x) 0, then great-
ly exaggerates the stability of ordered charge-transfer
structures relative to the random alloy.

The rapid convergence of the renormalized Ising series
facilitates the search among 2 configurations for the
ground-state structures"' of the binary Madelung lat-

tice. The results (diamond-shaped symbols in Fig. I) ob-
tained with the interactions of Eq. (8) and the method of
Ref. 17 show that the ground state consists of the pure
end-point solids A(x 0) and B(x I), as well as the
three superlattices with the (1,0, —,

' ) ordering vector: the
A 38 DO22 structure (space group D4s, the TiA1&-type),
AzBz (space group Dg, the NbP-type structure), and
A83 in the DO22 structure. Figure 1 also shows as open
circles excited configurations whose energies are just
above the ground-state lines. We see that the AsB, AB,
and A83 structures (L12, L lo, and L12 crystal types, re-
spectively) with the (0,0,1) ordering vector are less stable
than the corresponding structures with the (1,0, 2 ) order-
ing vectors and that the random alloy has yet a higher en-

ergy.
The concept that the net charge is decided primarily by

the local environment can be extended to pseudobinary
Ai-, B„Calloys whose constituents (AC and BC) have,
e.g., the zinc-blende structure. Since the A and 8 atoms
are always coordinated there by four C atoms (much like
in pure AC and BC), this model gives Q;(A) Q~ and
Q;(8) Qtt for all A and 8 sites, respectively, where Qz
and Qtt are the charges on A and 8 in the constituents.

TABLE II. Calculated Madelung constants au [Eq. (10)]
for pseudobinary tetrahedral alloys with point-charge distribu-
tion given by Eq. (9). The structure types are defined in the
caption of Table 1. ag'" are the exact geometrical constants
[Eq. (10)] calculated by Ewald's method, ag['d are the predicted
constants using the cluster expansion of Eq. (4) with seven

basis set structures. This gives the interaction parameters
Jp 2 51643, J] 0 45961, J2 0 01395, J3 0 00498,
J4 —0.00494, J5 —0.00007, and J6 0.00114. See caption
of Table I for the explanation of the three sections of this Table.
The standard deviation for the predictions if 0.00193.

0.5—

Structure type ayac&

Structures in basis set

K
AI 0"

hl

CO

-0.5
ClI
C

-1.0
C
DI

-1.5

SCPA result

II40II

A/B
L lp

L 1[
ss40ss

Z2
Y2

P 1/P2

L lp

DO22
Y I/Y3
Z I/Z3

5.349 87
1.594 36
2.440 39
1.63664
3.43473
2.51691
2.82092

Linearly-dependent structures (examples)

2.533 24
2.554 38
2.994 51
3.453 42

5.349 87
1.594 36
2.44039
1.63664
3.434 73
2.51691
2.82092

2.533 24
2.554 38
2.994 51
3.453 42

-2.0 I l I I I I

0.2 0.4 0.6 0.8 1.0 Linearly-independent structures (examples)

Composition x

FIG. 1. Calculated ground-state structures (solid lines con-
necting diamond-shaped symbols) of the binary fcc Madelung
lattice A ~

—,B, with charge distribution given by Eq. (3). Open
circles denote Fu of the three unstable (001) ordered struc-
tures. The dashed line gives the energy of the random alloy in

this model, while the horizontal solid line gives the (rather poor)
SCPA (Refs. 12-14, 18) approximation to the random alloy.

a 1/a2
yl/y2
V I/V3
W I/W3
V2
8'2
SQS8
Random (x 0.5)

3.407 56
2.238 27
3.893 13
2.975 80
3.891 12
2.05646
2.52089
2.51599

3.41209
2.239 31
3.895 40
2.975 91
3.895 66
2.05668
2.521 32
2.51643



GROUND-STATE STRUCTURES AND THE RANDOM-STATE. . . 11 391

2

EM(rr) =- &zag
d

aM (o')ag '
2p'

PM (rJ)~gg
d

(lo)
where aza 1.638055 is the Madelung constant of the
zinc-blende (ZB) lattice, PM(o') 4aza[x(a) —0.5),
d v3/4a is the nearest-neighbor anion-cation distance,
and asr(o) is a geometrical constant to be calculated
below.

We have repeated for A~-„B„C(Table II) the same
procedure used above for A~ „8„.The results are given
in Table II. We see that the predicted values for ordered
structures agree very well with those calculated directly
by Ewald's method, and that the result aM(R, x 0.5)

2.51643 for the random pseudobinary alloy also agrees
well with the exact value asr (R,x 0.5) 2.51599.

Unlike the case in binary A~ „8,alloys, the dominant

The charges on the different C atoms are then decided by
the electroneutrality condition for each C-centered
A„84 „(0~n~4) tetrahedron. This gives the charge
distribution for 8

&
—„B„Calloy as

Q; =Q+Ag S; (i in the A, B sublattice)
(9)

Qj = — Q+ gS; (j in the C sublattice),
l

where Q (Qg+Qa)/2, hg (Qa —gg)/2, and S J is
the spin variable for the occupation of the four tetrahedral
vertices i centered at j. Using Eq. (9), the Madelung en-
ergy of the A ~ „B„Cs—emiconductor lattices can be ex-
pressed as

effective interactions in pseudobinary A&-„B„Csystems
(given in the caption to Table II) are found to be fer-
romagnetic, hence, the ground state corresponds to phase
separation. This reflects the fact that the (negative)
Madelung energy of A ~ „B„Cis minimal for the AC and
BC constituents, since, relative to the average charge
value (LLQ -0) the constituents exhibit the largest charge
fluctuation (+ d,g) on the common sublattice C. Note
that the trend of stability of (AC)„(BC)„superlattices
predicted by this model (i.e., [111] structures have the
next lowest energy after the phase-separated system) is
consistent with first-principles total-energy calculations
for lattice matched semiconductor superlattices. '

In summary, we have shown that cluster expansion used
previously in numerous calculations of phase diagrams'7
is capable of describing electrostatic point-ion energies of
systems with correlated charge transfer. We have demon-
strated that although the bare Coulomb interactions be-
tween point charges is long ranged, the renormalized in-
teractions are short ranged and rapidly convergent, re-
flecting local charge neutrality. We find that the Made-
lung energy of the random alloy with correlated point
charges is nonvanishing, hence, unlike the assumptions
underlying the popular SCPA, ' ' ' Coulomb energies
of random alloys can contribute significantly to ordering
energies.
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