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Structural models needed in calculations of properties of substitutionally random 4,_, B, alloys
are usually constructed by randomly occupying each of the N sites of a periodic cell by 4 or B. We
show that it is possible to design “special quasirandom structures” (SQS’s) that mimic for small N
(even N=38) the first few, physically most relevant radial correlation functions of an infinite, perfect-
ly random structure far better than the standard technique does. These SQS’s are shown to be
short-period superlattices of 4-16 atoms/cell whose layers are stacked in rather nonstandard orien-
tations (e.g., [113], [331], and [115]). Since these SQS’s mimic well the local atomic structure of the
random alloy, their electronic properties, calculable via first-principles techniques, provide a repre-
sentation of the electronic structure of the alloy. We demonstrate the usefulness of these SQS’s by
applying them to semiconductor alloys. We calculate their electronic structure, total energy, and
equilibrium geometry, and compare the results to experimental data.

I. INTRODUCTION: NONSTRUCTURAL THEORIES
OF RANDOM ALLOYS

Early experiments! 7 on bulk isovalent semiconductor
alloys A4,_,B, revealed that many of their properties
represent a simple and continuous compositional (x) in-
terpolation between the properties of the end-point solids
A and B. For example: (i) alloy lattice parameters are
nearly linear with x (Vegard’s rule®); (ii) unlike glasses,
amorphous semiconductors, or heavily doped systems,
isovalent semiconductor alloys generally do not exhibit
any substantial gap or “tail” states; (iii) diffraction pat-
terns of melt-grown semiconductor alloys have the same
symmetry as those of the constituent solids (with no extra
spots); (iv) absorption and reflectance spectra are rather
sharp, showing only small alloy broadening near the edge
transitions; the Ath transition energy €,(x) shifts rigidly
with composition as

e(x)=[(1—x)e(A4)+x¢€,(B)]—b;x(1—x) , (1.1)

where b, (the ‘“bowing coefficient”) is nearly composition
independent; (v) the principal Raman peaks shift smooth-
ly with composition; and (vi) the mixing enthalpy AH (x)
is small, positive, and has a simple composition depen-
dence Qx(1—x) with nearly constant ‘“‘interaction pa-
rameter” (), as expected from a regular solution model.

It is therefore understandable that early electronic
structure theories described such alloys in terms of weak,
symmetry-preserving perturbations about the end-point
constituents. Indeed, these theories are nonstructural, in
that they consider only the average occupations by ( 4 )
or {(B) of lattice sites (i.e., retaining the topology), re-
moving, however, the informational content associated
with the geometrical arrangements of atoms around sites.
Such is the “virtual-crystal approximation™ (VCA),
where the alloy is assumed to have a single, { AB ) aver-
aged type of atom, or the ‘“‘site-coherent-potential approx-
imation”!® (SCPA), where the potential is modified rela-
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tive to the VCA only on sites, hence all A’s and separate-
ly all B’s are assumed equivalent and each is embedded in
a uniform medium.

The VCA is limited to valence-only electronic struc-
ture methods (since core states remain distinct in the al-
loy and hence are not amenable to averaging). It has
been applied to a wide range of systems using simple
valence-only Hamiltonians such as the pseudopotential
method,!' ™ '8 the dielectric two-band model,'® 2! and the
empirical tight-binding model.>”2° The SCPA is
presently limited to electronic structure methods using
atom-anchored representations (where the potential or its
matrix elements can be associated with specific atomic
sites). It has been applied within empirical
pseudopotentials,”® "2 k-p  perturbation methods,?*°
tight-binding,*"*? bond-orbital,>*** and Korringa-Kohn-
Rostocker®*3® (KKR) methods to a wide range of alloys.
Both the VCA and the SCPA are able to capture effects
associated with symmetry-preserving, uniform volume
changes (e.g., the “volume deformation™ contribution’’
to the optical bowing b,). The SCPA can also capture
effects associated with the existence in the alloy of statist-
ical distribution of sites (hence, alloy broadening of ab-
sorption bands*®*) and the disparity between the two,
chemically inequivalent sites A%B (hence, different
core-level shifts®® for 4 and B). The principal
simplification in these methods lies in the association of
average alloy properties with those of “effective atoms”
on sites, not bonds or tetrahedra, etc. Hence, since non-
structural models are based on an effective Hamiltonian
with the full symmetry of the parent compounds, they de-
scribe pseudobinary ( AC),_,(BC), = A,_, B, C alloys as
having single types of “average” A, B, and C atoms. In
fourfold coordinated tetrahedral alloys, for example, each
C is assumed by these theories to have four identical
“medium nearest neighbors,” a configuration denoted
CX,; the point symmetry around C is then T, [disorder
in this common sublattice could, however, be introduced
by using in coherent potential approximation (CPA)
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different diagonal energies for different C atoms]. In ac-
tuality, possible nearest-neighbor arrangements around C
include CA;B and CAB; (C,, symmetry), CA,B, (D,,
symmetry) as well as CA, and CB, (T, symmetry); more
configurations occur when one proceeds to more distant
shells. Each of these CA,B,_, (0<n <4) clusters could
contribute differently to a given physical property. For
example, crystal-field splitting, the 4-B charge transfer,
and the positional relaxation of the C atom are allowed in
C,, and D, structures, but vanish by symmetry in the
T, structure where all atoms around C are identical.
Furthermore, some optical transitions that are allowed in
the lower-symmetry (CA,B, CA,B,, and CAB;) struc-
tures become forbidden in the higher-symmetry (CX,)
structure, e.g., zinc-blende I' — X transitions carry a zero
oscillator strength in VCA, but can have finite oscillator
strength in models that distinguish the A site from the B
site. Reference 30 quotes such theoretical and experi-
mental examples. Simple molecular analogs that illus-
trate the effect of such symmetry lowering on physical
properties include the molecules CH,F,_,, SiCl,1,_,,
and SnCl,Br,_,; the qualitative variations with n of
their vibrational, optical, and chemical-shift characteris-
tics have been studied in detail.*' Nonstructural alloy
theories do not represent such distinct effects associated
with symmetry lowering: since only single sites are recog-
nized by the theory, all geometries are averaged out to
produce a single, C-centered configuration CX, with the
higher, T, symmetry of the parent compounds. Hence
the averaging process projects out only the high-
symmetry component of the property in question. Non-
structural theories are, therefore, appropriate only to the
extent that the pertinent physical properties are insensi-
tive to symmetry-lowering fluctuations arising from the
distinct microscopic structure beyond the central site.

While various empirical parametrizations often used in
the VCA (Refs. 11-25) and the SCPA (Refs. 26-34) could
help in producing agreement with a set of measured data,
the above analysis suggests that one should examine the
evidence for the influence of such structural fluctuations
beyond sites. Consider, for example, the following.

(i) Extended x-ray-absorption fine-structure (EXAFS)
experiments on nearly random (melt-grown, bulk)
A,_,B, C semiconductor alloys**~* show that the actu-
al (alloy-averaged) local structure about C is not
tetrahedral, despite the fact that the constituents AC and
BC are perfectly tetrahedral. Indeed, the alloy-averaged
bond lengths around C show R(A4 —C)#R(B—C); the
next-nearest-neighbor bonds show R(A—A4)
#R(A—B)#R(B—B), and the bond angles, e.g.,
6( A—C—B) are nontetrahedral. (These local distor-
tions do not necessarily lead to new diffraction spots.)
The magnitude of these deviations can be significant in
lattice-mismatched III-V and II-VI alloys. These distor-
tions are not associated with (topological) short-range
order—they persist in high-growth-temperature sam-
ples,* and are quantitatively explainable even in terms of
models of perfectly random networks.***’ =% They sim-
ply reflect the lower symmetry associated with locally
strain-minimizing arrangements*’*® of atoms of dissimilar
sizes, much like the situation in CX, Y,_, molecules.*!
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(i) A4,_,B,C alloys whose constituents are size
mismatched can be ferroelectric, e.g.,’! Cd,_,Zn, Te.
Clearly, the site symmetry cannot be T,.

Given that the alloy structure has lower global symme-
try than that assumed in nonstructural theories, one
wonders next how such fluctuations affect the electronic,
optical, and thermodynamic properties of the alloy. The
evidence here is theoretical, as follows.

(iii) The mixing enthalpies®? of a number of semicon-
ductor alloys have been calculated both with and without
structural relaxation.’?” 5 Notwithstanding symmetry-
preserving hydrostatic volume changes, the local relaxa-
tion of the common sublattice C in 4,_,B,C by itself
lowered the excess enthalpy by up to>* 80%; relaxation of
the mixed, 4-B sublattice lowered it further by up to*®
20%. These relaxations lower the miscibility gap temper-
ature of semiconductor alloys®® and the order-disorder
temperature in>® Cu,_, Au, by hundreds of degrees K.

(iv) The optical bowing coefficient b [Eq. (1.1)] of the
direct band gap was modeled®’ for a number of semicon-
ductor alloys at x =1 using the CuAu-I structure both
with and without relaxation of the cell-internal atomic
positions (distinct from volume deformations). Model
calculations showed that the ratio b, /b of the contribu-
tion of the structural (s) relaxation piece b, to the total
bowing b isM

0.94/1.23=0.76
0.45/0.39=1.15
1.32/1.96=0.67
2.68/3.83=0.70
0.23/1.08=0.21

for GaAs, sSb s,
for ZnS sSe; s,
b,/b= for ZnSe, sTey s,
for ZnS, sTey s,

for Ga, sIn, sP.

Clearly, geometrical relaxations absent in nonstructural
models such as VCA and SCPA not only lower the total
energy but also control optical bowing in size-
mismatched alloys. In the rare cases of size-matched al-
loys (Al,_,Ga,As and Hg,_,Cd, Te), one expects to
have but small structural relaxation,*’ hence nonstructur-
al theories can apply.

The lowering of the site symmetry in isovalent alloys
relative to the constituents can also introduce charge
transfer about the C atom bonded to 4,B,_,. Interest-
ingly, there is evidence that such effects survive alloy
averaging and result in the existence in the random alloy
of distinctly different C atoms. The evidence here in-
cludes the following.

(v) Nuclear-magnetic-resonance (NMR) chemical shifts
oc(A,B,_,) of the common atom C are resolvable into
five components (0<n <4), eg., in’’ Cd,_,Zn,Te.
These reflect distinct contributions by the five local atom-
ic arrangements of the 4 and B nearest-neighbor atoms
to C. Similar  results have been obtained
for*® Hg, _ . Cd, Te.

(vi) The vibrational spectra of homogeneous random
alloys are interpretable®>® in terms of a superposition of
frequencies characteristic of the distinct local clusters.
Furthermore, such alloys can exhibit “no-phonon indirect
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transitions,” #®! which can be thought of as folded (pseu-
dodirect) excitations, and can be described also by the
SCPA approach.®

Some of these manifestations of the effects of the mi-
croscopic atomic structure beyond sites can be partially
addressed by refinements of nonstructural alloy theories,
e.g., by introducing charge-transfer effects’® into the
VCA, adjusting the nearest-neighbor (“hopping”) Hamil-
tonian matrix elements (off-diagonal disorder*>%?), by en-
larging the SCPA cell to include effectively more atoms
(molecular CPA),®® by using the “traveling-cluster ap-
proximation”® and its extensions,> or through the
“next-neighbor CPA.” % The evidence that, even in
nearly perfectly random semiconductor alloys, many of
the fundamental physical properties are controlled by
events that are not describable in terms of high-symmetry
sites alone suggests to us, however, that an explicit
structural theory of alloys is in order. Indeed, one of the
significant realizations to emerge from recent (first-
principles electronic structure calculations of crystals,
impurities, and surfaces®” "% is that electronic properties
sensitively reflect the details of the microscopic atomic
arrangements, including small changes in atomic posi-
tions (“relaxation”). Yet, most alloy theories to date are
both nonstructural and based on simple, empirical, elec-
tronic Hamiltonians.

We introduce here a different conceptual framework
for describing the properties of random alloys.”” We ask
whether one can construct a periodic unit cell, occupying
its M lattice sites by 4 and B in a single, ‘“‘special”
configuration such that the structure as a whole closely
resembles the configuration average of an infinite, perfect-
ly random A4,_,B, alloy. To the extent that this is
achievable with “supercells” with a sufficiently small
number M of atoms per cell (such that first-principles
electronic structure theories, currently limited to M ~50
atoms, can be used), we have a workable structural theory
of alloys. If the structure of such a solid closely resembles
(by construction) that of the random alloy, so would its
total energy, charge density, density of states, and other
electronic properties. We quantify the extent to which a
single, finite M arrangement of A’s and B’s mimics the
perfectly random infinite alloy through its calculated
structural correlation functions, familiar from statistical
lattice models.”' "7 We then seek periodic arrangements
of A’s and B’s on an M-site unit cell that will directly
minimize, for each M, the difference between its structur-
al correlation functions and those of the perfectly random
infinite alloy [known analytically, see Eq. (2.8) below].
Describing random alloys by periodic structures will
clearly introduce spurious correlations beyond a certain
distance (“periodicity errors”). However, many physical
properties of solids are characterized by microscopic
length scales that can be ordered according to size to
form a hierarchy. For example, interactions between dis-
tant neighbors generally contribute less to the total ener-
gy than do interactions between close neighbors.>>’® We
hence guide our construction of “special quasirandom
structures” by the principle of close reproduction of the
perfectly random network for the first few coordination
shells around a given site, deferring “periodicity errors”
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to more distant neighbors. To the extent that the
relevant physical property is decided primarily by the
“local” structure (see below), this will provide an ade-
quate representation. This approach has an obvious
resemblance to the principle guiding the selection of
“special k points” for Brillouin zone integration.”” By
construction, it is not intended to reproduce properties
reflecting mostly the long-range order, e.g., diffraction
scattering factors.

We show here that by selective occupation of the M lat-
tice sites by 4 and B atoms we can construct special
periodic “quasirandom structures” that mimic, for finite
M the first few, physically most relevant correlation func-
tions of an infinite substitutional random alloy far more
closely than does the standard approach of occupying
each of the M sites randomly by A or B. While both ap-
proaches produce the same results for M — oo, the
present approach produces excellent approximations al-
ready for M =0(10); hence it affords application of accu-
rate electronic structure methods®’ for calculating
structural, optical, and thermodynamical properties of
random alloys. This is illustrated here for a number of
semiconductor alloys.

Introduction of this concept requires the establishment
of some of the basic ideas of statistical lattice models of
multisite Ising Hamiltonians. Section II introduces these
concepts and formulates the associated notation in such a
way that our basic idea (Sec. III) and its relationship to
previous work become obvious. Section IV describes the
application of our ‘special quasirandom structures”
(SQS) to the study of the electronic and thermodynamic
properties of eight semiconductor alloys using the first-
principles local-density formalism.”® %3

II. STRUCTURAL THEORIES OF ALLOYS

A. Direct sampling methods

A binary A,_, B, substitutional alloy with a lattice of
N sites can occur in 2V possible atomic arrangements,
denoted as ‘“‘configurations” o. Each configuration ex-
hibits certain physical properties (e.g., total energy, band
gap, density of states, etc.) denoted symbolically by E(o ).
The measurable property (E) represents an ensemble
average’* over all 2V configurations o

23\'
(E)=3plo)E(0), 2.1

where the density matrix p(o) denotes the probability to
find configuration ¢ in an ensemble of systems. The obvi-
ous difficulty with structural theories of alloys based on
Eq. (2.1) lies in the need to relax, then average over a
large number of configurations. In practice, one proceeds
by either (i) selecting a smaller number of “representa-
tive” configurations (“importance sampling techniques™),
such as in the Monte Carlo method,?* or by (ii) using a
single, sufficiently large configuration. While by the prin-
ciple of spatial ergodicity, all possible finite environments
are realized in a single, N— o« sample, in practice far
smaller “supercells’” have been used. Recent examples in-
clude the 64-atom Al,(GacAs;, cell used by Lee, By-
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lander, and Kleinman;®® the ~1000 atom cell of
Pb,_,Sr S used by Davis;* the ~2000 atom model of
(GaAs), _,Ge,, used by Davis and Holloway;’ and ear-
lier model calculations by Alben et al,%® with
8000-10 000 atoms, and by Henderson and Ortenburger®’
on disordered 8-12 atom cells of Ge. All but the first ex-
ample® utilized highly simplified Hamiltonians; current
first-principles, self-consistent theories of the electronic
degrees of freedom® ™% are restricted to N <50 atoms.
This direct sampling approach explicitly specifies the al-
loy structure, and can hence incorporate atomic relaxa-
tions. However, it approaches the statistical limit as
slowly as N ~!/2, and therefore involves a rather large
number of different configurations (e.g., 10® in Monte
Carlo®) or large cell sizes (~ 10’ atoms®® ), for which
first-principles, self-consistent theories are still impracti-
cal.

B. Cluster expansions

Rather than address directly the property E(o) of
configuration o taken as a whole, lattice theories’' ~7°
proceed by discretizing each configuration into its com-
ponent ‘““figures” f, and represent the physical property
E(o) in terms of a sum of the elemental properties €, of
the constituent figures {f}]. A figure® is defined by the
number k of atoms located on its vertices (k =1,2,3 are
sites, pairs, triplets, etc.), the order m of neighbor dis-
tances separating them (m =1,2 are first, second neigh-
bors, etc.), and by the position / of the figure in the lattice
(1 includes also its orientation). There are D, equivalent
figures per site. Using the language of Ising models,’* ™76
we assign to each site i in a figure a spin variable §,~,
which takes the value —1 if the site is occupied by 4 or
+1if occupied by B. Define as I1,(/,0) the product s,
of spin variables for figure f positioned in the lattice at
location I. A configuration o is then characterized by the
values of its spin products II,(/,0). A lattice average
(denoted by a bar) over all locations / of a figure of type f
gives

M (0)=——3Ml0). (2.2)

ND, 4

The set {ﬁ f(a)] provides a compact way of characteriz-
ing the type of a structure o. For example,? the
CuAul (L1,) or the CuPt (L1,) ordered structures have
ﬁf values of —1,1,—1,1 and 0,—1,0,1 for the pair
figures separated by first, second, third, and fourth neigh-
bors (m =1, 2, 3, and 4), respectively. More examples
are given in Table I of Ref. 55(a).

The discretization of a configuration into a hierarchy
of figures affords a corresponding hierarchy of approxi-
mations for measurable properties, i.e., the ensemble
average over configurations. If €,(/) denotes the contri-
bution of figure f at [ to a physical property E, the value
of E for configuration o is given by the weighted super-
position

E(o)= 3 ,(La)el) . 2.3)
fil
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Since {Il/(1)} forms a complete set of orthogonal func-
T4
tions
2Hf(I,U)Hf'(l',0)=2N8f’f',81’11 (2.4)
the “effective cluster property” is given from Egs. (2.3)
and (2.4) as
2V

e/(=2"V31,(l,0)E(0) . (2.5)

Since E(o) depends on composition, €, does too.
Not that €,(/) does not depend on [, since Eq. (2.5) in-
dicates that € ,=g,(I) has the full symmetry of the crys-
tal. Using Eq. (2.2), the cluster expansion of Eq. (2.3) can
be written as
f
The ensemble average (denoted by the angular brack-
ets) is
(E)=N3D (1 )e, . (2.7)
f
The basic problem of a direct sampling of E(o) over 2V
terms [Eq. (2.1)] is hence transformed into the problem of
Egs. (2.5) and (2.7) where one needs to calculate the
effective cluster properties £, and sum over all types of
figures. Note that the expansions in Egs. (2.2)-(2.7) are
rigorous’* as long as the sum is not truncated. For a per-

fectly random (R ) infinite alloy, the correlation functions
are known in advance; they are

m, ,,(R)=(T, Y p=02x—1)*, (2.8)

where f has been replaced by the equivalent indices
(k,m); at x=1 they vanish to all orders, except
Ty, ) g =1 (see also the Appendix).

While Egs. (2.2)-(2.7) are rigorous, practical applica-
tions of lattice models assume that the cluster expansion
of Eq. (2.6) for the relevant observable E is fairly rapidly
convergent, so that only a few terms need to be kept.
Since this assumption is not inherent in the lattice theory
itself, we will examine its validity by constructing specific
physical models for the property E. Most lattice models
proceed, however, under this assumption to find tractable
methods for evaluating the effective cluster property €, in
Eq. (2.5). Once this is known, the generalized Ising mod-
el of Eq. (2.6) can be solved (usually, approximately) to
find the ensemble average of Eq. (2.7).

C. Calculation of effective cluster properties €,

Lattice theories are traditionally applied to the case
where E is the excess total energy, and g, ,, is the many-
body interaction energies [although the expansion (2.6) is
applicable to other physical properties as well]. In the
vast majority of applications (e.g., see reviews in Refs. 75
and 76), the interaction energies were not calculated, but
were assumed to have fixed numerical values used to
qualitatively describe alloy phase stability in terms of the
postulated values of £ ,. However, {&,} can also be calcu-
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lated from a microscopic theory of electronic interac-
tions, as discussed below.

1. Direct configurational average

In the “direct configurational average” method®® %*
one evaluates €, directly from Eq. (2.5), truncating the
sum to a small number of configurations o (or equivalent-
ly, to small N). For example, Lambin and Gaspard® ap-
plied this method to E(o)=p,(0), i.e., the pth-order mo-
ment of the local density of states, and Berera et al.”®
and Dreysse et al’® have used the direct
configurational average method, where the property
E (o) was the integrated density of states

E(a)=fEF en(e,o)de ,

and e is the Fermi energy. Restricting f =(k,m) to
nearest-neighbor pairs (k =2,m =1), they find the
effective pair interactions ¢, ;; the expansion converged
after 10-20 configurations were included.

2. Superposition of periodic structures

To the extent that the basic cluster expansion of Eq.
(2.6) converges regularly and rapidly with respect to the
figures {f}, one can use any sufficiently large set of
configurations { 5] m Eq. (2.6) to evaluate the effective
cluster properties® {e {es]. Conversely, nonunique values
of {€,] obtained from two different sets of configurations
{o} and {0’} of comparable sizes testify to the impor-
tance of interactions beyond the truncation limit set in
the choice of o and ¢’. This suggests that one can (i) es-
tablish the largest figure F to be retained in the cluster ex-
pansion of Eq. (2.6), (ii) select a convenient set of
configurations {o} from which €, for f <F can be ob-
tained, and (iii) examine convergence by using {e,} to
predict other structures; if this fails, F is increased until
transferability is established. This approach was carried
out by Ferreira, Wei, and Zunger55 2) and Wei, Ferreira,
and Zunger.>*® Here, one specializes the cluster expan-
sion to a set of N, periodic structures {0} ={s}

F —
E(s)=N 3 D/l (s)e,, (2.9)

f
and obtains the effective cluster properties through ma-
trix inversion

15
ef=ﬁf- S [T (s)]'E(s) (2.10)
s

as shown by Connolly and Williams.*> Again, since E (s)
depends on composition [e.g., through the volume V (X)
of s], so does e,=e [V (X)]. Carlsson’> and we**®
have recently shown that folding of long-range interac-
tions into Eq. (2.10) introduces an additional explicit
composition dependence into £,. Note that the rigorous
proof’* of Eq. (2.6) does not require that {e r} depend on
composition. However, an accelerated convergence of
the truncated sum can be achieved by introducing such a
composition dependence.*> The situation here is analo-
gous to the expansion of a wave function in a set of basis

orbitals: these need not be individually unique, but they
combine to reproduce a unique wave function. This ex-
pansion can hence be carried out using a linear, energy-
independent basis set (analogous to composition-
independent €,’s); the convergence of the wave-function
expansion, can, however, be accelerated by using an
energy-dependent basis set.

Two distinct convergence problems are encountered in
Egs. (2.9) and (2.10): that of truncating the sum over
figures in Eq. (2.9) and that associated with using a limit-
ed set of structures in Eq. (2.10). Assuming that these
sums are sufficiently well converged, the configurational
property E (o) for any o is then given as a superposition
of the properties E (s) of a set of N periodic structures

N
=3 E(0)E(s) (2.11)
where the weights are given by the matrix product
F — —
£(0)=3 [ ()] M (c) . (2.12)
f
The ensemble average for phase y is
(E),= 3 P(x,T)E(s), (2.13)

where P(
(x,T).
One might at first wonder if this procedure of describ-
ing the excess energy (E) of an alloy in an arbitrary
configuration (say, random) by constructs obtained from
ordered structures {s} is likely to be valid, given the
often-noted differences in the electronic structure of ran-
dom and ordered alloys of the same composition. How-
ever, inspection of Egs. (2.9)-(2.13) reveals that the only
real question here is one of convergence with respect to
figures and structures. This question can be handled
quantitatively by actual convergence tests (see below).
The application of this method proceeds by (i) selection
of a set of figures {f} and a set of N, periodic structures
{s}; (ii) calculation of {E(s,V)} (e.g., excess total ener-
gies, band gaps, density of states) for each of the fully re-
laxed N; structures as a function of the external volume
V. This can be done,> e.g., by the linear augmented
plane wave (LAPW) method® or by the plane-wave non-
local pseudopotential method;”® (iii) inversion of the set
{E(s,V)} to obtain a set of N, functions {e,(¥)} from
Eq. (2.10). (iv) Examination of transferability: this set is
used in Eq. (2.9) to predict the quantities E(s’, V) for
another set of structures {s'}7{s}; comparison with the
directly calculated E(s’,V), e.g., using the LAPW or
pseudopotential methods establishes truncation errors in
the expansions of Egs. (2.9) and (2.10). The maximum
figure F is then increased until the errors are lowered
below a prescribed tolerance; (for zinc-blende-based sys-
tems, F had to be extended> up to fourth neighbors pairs
and four-body terms). (v) The set {e,(¥)} can then be
used in Eq. (2.7); solution of this generalized Ising Hamil-
tonian by Monte Carlo®* or cluster-variation’' ™73
methods (CVM) produces the desired averages ( E ) (this
is practiced only if the set of interactions is not too large).
The basic advantage of this approach lies in its ability

<§S) , is the weight of s in phase y at
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to describe disordered alloys with terms (and accuracy)
equivalent to those with which state-of-the-art methods
address simple periodic crystals. Indeed, since we are
dealing with periodic crystals {s}, their physical proper-
ties E can be calculated by (first-principles, self-
consistent) band-structure techniques,67_69’79_82 avoid-
ing the simplified empirical methods used in previous ap-
plications of either the direct configurational aver-
age,® 7% the VCA (Refs. 11-25), or the SCPA.2673¢
Furthermore, this approach is clearly ““structural” in that
it represents the alloy as a collection of different local en-
vironments, permitting each to relax so that the cluster
properties {e,} include the effect of such relaxations.
Hence, while the ensemble average in (2.13) reflects the
symmetry of the pertinent phase y (e.g., random), the in-
dividual cluster contributions ¢, reflect the local symme-
try, including such relaxations permitted by that symme-
try. The same basic thought (but with a different inter-
pretation of the weights &) has been sketched earlier by
Butler and Kohn,’® who referred to Eq. (2.11) as the
method of superposition of ‘periodically continued
neighborhoods.” It obviously applies to physical quanti-
ties E that are ‘“local” in the sense that the radius of
influence of relevant perturbations must be smaller than
the cell radius. The current formulation shows how this
method can be naturally developed from a general cluster
expansion, where a choice of periodic structures corre-
sponds to a particular truncation of the expansion of f’s.
The convergence is then examined systematically by the
transferability condition.

The method of superposition of periodic structures has
been used by a number of authors, restricting F to a
nearest-neighbor figure. Within this approximation, there
are only five nonequivalent values of f =(k,m), ie.,
m=1 and k=0, 1, 2, 3, and 4; the maximum figure F is
the 4,B,_, tetrahedron with 0 <n <4; the N, =S5 struc-
tures are obtained by superposition of these figures. For
fcc alloys, these can be conveniently selected for n=0, 1,
2, 3, and 4 as B,(fcc), AB;(CujAu-type), 4,B,(CuAul-
type), 4;B(CujAu-type), and A ,(fcc), respectively. Ap-
plications of this nearest-neighbor model to E equal to to-
tal energy include the pioneering work of Connolly and
Williams” and Terakura et al.’’ on transition-metal al-
loys, that of Srivastava, Martins, and Zunger*® and
Mbaye and co-workers®? ~** on semiconductor alloys; the
work of Wei et al.’® on noble-metal alloys and that of
Mbaye, Wood, and Zunger**® and Wood and Zunger>*®’
on epitaxial systems. All of these applications were car-
ried out with first-principles electronic structure tech-
niques. Applications to E equal to band gaps include the
work of Bernard and Zunger*”® on II-VI alloys, and Wei
and Zunger’’® and Ling and Miller®® on III-V alloys.
Applications to E equal to spin-orbit splittings were car-
ried out by Chadi®® and by Wei and Zunger.*® Finally,
applications to E equal to bond lengths were carried out
by Balzarotti et al.,*’ Letardi, Motta, and Balzarotti,*
Ichimura and Sasaki,’® Martins and Zunger,*’ and Wei
and Zunger.>"®

Extension of the superposition of periodic structures
approach of Egs. (2.9)-(2.13) to include a converged set of
figures (e.g., up to fourth neighbors in fcc systems) was
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presented by Ferreira, Wei, and Zunger®™>® and by Wei,
Ferreira, and Zunger®™® on different II-VI and III-V al-
loys.

Like any sampling method, the superposition of
periodic structures approach is effective only as long as
the variance of the pertinent physical property is
sufficiently smaller than the mean; otherwise, a large
number of structures needs to be included. In turn, this
variance reflects the dependence of the property on the
microscopic structure through its correlation functions,
ie., E(c)=E({(II;)}). While the choice E being the
total energy and € the interaction energies representing
quantities that are integrated both over the cell volume
and the Brillouin zone, appears to exhibit rather fast con-
vergence in cluster expansion,® it is possible that other
properties, such as distinct one-electron band gaps, could
depend more sensitively on {IT r}- (One can certainly im-
agine some configurations leading to an insulating band
gap, yet others, for the same global composition, leading
to a metal.) This led us to consider the possibility of
designing single, “special” structures s, whose correlation
functions {1 7(s)} closely reproduce the ensemble average
(I ) for a random (R) alloy. The development of this
idea is described in the following section.

D. Representative structures

The standard approach for simulating the properties of
a random alloy through a finite, N-atoms/cell representa-
tion of Egs. (2.7) and (2.8) (e.g., see Refs. 85-90) assumes
that each site should be individually occupied at random
by A4 or B. One then seeks a single configuration, with a
sufficiently large N, that can be used as a “‘representative
structure.” While for x =1 the average (ﬁk‘m(N) ), tak-
en over a large number of such attempts, is near zero
even for finite N [as it should be in a random alloy, Eq.
(2.8)], the variance about the average is not. This means
that a single configuration selected at random from this
ensemble might contain errors, measured on average by
this variance. The extent to which this approach is likely
to produce a single finite N atom/cell structure that, as a
whole, approaches randomness can be measured by the
standard deviations nk’m(N)=|(ﬁi,m Y72, For an
isolated lattice with N sites we find that
N (N)=(Dy. ,,N)"'/% (see also the Appendix). Applica-
tion of this procedure to periodic structures with values of
N typical of the sizes for which first-principles electronic
structure calculations are practical, could produce even
larger errors. This is seen in Table I in the columns head-
ed “standard deviation in ﬁZ,m” which gives for x =1
the standard deviation 7, ,, (N) obtained by randomly oc-
cupying N fcc sites of the unit cell in a sufficiently large
number of ways so that converged statistics are obtained.
Comparison with (D, ,,N)~'/? reveals larger periodicity
errors in this site-by-site occupation method; e.g., for
N=32, the ratios between the standard deviations of
Table I and (D, ,,N)™'/? are 1.43, 1.45, and 2.03 for the
second-, third-, and fourth-neighbor correlations, respec-
tively. Furthermore, in some cases periodicity errors can
lead to average correlation function values of ~ 1 rather
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than zero (denoted in Table I as “PE”); these occur at
rather short distances from the origin for small N. Clear-
ly, this standard method for creating periodic, quasiran-
dom structures approaches the statistical limits only at
impractically large values of'® N.

III. SPECIAL QUASIRANDOM STRUCTURES

A. The basic idea

Instead of attempting to approach the random correla-
tion functions {II; ,,(R)} by statistical means, we will in-
stead design a single “special” N-atom per cell periodic
structure whose distinct correlation functions ﬁk,,,, (s)
best match the ensemble-averaged (11, ,, ) of the random
alloy [Eq. (2.8)]. The cluster expansion of Egs. (2.3)-(2.8)
shows that the amount by which the property E (o =s5) of
a given structure s fails to reproduce the ensemble aver-
age (E) of the perfectly random alloy can be represented
in terms of a hierarchy of figures

(E)—E(s)=3'Dy ,[(2x —1*~T0 . ()]eg, »  (3.1)

k,m

where the prime denotes omission of k=0 and 1 terms,
which are common to both R and s. In turn, the contri-
bution g, ,, to the property E is expected to fall off with
the size of the figure. Indeed, in disordered systems the
physical characteristic E at point R depends primarily on
the environment inside a neighborhood |R—R’| <L; the
effect of more distant neighbors falls off exponentially’®
with [R—R’|/L, where L is a characteristic length scale
of property E (e.g., thermal de Broglie wavelength for
scattering, screening length for energy levels). It is hence
natural to select the occupations by A4 and B for the spe-
cial structures s so that Eq. (3.1) is minimized in a
hierarchical manner.

In standard lattice theory models,’! one character-
izes given structures by their {II, ,,}. We will do the in-
verse: we will first specify a set of correlation functions
{IT; ,,(s)} that mimics, in a hierarchical manner, (T, ,, )
of the random alloy, and then find the structures corre-
sponding to this set [ﬁkym(s)}. For example, insisting
that at x =1 the physically most important correlation
functions—those for the first and second neighbors®®—
have zero errors, gives already for N=38 in fcc symmetry
at SQS, denoted in Table II as SQS-8. This table gives for
N =14 the special x =1 fcc quasirandom structures con-

2
strained to have

—76

I, ;=0 and M3,+M3;+73,
=minimum. For each SQS, we give its empirical formu-
la Ay ,,By , the unit cell vectors, and its designation as a
superlattice (see caption to Table II). This information
completely specifies the crystal structure of each SQS.
Figure 1 depicts the structure of three SQS’s.

B. Discussion of the SQS’s

In what follows, we make a number of observations on
the SQS’s of Table II. We will focus our discussion on
special x =1 fcc quasirandom structures. Extension to
other compositions or symmetries can be easily made.

as obtained in special quasirandom struc-

— 1
7

Y =0 [Eq. (2.8)], hence, deviations from zero in the columns denoted

TABLE I. This table gives, for a range of mth-order pairs in the fcc lattice the absolute value of the pair correlation functions for x

ﬁZ,m

tures (SQS) with N atoms. The SQS’s are defined in Table II. The perfectly random infinite lattice has (

“Il,,,, for SQS” measure errors. In the columns labeled “standard deviations in 11, " we give the standard deviations 1,.m (N) obtained by randomly occupying each of the N sites in

a supercell of lattice dimension H by A or B atoms. We use fcc-, bee-, and sc-like cells. “PE” denotes periodicity errors, i.e., an average correlation function of ~ 1 rather than zero.

(ND, )" '"? where D, ,, is the degeneracy factor.

For isolated lattice 7, ,, (N)

Vector from

Standard deviations in II, ,,

[, .| for SQS

(0,0,0) to mth

4a
bece

H =5a

H =3a

neighbor

bce fcc sC fce sc fcc
N=32

N=16

fcc
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of a/2)

mth
neighbor

N=128

N=125

N=108

N=64

27

N=
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D2.m
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TABLE II. Special, N-atom fcc quasirandom structures at x =

. This table gives the empirical formula, the unit cell vectors in

units of half the lattice constant, the designation of the SQS-N as a super]amce (SL) and the correlation functions Ilk m- The square
brackets next to I, ,, give the degeneracy factor Dy .. The deviations of T, ,, from zero measures errors relative to the infinite, per-

fectly random x =

5 alloy. The designation of the superlattice is illustrated as follows: the notation “A4,B; 4,B,” along [113] for

SQS-8 means that one identifies the [113] direction in an fcc cube and occupies along it two planes by A, then three planes by B, then
twoby 4 and a sin_gle plane by B. Together with the unit cell vectors, this completely defines the structure. For these structures the

averaged value of I1; ,, is zero.

SQsS-2
Name CuPt CuAu SQSs-4 SQsS-6 SQS-8 SQS-10 SQS-12 SQS-14
Formula AB AB 4,B, 4,8, A,B, AsB; AeBs 4,8,
Unit (011) (110 (110) (110) (ITQ) (110) (110) (211)
cell (101) (110) (002) (220) 11 (321) (213) (202)
vectors (112) (002) (220) (013) (224) (004) (233) (141)
SL
Sequence A B, A,B, A,B, A\B,4,B, A,ByA,B, A,B; A, A3;B, A4, A,B,A,B, A,
B, 4,B, B, 4,B, B,A,B, A,B,
SL
Orientation [111] [001] [110] [331] [113] [115] [335] [519]
[110]
I,
ﬁ2‘1[6] 0 -1 0 0 0 0 0 0
1T, ,[3] —1 1 -1 1 0 117 -3 -4
I, 5[12] 0 -1 0 -1 . - — 1L 0
M, 4[6] 1 1 -1 1 - 0 0 &
I, 5[12] 0 -1 0 1 L _1 0 0
I1; o[4] —1 1 1 —% 0 1 % _%
I, [2] —1 1 —1 1 0 = —1 .
1L, 5[12] 0 —3 0 —3 —% — 5 ~3 %

(i) All SQS’s studied here are short-period superlattices,
hence analyzable in terms of conventional superlattice
language, e.g., confined states, band folding, and pseudo-
direct transitions—see below. (Of course, we do not im-
ply here that an infinite random alloy is a superlattice,
but rather that considering only the first few correlation
functions, the alloy and the special quasirandom superlat-
tices are nearly indistinguishable structurally; hence, as
shown below, also electronically.)

(ii) These SQS’s are indeed special in that they ap-
proach the correlation functions of the perfectly random
alloy much more closely than does the conventional,
site-by-site random occupation method for the same N
(Table I). For example, SQS-8 is equivalent to N — « for
the first- and second-neighbor correlation functions (as
well as for the sixth and ninth), and to N=64 for third
neighbors. Table I also shows that SQS-14 is equivalent
to N— oo for I, , II, 5, I, 5 to N> 128 for I, ,; and to
N> 64 for ﬁz 4 etc. Note that (by construction) each
SQS-N is the best choice out of N!/[(N /2)}(N /2)!] possi-
ble N-atom/cell configurations at'® x =1. In this
respect, the method of SQS’s is analogous to the method
of selecting “special k points” for Brillouin-zone integra-
tions.”” There, too, one replaces the exact integral by
representative points which minimize the error in succes-

sive shells about an origin. Note further that the only
relevant convergence error in the SQS approach is that of
truncating the difference cluster expansion of Eq. (3.1),
whereas in the method of superposition of periodic struc-
tures [Sec. II C 2] we also have the truncation error of ex-
panding ¢ in terms of structures s [Eq. (2.10)].

(iii) A SQS-N of the form A4y ,,By ,, can comprise N /2
crystallographically inequivalent A sites (or B sites). It
hence includes a distribution of local environments, un-
like the VCA.. Calculation of electronic or vibrational en-
ergy levels of a SQS will hence produce a distribution of
levels with a finite width. This is analogous to the
broadening effect in disordered systems familiar from the
CPA.%¢7% In Sec. IVH we show that this broadening is
similar to that seen in the CPA.

(iv) In a perfectly random alloy, a given site (occupied,
for example, by A) has an average (over ensemble and
lattice sites) {O,, )r neighbors of the opposite type (i.e.,
B) in shell number m, where (Appendix)

(0,,)r=D,,*\/D,, /2 . (3.2)
Here, D,,=Z,, /2, where Z,, is the number of atoms in
the mth shell. Tables IV and V analyze this quantity for
SQS-4 and SQS-8. The results are compared to those of
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FIG. 1. Crystal structure of three special quasirandom struc-
ture. (a) SQS-2 is a (1,1) superlattice in the [001] direction; (b)
SQS-4 is a (2,2) superlattice in the [110] direction; and (c) SQS-8
is a (2,3,2,1) superlattice in the [113] direction. The (113) planes
are shaded in (c), and the stacking arrangement is indicated.

the perfectly random alloy [Eq. (3.2)]. They show that
SQS-8 reproduces the average coordination numbers
within the standard deviations of Eq. (3.2).

(v) So far we have constructed SQS’s by reproducing
the average correlation functions of the perfectly random
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alloy [Eq. (2.8)]. It is, however, a simple matter to apply
the same approach to correlation functions (II; ,, )p of
disordered (D), imperfectly random alloys. These can be
obtained, for example, from Monte Carlo or CVM solu-
tions to the Ising problem, e.g., Refs. 52-56.

(vi) For a given external volume ¥V (x), each SQS has
some cell-internal atomic coordinates whose values are
not restricted by the space group. An equilibrium theory
of random alloys hence has to relax these positions to
achieve a minimum in the total energy (without
symmetry-breaking atom interchanges).

For example, SQS-4—an (AC),(BC), superlattice
along [110]—has the space group Pmn2; (C,,,’ space
group No. 31 in the International Tables for Crystallog-
raphy) and a primitive orthorhombic unit cell. Its basis
vectors are

a=(—1,1,00a ,
b=(0,0,1)a , (3.3)
c=(1,1,0)éa ,

where a is the fcc lattice constant. The atoms lie at
paired sites with Cartesian coordinates taking the general
forms

(x,6;x,852,)a
and

(—tn—x&4in—x.&1+z)a

where i ranges from 1 to 4, and the associated atomic

identities for i=1, 2, 3, and 4 are A4, B, C, and C, respec-

tively. Without loss of generality, z, can be taken to be

zero. For an unrelaxed, ideal structure, §=7=1 and the

cell-internal parameters take the values x,=—1, x, =3,
1

X3=4, X4=—2, z,=0, and z;=2z,= 1, resulting in the

TABLE III. Number of neighbors of type A in successive shells around atom A4 in CuAu, CuPt, and
the chalcopyrite structures, compared with the corresponding results in a perfectly random x =%
binary fcc alloy. The number of B atoms is the shell coordination number (CN) minus the number of 4
atoms. Similar results with B at the center can be obtained by switching 4 and B in this table.

Number of A neighbors with atom A at the origin

First Second Third Fourth Fifth Sixth Seventh Ninth
shell shell shell shell shell shell shell shell
Structure CN=12 CN=6 CN=24 CN=12 CN=24 CN=8 CN=48 CN=12
CuAul 44 64 84 124 84 84 164 44
CuPt 64 04 124 124 124 04 24 4 6A4
Chalcopyrite 44 44 164 44 84 04 324 44
Random 64 34 124 6A 124 44 24 A 6A4
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TABLE IV. Number of neighbors to a given atom in the SQS-4, the average (O,, ) of mth shell neighbors of an opposite type, and
the corresponding result (0, )z for the perfectly random alloy [Eq. (3.2)]. The number of B neighbors is the shell coordination num-
ber (CN) minus the number of A4 atoms.

Number of A4 neighbors in SQS-4

First Second Third Fourth Fifth Sixth Seventh Ninth
shell shell shell shell shell shell shell shell
Sublattice ~ Occup.  CN=12  CN=6 CN=24 CN=12 CN=24 CN=8 CN=48 CN=1I2
1 B 6A4 44 124 84 124 04 24 4 6A4
2 B 64 44 124 8A 124 04 24 4 6A4
3 A 64 24 124 44 124 8 A4 24 4 6A4
4 A 64 24 124 44 124 84 24 A 6A4
Random 6A4 34 124 64 124 44 24 4 64
mth-order neighbors of opposite type in SQS-4
(0,,) 610 4+0 1240 8+0 1240 0+0 24+0 610
0,), 6+1.7 3£1.2 12+2.4 6+1.7 12+2.4 4+1.4 24+3.5 6+1.7
atomic positions sublattice), the space group of the SQS-4 structure is

Pmmn (D)}, space group No. 59 in the International

—1 1
A1) at (=5, —5,00, Tables for Crystallography). The atomic positions for the

A2) at(—+4,%,3)a, 4 and B atoms are given by Eq. (3.4) with the added re-
striction that z, =0; in this case i takes only the values 1
B(1) at(3,3,0)a, and 2, since no C atoms are present. The unrelaxed coor-
s 1 dinates are the same as those given for the 4 and B
B(2) at(—¢ —%7la, atoms in Eq. (3.5).
L1 3.5 The ideal(unrelaxed) SQS-8 structure has the lattice
C(l) at (f’F’T)a ,
vectors
C2) at(=f53la, a=(1,5,— 1),
C(3) at(—2,—3,4)a, b=({,—1,0)a, (3.6)
C(4) at ({,2,2)a . c=(1,1,2)a ,

belonging to the monoclinic system. The corresponding
For the case of a binary fcc alloy (with no common C atomic positions, in Cartesian coordinates, are

TABLE V. Number of neighbors to a given atom in SQS-8, the average (O,, ) of the mth shell neighbors which are of opposite
type, and the corresponding value {(O,, )z in the perfectly random alloy [Eq. (3.2)]. The number of B atoms is the shell coordination
number (CN) minus the number of A4 atoms.

Number of A4 neighbors in SQS-8

First Second Third Fourth Fifth Sixth Seventh Ninth
shell shell shell shell shell shell shell shell
Sublattice Occup. CN=12 CN=6 CN=24 CN=12 CN=24 CN=38 CN =48 CN=12
1 B 74 34 124 64 104 44 24 4 7A
2 B SA 34 114 74 124 44 304 SA
3 A 24 24 144 64 164 64 24 4 84
4 B SA 34 114 7A 124 44 304 5A
5 B 7A 34 124 6A4 104 44 24 4 74
6 A 74 34 134 SA 124 44 184 7A
7 A 84 44 104 6A4 124 24 24 4 24
8 A 74 34 134 54 124 44 18 4 74
Random 64 34 124 6A4 124 44 244 64
mth-order neighbors of opposite type in SQS-8
(0,,) 6+1.8 3+0.5 11.5+1.1 6.5+0.5 11+1.4 4+1 2743 6+1.8
(0,)r 6+1.7 3+1.2 124+2.4 6+1.7 12+2.4 4+1.4 24+3.5 6+1.7
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A(1), (0,0,0)a
4(2), (1,1,0)a
A(3), (1,0,2)a
A(4), (0,0,2)a
B(1), (1,0,1)a
B(2), (0,0,1)a
B(3), (1,1,1)a
B(4), (1,12)a
c(), (L,4,1) G
C(2), (3,3,1)a
C(3), (3,1,3)
C4), (1,1,3)g
C(5), (3,3,2)a
C(6), (3,+,7)a
c(n), (L,4,2)a
C(8), (3,2,3)a

Note that, due to the changed sign of the ﬁs,m correla-
tion functions in A4,B;A4,B, and B, A;B, A, SQS’s,
these are not equivalent (in practice, they give similar en-
ergies, so we average the results).

For a given external volume [e.g., ¥ (x =1)] one needs
to relax the symmetry-allowed structural parameters
(e.g., x; and z;) to achieve a minimum in the total energy.
Standard first-principles electronic structure tech-
niques’8 82 are currently capable of producing rather ac-
curate total energies and equilibrium geometries (through
quantum-mechanical force calculations” ') for periodic
structures with the number N of atoms per cell in the
range given in Table II.

IV. APPLICATIONS TO SEMICONDUCTOR ALLOYS

A. Electronic Hamiltonian used

Since the SQS’s are rather simple periodic (superlattice)
structures with a modest number of atoms per unit cell,
their equilibrium geometry, total energy, charge densi-
ties, and electronic band structures can be calculated
from first principles with the same degree of sophistica-
tion with which ordinary simple crystals are currently
treated. We use the semirelativistic local-density formal-
ism,”® treating Coulomb and exchange-correlation®® in-
terelectronic interactions in a self-consistent, mean-field
manner. Specifically, we utilize the all-electron (general
potential) LAPW (Ref. 82) and the nonlocal pseudopoten-
tial method”® 8! with a plane-wave basis set. This avoids
many of the approximations previously used in electronic
theory of alloys, such as use of empirical Hamil-
tonian, ! 3 first-nearest-neighbor approxima-

WEI, FERREIRA, BERNARD, AND ZUNGER 42

tions, 227231732 Jack of self-consistency, !! ~18:22728,31 34
spherical approximations to the charge density and po-
tential,>>3® neglect of interelectronic terms in the total
energy, small basis sets,?27 2373 and neglect of
structural relaxations. !~ 36

The pseudopotential calculation was undertaken be-
cause it affords a more economical calculation of large su-
percells, e.g., SQS-8 with 16 atoms/cell for an 4,_,B,C
alloy. We used Kerker’s!®! prescription for constructing
semirelativistic nonlocal pseudopotentials, a plane-wave
basis set cut off of E1=15 Ry, and 29 zinc blende-
equivalent special k points’’ in the irreducible Brillouin
zone (this gives 39, 38, and 21 k points, for SQS-2, SQS-4,
and SQS-8, respectively). In our previous study of simple
periodic compounds in Ref. 55(b), we used 10 k points in
the pseudopotential calculations, giving slightly different
results (see Table VI below). Structural optimizations
were carried out using the valence-force-field method;!®
these geometries were then used to perform first-
principles total energy and force®®?®! calculations, verify-
ing thereby the adequacy of the geometry. If necessary,
atoms could then be relaxed in an iterative process where
these forces, combined with valence-force-field force con-
stants, 2 provide the new atomic geometry, which is
then used in a subsequent pseudopotential calculation.
The process is terminated when subsequent iterations
produce relaxation-induced energy changes of less than 2
meV/4 atoms. We find that this geometry optimization
generally produced similar structural parameters (but not
total energies) to those obtained in a pure valence-force-
field (VFF) optimization. In the LAPW calculations, we
hence used VFF as a guide to the geometry. Two special
zinc-blende-equivalent k points’’ are used in the LAPW
calculations. The convergence error in the LAPQ and
pseudopotential calculations is about 5 meV/4 atoms and
slightly larger for II-VI systems. For III-V systems the
two methods produce results which differ by this error
margin or less, reflecting the differences in residual con-
vergence errors as well as pseudopotential errors of freez-
ing core states.

B. Mixing enthalpy of the random alloy

The mixing enthalpy is defined as the fully optimized
energy of the alloy, measured with respect to equivalent
amounts of the binary constituents at their bulk equilibri-
um, i.e.,

AH®(x)=(E(A,B,_,))p —xE(A)—(1—x)E(B) .
4.1

Since the central question surrounding the use of the
SQS’s pertains to the convergence of certain physical
properties with figures, we first establish a converged
description of AH'®’ using the cluster expansion.

1. Using cluster expansions

To establish a reference for SQS calculations, we first
calculate AH'®(x =1) using the cluster expansion
method of Egs. (2.9)-(2.13). In Ref. 55, we have used
this approach to calculate the mixing enthalpy of the im-

perfectly disordered alloy (i.e., with short-range order).



Since our interest in the present paper is in comparative
simulations of the perfectly disordered (random) alloy, we
first provide AH (x) as obtained by cluster expansion in
the T— « (random disorder) limit. By Egs. (2.7) and
(2.8), we see that at x =1

AH®(1)=Dg ¢, , 4.2)
hence (since Dy ; =1), Eq. (2.10) gives
N
AHR®(L)=L 3 [T, (9] 'E(s) 4.3)
=N > [, (s s), .

where E (s) is the excess energy of the ordered structure s
at the equilibrium volume ¥ (x =) of the random alloy,
and IT 7! is a matrix inverse. Equation (4.3) provides a
simple way to calculate the mixing enthalpy of the x =1
random alloy from the known total energies of N period-
ic structures, without resort to complex solutions of the
Ising Hamiltonian. In Ref. 55(a), we illustrated the con-
vergence of Eq. (4.3) for GaSb, sAs; 5 with respect to the
number N, of periodic structures used in this expansion.
We found AH'®(1) to be (in meV/4 atoms) 140.25,
139.88, 92.63, and 88.69, for N,=3, 5, 6, and 8 well-
selected structures, respectively; other calculations>*®
extending N, to 10 showed that this result is converged to
within ~3 meV/4 atoms. We have performed analogous
calculations for a series of III-V and II-VI alloys, using
the LAPW method for N, =8 structures described in Ref.
55. The resulting AH (R)(%) values are given in Table VI
where they are denoted as ‘‘cluster expansion.” An
analogous calculation was done for GaP,sAs;s and
Aly sGag sAs using the pseudopotential method; the re-
sult is also included in Table VI. These AH ‘%’ values will
form the benchmark against which calculations on SQS’s
can be compared.
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2. Using special quasirandom structures

Table VI also gives the mixing enthalpy of Eq. (4.1)
calculated directly from the relaxed total energy of the
SQS’s for N=2,4 and for two systems at N=8. We see
that a single calculation on SQS-4 or SQS-8 reproduces
within a few meV the full cluster expansion result at
x =1 (involving eight structures). While the SQS’s and
the cluster expansion method give similar results for the
excess energy, only the SQS’s afford direct calculation of
real-space quantities (e.g., alloy electronic charge densi-
ty). Furthermore, the SQS’s avoid direct calculation of
€ which also involves truncation of the summation in
Eq. (2.10); in this sense, the SQS approach is more accu-
rate than cluster expansion.

It is important to note here the relevance of structural
relaxations. Calculations for GaSb, sAs, s with SQS-2
give AH'®(1)=115 meV/4 atoms for the fully relaxed
structure, but AH‘R’(%)=237 meV /4 atoms for the unre-
laxed structure [experimental estimates, compiled in Ref.
55(b) give 9010 meV/4 atoms]. For GaAs P, s, the re-
laxed value for SQS-8 is AH'®)(1)=16.5, yet for the un-
relaxed structure it is 60:2 meV/4 atoms. The experi-
mental estimate is 18110 meV/4 atoms. There can be no
doubt that structural relaxations, omitted in VCA and
SCPA, have an overwhelming effect on the thermo-
dynamics of lattice-mismatched alloys. The effect of sub-
lattice relaxation on the optical properties will be dis-
cussed in Sec. IVE.

Table VI shows a reasonably rapid convergence of the
SQS total energy with N. This is particularly true for
lattice-matched systems such as Al sGa, sAs, for which
pseudopotential calculations give AH (R’(%) values of
13.7, 10.5, and 10.5 meV/4 atoms for SQS-2, SQS-4, and
SQS-8, respectively. Even for a lattice-mismatched sys-
tem like GaP sAs, s, the results for N=2, 4, and 8 (26.1,

TABLE VI. Mixing enthalpies AH (x = 1) of the random alloy, in meV/4-atoms, as obtained by the

2

LAPW and pseudopotential calculations on SQS’s and from a cluster expansion [Egs. (2.9)-(2.13)] on
eight periodic structures. To achieve convergence in the latter, interactions extending to the fourth fcc

neighbors were included.

LAPW? Pseudopotential®
AlAs GaSb InAs GaP HgTe ZnTe HgTe GaP AlAs
AH'®(1) GaAs GaAs GaAs InP CdTe CdTe ZnTe GaAs GaAs
CuPt 7.5 132 108.5 155.4 9.8 103.5 103.3 31.6 10.7
SQS-2 11.5 115 66.7 91.0 12.1 54.2 425 26.1 13.7
SQS-4 6.0 80 47.3 73.0 9.8 56.1 49.1 13.9¢ 10.5¢
Cluster
expansion 6.6 91 58.8 81.5 8.4 55.3 47.6 19.5 10.5
(T=o)

22-k point calculation. For a 10-k-point calculation for GalnP, we find for SQS-2 95.0 meV/4 atoms
and for GalnAs, 67.5 meV/4 atoms. For GaAlAs, this gives 13.8 for SQS-2 and 9.8 for the CuPt struc-
ture. These results are in excellent agreement with the pseudopotential calculations.

YE, =15 Ry and 29 zinc-blende-equivalent k points. With 10 zinc-blende-equivalent k points we get for
Ga,PAs 37.2, and 26.6 meV /4 atoms for CuPt and SQS-2, respectively.

‘For SQS-8 this gives 16.5 meV/4 atoms.
dFor SQS-8 this gives 10.5 meV /4 atoms.
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13.9, and 16.5 meV/4 atoms, compared with 19.5 in the
cluster expansion) appear reasonably well converged.

The fact that AH'® of random alloys lends itself to
calculation in terms of the energy of a specially oriented
superlattice (Table II) makes it easy to compare the sta-
bility of a random alloy with that of ordinary superlat-
tices, e.g., the CuPt structure of Table VI. Such a com-
parison was recently given by Dandrea et al.'®

C. Equilibrium lattice structure

Since the SQS approach affords energy-minimizing re-
laxation of the alloy structure, it mimics the local alloy
geometry. As indicated above, in the VCA to pseudo-
binary 4,_,B,C alloys, all 4—C and B—C anion-
cation bond lengths are assumed equal (to V'3a /4, where
a is the lattice constant at composition x), and all 4— 4,
A—B, and B—B next-nearest-neighbor distances are
taken to be equal (to a/V'2). In the SCPA approach,
A#B but R(A—A)=R(A—B)=R (B—B) and there
exists only a single type of C site. Figure 2 shows the cal-
culated anion-cation ( 4—C and B—C) bond lengths in
GaP sAs, s as obtained in a pseudopotential calculation
for SQS-8; Fig. 3 shows analogous information for the
next-nearest-neighbor distances. Both figures indicate
distributions of distances, unlike VCA and SCPA where
sharp values are assumed for each composition. Regard-
ing the anion-cation bond lengths (Fig. 2), we see that the
shorter of the two binary bonds (Ga—P) becomes longer
in the alloy while the longer of the two bonds (Ga—As)
becomes shorter. These trends are apparent in EXAFS
studies.*>”* To quantify this, we define the bond relaxa-
tion function for the 4, B,_, C alloy as

_ Rpe(x)—R 4¢(x)

0 _po
RBC RAC

n(x) , 4.4)

where Rpc(x) and R 4o (x) are the nearest-neighbor bond
lengths in an alloy of composition x, and R3- and RYc
are the bond lengths in the pure BC and AC zinc-blende

| Anion-cation bond length I
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FIG. 2. Distribution of the nearest-neighbor, anion-cation
bond lengths in a relaxed SQS-8 model of GaP sAs s, in units
of the unrelaxed (V3/4)a bond length. Note that in the alloy,
the shorter (Ga—P) bond becomes longer relative to pure GaP,
whereas the longer of the two bonds (Ga—As) becomes shorter.
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FIG. 3. Distribution of the next-nearest-neighbor distances
in the relaxed SQS-8 model of GaP, sAs, 5, in units of the unre-
laxed bond length a /V'2.

compounds, respectively. In the VCA, n=0. If <1,
the alloy environment acts to reduce the difference be-
tween the individual bond lengths relative to the binaries,
whereas if 7> 1, the alloy environment amplifies the
difference. From Fig. 2 we find

Nearelx =1)=0.727 . 4.5)
Boyce and Mikkelsen**® measured for GaAs, P, _,

1Arge =Rpc(1)—R3c=—0.022/2 A,

—1Ar 4o =R 4c(})=RYc=—0.0212 A, 4.6)
and

R3-—R%-=0.088 A .
Hence

Nexpe 1) =1+ AractBrac _ o6 | 4.7)

2(R3c—RY%¢)
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in good agreement with our result of Eq. (4.5). A
different experimental value of 7(1)=0.55 was reported
by Sasaki et al.®

The next-nearest-neighbor distances (Fig. 3) exhibit
R(C—C)¥*R(B—B)#R(A—A)#*R(A—B). Such re-
laxation affects both the alloys’ formation enthalpies (Sec.
11 B) and, through the appropriate deformation poten-
tials, the alloy band gaps (Sec. IV F).

D. X-ray structure factors

While the alloy formation enthalpy converges rather
rapidly in a cluster expansion (representing largely the
effect of the ‘“local” atomic structure), one can surely
think of other physical properties that are dominated in-
stead by the long-range order, hence, perhaps not being
amenable to a description through SQS’s. Such is the
diffraction pattern of an alloy, reflecting its long-range
periodicity. Using the pseudopotential method we have
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calculated self-consistently the Fourier transform of the
charge density p(G) of GaP, sAs, 5 in the relaxed SQS-2,
SQS-4, and SQS-8 structures, as well as the relaxed chal-
copyrite (CH), and (CP) structures; those x-ray scatter-
ing factors are depicted in Fig. 4. In a perfectly random
zinc-blende alloy, we expect to find (in addition to the
diffuse background) only zinc-blende allowed reflections,
denoted in Fig. 4 by solid circles. The additional artificial
periodicity of the SQS’s generates also zinc-blende ‘“for-
bidden” reflections evident in Fig. 4. These, however, are
rather weak. To measure this, we can define a ‘“quality
factor” Q which is the normalized average of all non-
zinc-blende p(G;) up to a certain large G,,. In a perfect
zinc-blende alloy (and in the VCA), @Q=0. Figure 4
shows that Q is rather small in SQS-4 (Q=0.0206) and
SQS-8 (Q=0.0157). For comparison, the normalized
average over all zinc-blende allowed reflections up to the
same G, is 0.9273 in VCA.

X-ray Scattering factors for GaAs ;P 5
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FIG. 4. Self-consistently calculated, pseudopotential x-ray scattering factors of the relaxed SQS models of GaP, sAs, s and of or-
dered structures at x=0.5. The normalization of p(G =0) is 64e/cell. Insets give the “quality factor” Q, i.e., the normalized average
of zinc-blende forbidden reflections; zinc-blende allowed reflections are denoted by solid circles.
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E. Electronic structure

The electronic structure of substitutional isovalent
semiconductor alloys exhibits a number of experimentally
established features.

(i) While band-edge transitions remain nearly as sharp
as in the constituents, alloy broadening is observed at
other energies. *®

(i) “No-phonon indirect transitions” are observed;*®!
while they resemble I'— X transitions in the binary, pho-
nons are nevertheless not involved.

(iii) Most transition energies bow downwards with x,
i.e., their energies lie below the concentration-weighted
average transition energies of the constituents. Different
transitions have different bowing parameters. ">

(iv) Valence-band states observed in photoemission are
often split into A-like and B-like components. *°

All of the features can be understood qualitatively by
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these SQS’s are superlattices. Recall that superlattice
states ¥;(Kr) of band index i and wave vector K can be
analyzed in terms of the states ¢ j(k,r) of the constituents
using compatibility and “folding” relationships. For ex-
ample, the (001) superlattice SQS-2 w1th repeat period of
1) exhibits the compatibility relations'® (shown here as
appropriate to mixed-cation superlattices with the origin
on the anion site)

F]chs_’rlc ’
Xlch—’M5c+r4c ’
X3Zf—>1\_4]c+1\720+1—“16 ’
LlZcB—’Elc+R4c ’

where ZB denotes zinc-blende states, and superlattice
states are denoted by a bar. Here, T =(0,0,0); M=(0,1,0),

noting that SQS’s closely approximate the atomic and R=(4,4,4) (in Cartesian coordinates with units
geometry of random alloys and that, at the same time, 27 /a). For SQS-4, we have the folding relations:
_J
r?80,0,0), Xx7%001), =Z%4,1,0), =2¥(—1,—1,00-T(0,0,0),
X7%(100), Xx7B(010), 32%%(1,—1,0), 35B(— %,;,0)—»?(~ 5,00,

In general, we can expand a given zinc-blende state in a
complete set of superlattice states; i.e.,

“B(k,1) 2 2 A (KKK r) . (4.10)
The inverse expansion is also possible; i.e.,
S(K,r)= EEB )P (k,1) . @.11)

Table VII illustrates Eq. (4.10) for GaAs, 5P, s in SQS-8.
For each of the principal zinc-blende states we show the
states in the SQS’s that have the highest weights
| A,-j(K,k)lz. Table VIII illustrates the expansion (4.11).

Using the terminology of superlattice theory, we next
discuss the salient features of the electronic structure of
the random alloy as modeled by SQS’s.

(i) Crystal-field splitting. States that are degenerate in
the ZB structure [e.g., the I';5, valence-band maximum
(VBM)] can be split in the SQS or in other ordered struc-
tures by the reduced symmetry of the crystal field (see
I'ys, in Table II). In the ordered structures C 4, CP, and
CH, the crystal field splits the triply degenerate I';; VBM
state into a singly and a doubly degenerate state. We
define Aqp to be negative if the singly degenerate state is
above the doubly degenerate state. (This is the case in
some CH compounds and in most of the SQS-4 and SQS-
8 structures.) For SQS-4 and SQS-8, the doubly degen-
erate state is further split by a small amount into two
nondegenerate states because of the yet lower symmetry.

(4.9)

In addition, all VBM states are split by the spin-orbit in-
teraction A,. The two splittings A and A, are coupled.
The energies of the three components can be described
well by Hopfield’s quasicubic model;'® relative to their
center of gravity, they are

L(Ag+AcE)

— LB+ Acp)EL[(Ag+Ace —£80Acp]'2

(4.12)

We have fitted our calculated relativistic VBM energy
levels to Eq. (4.12) and extracted A, and Acg given in
Table IX. We see that the crystal-field splitting of the
VBM is relatively small in the SQS structures and is like-
ly to be even smaller in actual random alloy samples be-
cause of the existence of differently oriented nonrandom
domains. However, it can be sizable in ordered alloys
where all domains are coherently aligned. The A, and
Acp splittings are analogous to the heavy-hole versus
light-hole splitting in superlattices.

(ii) Pseudodirect transitions. Because of zone folding,
states in the SQS structures at the center T of the Bril-
louin zone can evolve from either I'“8 states [e.g., T(T,,),
a state connected to the VBM by truly direct transitions],
or from non-I'“® states [e.g., T(L%P) and T(L%B) of
Table VI]. This is illustrated in Table VII under the fifth
column (headed “T”). This introduces the possibility of
“pseudodirect” transitions, for example, between T(I'?8 )
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TABLE VII. Pseudopotential energy levels (E, =15 Ry, 29 zinc-blende-equivalent k points) of the relaxed SQS-8 for GaAs, 5P s
at high-symmetry points. States with more than 20% zinc-blende T', X, or L character are shown. For each zine-blende state we give
the SQS state folded from it [Eq. (4.10)]. Averages of the zinc-blende energy levels (over GaP and GaAs) are given both at the binary
equilibrium lattice constants (a.,) and at the alloy lattice constant (Z). All values are in eV. NF indicates that the corresponding
zinc-blende state is “nonfolding” into this sublattice state.

Average Average GaAs, 5P, s SQS-8 states

ZB of binaries  of binaries K=1(0,0,0 K=27ﬂ'(%,%,—%) i=27ﬂ(%,—%,%)
state (aeq) (@) VCA r A4 0

ry, —12.66 —12.67 —12.74 —12.74 NF NF
L,, —10.79 —10.78 —10.85 —10.92 —10.78 —11.04% —10.87°
X, —9.93 —9.95 —10.02 NF —9.96 —9.89
X;, —6.87 —6.87 —6.90 NF —6.92 —6.94
L, —6.73 —6.73 —6.76 —6.80 —6.78 —6.80
X, —2.72 —2.73 —2.74 NF —2.83;—2.80 —2.83;—2.82;—2.76; —2.66
L,, —1.15 —1.14 —1.15 —1.18%—1.18; —0.96* —1.28;,—1.18 —1.19;—1.15
Tis, 0.0 0.0 0.0 —0.061; —0.049;0.0 NF NF
X, 1.45 1.45 1.43 NF 1.38 1.35;1.38°
L, 1.41 1.42 1.40 1.35 1.35 1.35°,1.38°
X, 1.67 1.67 1.67 NF 1.53 -1.61

| S 1.44 1.41 1.37 1.36 NF NF

| P 3.83 3.84 3.84 3.77;3.80;3.84 NF NF
L. 4.67 4.69 4.69 4.60;4.63 4.49%,4.54;4.83° 4.52%,4.58%,4.93*

2These states are of mixed character.
°X,+L,.

TABLE VIII. Square of the expansion coefficients of some SQS-8 pseudopotential wave function in
terms of a set of zinc-blende VCA wave functions [Eq. (4.11)]. The point denoted A is

(2m/a)(}, %, — 1), and Ois 2w/a)(3, — 3, 1).

Spectral weight |B;(k,r)|?

SQS states From From From From From From
Label Energy rzs L%B XgBe LB X5Be rzs
_ GaASO_ 5P0_5
) —12.74 0.98 0 0 0 0 0
T, —10.92 0 0.80 0 0 0 0
T(L,.) 1.35 0 0 0 0.98 0 0
L(Ty.) 1.36 0 0 0 0 0 0.99
6L, +X,) 1.35 0 0 0 0.74 0.23 0
0X,.+L,) 1.38 0 0 0 0.25 0.74 0
Al, sGag sAs
rr,) —12.43 0.97 0 0 0 0 0
A(Xy,+L,,) —6.28 0 0.31 0.63 0 0 0
A(L,,+X;,) —6.24 0 0.66 0.32 0 0 0
(r,) 1.38 0 0 0 0 0 0.91
A(L,.) 1.38 0 0 0 0.68 0.03 0
(L) 1.49 0 0 0 0.92 0 0
A(X5.+Ly,) 1.74 0 0 0 0.11 0.71 0
A(X;,+L,.) 2.34 0 0 0 0.12 0.18 0

2B=1 for GaAs, sPy s; B=3 for Al, sGa, sAs.
This state also has ~0.07X,. character.
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TABLE IX. LAPW calculated crystal-field splitting Acg and spin-orbit splitting A, (all in eV) at the
VBM [from Eq. (4.12)] for seven disordered 50%-50% semiconductor alloys and some of their ordered
structures. For comparison, we also give the calculated binary-averaged values. The LDA correction
(<0.03 eV for ITII-V and <0.10 eV for II-VI) for A, is not included in the binary-averaged value.

Binary
System Property average CA CH CP SQS-4
GalnP, Ack 0 0.191 0.032 0.212 —0.092
Ag 0.107 0.114 0.108 0.118 0.110
GalnAs, Acr 0 0.134 0.020 0.121 —0.064
Ao 0.351 0.355 0.352 0.347 0.347
Ga,AsSb Acr 0 0.085 —0.013 0.230 —0.207
A, 0.523 0.554 0.522 0.595 0.539
AlGaAs, Ack 0 0.049 —0.007 0.028 —0.010
Ag 0.319 0.317 0.319 0.320 0.320
ZnCdTe, Acr 0 0.127 0.020 0.099 —0.037
A, 0.873 0.864 0.868 0.854 0.846
ZnHgTe, Acr 0 0.231 0.002 0.257 —0.086
Ay 0.831 0.831 0.828 0.793 0.798
CdHgTe, Acr 0 0.008 —0.004 0.020 —0.012
A, 0.817 0.813 0.812 0.811 0.804
and T(L%B) in SQS-8, that involve no phonons and are  relaxation. Figure 5 shows the square of the wave-

temperature independent.“’61 However, these folded

states largely retain the character of the corresponding
unfolded ZB wave functions (e.g., L), and the calculated
dipole oscillator strengths for the pseudodirect transi-
tions are generally far smaller than those for the truly
direct transitions. Pseudodirect transitions have also
been found in SCPA calculations®® but are absent in the
VCA.*

(iii) Interband mixing. In some cases, individual ZB
states can have nonzero projections A4 ,»j(K,k) [Eq. (4.10)]
onto more than one SQS state, even at the same SQS K
point (i.e., not a zone-folding effect). This is the case in
6(X,,) and 6(L,,) in Table VII. Conversely, individual
SQS states can have nonzero projections B,-j(K,k) [Eq.
(4.11)] onto more than one ZB state. This is the case in
O(L,.+X,.) of Table III. Some of the states listed in
Table VII show such interband mixing effects, resulting
in some cases in the listing of more SQS-8 energy levels
than the number (including degeneracy) of ZB I', X or L
states to which they correspond. [However, if one adds
the coefficients lB,-j(l?,k)l2 for a set of SQS states corre-
sponding to a particular ZB level, the correct number of
states (i.e., the degeneracy of the ZB level) is obtained.]
Table VIII shows |B;;(K,k)|* for some selected states of
GaAs ;P s and Alj sGa, sAs in the SQS-8 structure (the
sum rule is not necessarily satisfied by the subset of states
shown in this table). This illustrates the existence of SQS
states of nearly pure single-state ZB character, such as
[(T,,), T(T,,.), and T(L,,), as well as the existence of
mixed states such as (X, . +L,. ) and (L, +X, ) in
GaAs, 5P, s SQS-8, and M(X;,+L,.) and M(L . +X;,)
in Aly sGag sAs SQS-8. This interband mixing represents
the effect of the piece of the SQS potential that lacks ZB
symmetry. It exists also in SCPA calculations; however,
there the mixing potential represents only the chemical
perturbation due to 4 B, not the structural piece due to

function amplitude for some pure [(a) and (b)] and mixed

[(c) and (d)] conduction bands in GaAsgsPys SQS-8.
Note that, whereas in the SCPA approach all atoms of a
given chemical type are assumed to be equivalent, Fig. 5
shows clearly different amplitudes on different atoms of
the same chemical type.

Although symmetry permits mixing of the s-like I'“B
with the p-like T'?8 into the VBM of the SQS’s, we find
this interband mixing to be exceedingly small
(|B|?=0.0005 in GaAs,sP,s SQS-8, and even less in
Aly sGay sAs SQS-8). This disproves the hypothesis'®
that the bowing of the spin-orbit splitting reflects inter-
band s-p mixing.

(iv) Alloy broadening. Individual ZB levels can trans-
form in the SQS structures into a number of levels
through the mechanisms of crystal-field splitting, zone
folding (of equivalent ZB k points into inequivalent SQS
K points), and interband mixing, all of which were illus-
trated earlier. As a consequence, transitions characteris-
tic of the ZB structure (e.g., E,, E, and E,) will general-
ly be expected to broaden into several transitions of
different energy in the SQS structures. However, the ZB
I" point only maps into a single SQS K point (T'), and we
observe exceedingly small interband mixing of states orig-
inating from I'ZP states. Hence the small broadening of
the E, transition reflects only the relatively small
crystal-field splitting of the VBM. In contrast, the zinc
blende L and X states can be split by all three effects, re-
sulting in substantial broadening of the E, and E, transi-
tions. This is shown in Figs. 6 and 7 for GaAs, (P, 5 in
the SQS-8 structure, along with the oscillator strengths
for these transitions in the VCA alloy. The analogy be-
tween random alloys and SQS’s hence clarifies alloy
broadening effects in terms of three distinct contribu-
tions: crystal-field splitting, zone folding, and interband
mixing. In size-mismatched alloys, all three are strongly
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affected by structural relaxations.

(v) Sublattice localization. In the VCA, there are no
distinct spectral signatures of the individual 4 and B
atoms in A4,_,B,; consequently, all states are delocal-
ized. Figure 8 shows the calculated density of states
(DOS) of Cd, sHgy sTe in the SQS-4 structure, where dis-
tinct peaks associated with Hg s and Cd s states appear
both at the bottom of the upper valence band and near
the top of the first conduction band; these can be
identified by comparing the angular-momentum-
decomposed local DOS [Figs. 8(a)-8(d)]. This non-VCA
behavior reflects the disparity between the atomic s po-
tentials of these cations, and has been observed in photo-

A(X,.), e=1.38 eV, s=1.0

9639

emission  spectra**® and  explained in CPA

calculations.*® Likewise, the cation d states appear at
distinctly different energies. Figure 9 shows a similar
splitting in the cation s states in Al sGa, sAs; Refs. 40(b)
and 40(c) discuss this effect. In the SCPA, there is only a
single sublattice for each chemical type. Figures 8(a),
8(b), 9(a), and 9(b) show that the two inequivalent anion
sites in SQS-4 Cd, sHg, sTe and Alj sGa, sAs have slight-
ly different p-electron states at the bottom of the upper
valence band. Differences in the charge states of the
common C atoms in the alloy have indeed been ob-
served.’”3® Note that the local DOS depends on the size
of the muffin-tin (MT) sphere.®? (We used Ry =1.403 A

O (X;c+Lqo), e=1.38 €V, 5=0.5

\

(cg@/@% &Zyj 7
LA

A(L,.), e=1.35 eV, 2.0

N \ N

[001] Direction

[110] Direction

®=P H=As O =Ga

FIG. 5. Pseudopotential calculation of the square of the wave function amplitude for zinc-blende X- and L-folded conduction
states at the 4 (a),(b) and 8 (c),(d) points of Ga,AsP in the SQS-8 structure. (a) and (b) are nearly pure zinc-blende-like states, whereas
(c) and (d) are mixed states, having both X and L character (in this case, the dominant character is listed first). € denotes the energy

level relative to VBM and s denotes the contour step in units of e/cell.
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Lgy— Lqc Matrix Elements in Ga,AsP SQS-8
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FIG. 6. The square of the dipole matrix element
[<v, |p|l/Jf )|? is shown for transitions between states with more
than 20% zine blende L;, or L, . character [Eq. (4.11)] in
Ga,AsP in the SQS-8 structure. The transition energies have
not been corrected for the LDA band-gap error. Reciprocal lat-
tice vectors are in units of 2m/a. (a) Superlattice T =(0,0,0)
states, (b) superlattice A4=(},1,1), and (c) superlattice
6=(%,—2,1) states. (d) Spectral representation of (a)~(c), com-
pared with VCA.
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FIG. 7. Square of the dipole matrix element | (v, [p|¢,)[* vs
transition energy for transitions between states having more
than 20% zinc blende X;,, X, , or X;, character [Eq. (4.7)] in
Ga,AsP in the SQS-8 structure. The transition energies have
not been corrected for the LDA band-gap error.
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FIG. 9. LAPW-calculated semirelativistic angular momen-
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for atoms of CdHgTe and Ry =1.199 A for atoms of
Al,_,Ga,As)

Examples of wave functions at T in GaAs, <P, 5 in the
SQS-8 structure are shown in Figs. 10 and 11. In Fig. 10,
only states arising from I'“B states are shown, and they
are contrasted with the corresponding VCA states. Here
there is a similarity between the SQS-8 and VCA states,
except for a noticeable difference in the amplitudes on the
As and P atoms in the TI';, state [Figs. 10(c) and 10(d)].
In Fig. 11, states arising from LZB states are shown. In
this case, there are relatively large variations in the am-
plitude on different types of atoms (unlike VCA), and
[especially in Fig. 11(d)] even large variations in the am-
plitude on chemically identical atoms lying at in-
equivalent sites (unlike CPA).

| Y12 for Ga,AsP at I —|

[001] Direction

e

e=-12.74 eV

O=Ga @= (P+As)

1
2

[110] Direction

FIG. 10. Pseudopotential calculation of the square of the
wave-function amplitude for zinc-blende, I'-derived states of
Ga,AsP in the SQS-8 structure (a)-(c), and the corresponding
VCA states (d)-(f). € denotes the crystal-field averaged eigenval-
ue and s denotes the contour step in units of e/cell.
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F. Optical bowing and its origins

Equations (4.8) and (4.9) and Table VII show how dis-
tinct zinc-blende states give rise to a set of closely spaced
SQS states of compatible symmetry. Since the experi-
mental definition of optical bowing is based on identify-
ing alloy transitions that evolve from the corresponding
transitions in the zinc-blende constituents, we will follow
this procedure. For SQS-4, for example, the states corre-
sponding to the high-symmetry ZB states are

FZB:F ,

L#B=1027+2§), (4.13)

XPB=LT+2X),

where the coefficients on the right-hand side denote de-
generacies in the SQS-4 states. The I'’2 valence-band
maximum is split in the SQS; the crystal-field average is

r2=4T,+T;+T,) . (4.14)

Alloy transition energies from the valence-band max-
imum T'?2 to other final states are hence represented for
this purpose by differences between the quantities of Eq.
(4.13) and those of Eq. (4.14); this provides the alloy gaps
g (x =1) of Eq. (1.1). Together with the corresponding
average transition energies over the binary constituents
[first term in square brackets in Eq. (1.1)], this gives the
bowing coefficient b; at x =1. Table X summarizes the
results obtained this way from calculations on the SQS-4
in a variety of alloys. When available, this table also
shows experimental data.'”” We see that SQS-4
represents reasonably well the observed trends (which,
unfortunately, show significant scatter). Note that local-
density errors are canceled to lowest order since by Eq.
(1.1), b, represents a difference of eigenvalue differences.
Observe in Table X that while b, values are positive for
most conduction band states, they can be negative for
some valence-band states, and that the variation with A
can be substantial for certain alloys.

To analyze the physical origins of bowing, we follow
Bernard and Zunger’’® and decompose b into three
components. The overall bowing coefficient at x =1

measures the change in band gap in the formal reaction
AC(a 4c)+BClage)— Ay 5By sC(a,{ug}), (4.15)

where a ,c and ap are the equilibrium lattice constants
of the binary constituents AC and BC, respectively; a is
the alloy equilibrium lattice constant, and {u,,} denotes
the equilibrium values of the cell-internal structural pa-
rameters of the alloy. We now decompose reaction (4.15)
into three steps, namely,

VD
AC(a )+ BCl(agc)— AC(a)+BC(a), (4.16a)
CE
AC(@)+BC(@)— Ay 5By sC(@,{uy)) , (4.16b)
SR
AO.SBO.SC(—a—’ § uo} )—P AOAsBO'SC(a,{ueq} ) . (4.160)
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The first step measures the “volume-deformation” (VD)
contribution byp, the second the “charge-exchange” (CE)
contribution bcg due to formation of the unrelaxed
(u =ug) alloy from AC +BC already prepared at the

final lattice constant @, and the final step measure

changes due to ‘structural relaxation” (SR), i.e.,
ug—uq. The total bowing is
b=byp+bcgtbsg - 4.17)

Table XI gives this decomposition for a valence (I";, ) and
conduction (I';.) state in the disordered and ordered
phases of GaAs, sP,s. It shows that (i) charge-transfer
effects can have large contributions to b for valence-band

T (Lyo), £=1.35 eV, s=2.0
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states of mixed-anion systems but smaller contributions
in the conduction band. Note that by Egs. (4.16), when
a 4c =apc ~=a (lattice-matched alloys), the only contribu-
tion is b =bg. (ii) Structural relaxations (neglected in
the VCA and the SCPA) are important for both types of
states; in this case they reduce b in the valence and can
increase it in the conduction band. (iii) The volume-
deformation piece (retained in both the VCA and the
SCPA) represents as little as one-third of the total
valence-band bowing. (iv) The zinc-blende states that
fold into the superlattice T, state depend on the super-
lattice symmetry: for the common-cation C A4 structure,
X, and T';, fold into T,,, while for the chalcopyrite and
the CuPt structures, I';,+ W, and T"|,+L,, fold into

T (Ly,), e=-6.88 eV, s=1.0

T (Lyy)s £=-10.92 eV, §=2.0

[001] Direction

©

(d)

[110] Direction

=P

H=As O =Ga

FIG. 11. Pseudopotential calculation of the square of the wave-function amplitude for zinc-blende, L-folded states at the T point
of Ga,AsP in the SQS-8 structure. € denotes the crystal-field averaged eigenvalue and s denotes the contour step in units of e/cell.
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TABLE X. LAPW-calculated semirelativistic bowing coefficients (in eV) relative to the VBM, obtained from the relaxed SQS-4
model. We have averaged both over the crystal-field components derived from the VBM states I'|5, and over the final SQS states ac-
cording to Egs. (4.13) and (4.14). Full relativistic bowing coefficients can be obtained approximately by subtracting %b (Ay) (last row
in this table) from the semirelativistic values. The effects are generally small. The last two columns give results of pseudopotential
calculations in SQS-4. The results for SQS-8 are very similar (Table XI).

LAPW Pseudopotential

AlAs GaSb InAs GaP HgTe ZNTe HgTe AlAs GaP

GaAs GaAs GaAs InP CdTe CdTe ZnTe GaAs GaAs
b(Iy,) 0.13 0.89 0.03 0.03 0.16 0.02 —0.03 0.06 0.19
b(I'y,) 0.10 0.61 0.42 0.62 —0.02 0.35 0.23 0.13 0.19
bexpi (T )* 0-0.37 1.0—1.2 0.32-0.61 0.65 0-0.23 0.26 0.14 0-0.37 0.17-0.21
b(Iys.) 0.00 0.12 —0.01 —0.05 —0.04 —0.02 0.01 0.02 0.03
b(X,,) 0.03 —1.36 —0.02 —0.07 0.04 —0.05 —0.08 —0.01 —0.08
b(X;,) 0.65 —0.18 0.31 0.14 0.68 0.22 —0.08 0.56 0.08
b(Xs,) 0.00 0.14 —0.05 —0.11 0.04 —0.15 —0.18 0.00 0.05
b(X,.) 0.01 0.32 0.31 0.31 0.06 0.44 0.45 0.02 0.14
b(X;.) 0.36 0.51 0.16 0.14 0.80 —0.11 0.87 0.32 0.12
b(L,,) —0.03 0.39 —0.07 —0.11 0.00 —0.10 —0.05 —0.05 0.04
b(L,,) 0.75 0.57 0.63 0.53 0.84 0.24 0.07 0.63 0.14
b(L,,) —0.02 —0.23 —0.20 —0.26 —0.01 —0.18 —0.28 —0.03 —0.12
b(L,.) 0.30 0.39 0.23 0.33 0.26 0.09 0.04 0.30 0.11
b(Ap) 0.00 —0.06 0.02 —0.01 0.05 0.11 0.13

“Reference 107.

I'\., respectively. Since these pairs have different ener-
gies in the binary constituents, they result in different
“level repulsions” in the superlattice, hence different
bowing parameters. This is illustrated in Table XI where
the crystal-field averaged bowing parameters are given.
(v) The bowing coefficients obtained with SQS-N con-
verge rather rapidly with N; N=4 suffices for most pur-
poses.

G. Comparison of band gaps and excess enthalpies
of random alloys and ordered structures

Figure 12 compares the calculated bulk formation
enthalpy of the random alloy to those of three ordered
structures at x =4: the chalcopyrite (CH), CuAu (C4),
and CuPt (CP). As noted previously,>>'% the chalcopy-
rite structure is stabler in bulk form than the random al-

TABLE XI. Decomposition of the optical bowing coefficient (after crystal-field averaging of the
VBM) of GaP, sAs, 5 into “volume deformation” (VD), “charge exchange” (CE), and structural relaxa-
tion (SR) pieces; see Eq. (4.16). Results are obtained in an E, =15 Ry pseudopotential calculation.

SQS-2 SQS-4 SQS-8
CH CcpP VCA CA Disordered Disordered
rlz‘ -FISU
bvp 0.062 0.062 0.062 0.062 0.062 0.062
bce 0.251 0.377 0.248 0.249 0.393 0.320%
bgr —0.181 —0.062 0.000 —0.128 —0.269 —0.200*
b 0.132 0.377 0.310 0.183 0.186 0.183
Lis,-Toe
byp 0.125 0.125 0.125 0.125 0.125 0.125
beg —0.025 0.056° 0.176 0.125 —0.007 —0.010
bsr —0.003 —0.077° 0.000 —0.113¢ 0.068 0.077
b 0.097 0.105 0.302 0.138¢ 0.186 0.192

*Using dipole-oscillator-strength-weighted average of mixed I', states in the unrelaxed geometry.
®Using dipole-oscillator-strength-weighted average of strongly mixed I'), and L. states in the unre-

laxed geometry.

“Using dipole-oscillator-strength-weighted average of strongly mixed I';, and X, states in the relaxed

geometry.
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FIG. 12. LAPW-calculated formation enthalpies of seven
semiconductor systems in the CuPt, CuAu-I, and chalcopyrite
structures, as well as the disordered alloy at T=2800 K.

loy, hence the latter could metastably order into this
structure under bulk growth conditions. On the other
hand, both the CuAu and the CuPt structures tend to be
of higher energy than the random alloy. However, it has
recently been found'?” that in the presence of a free sur-
face the stability sequence can be altered relative to the
bulk; e.g., the GalnP, surface is stabler in the CuPt form
than in the chalcopyrite form. If such surface ordering is
frozen-in after capping of the surface by the next deposit-
ed monolayer, the surface-induced ordering could persist
macroscopically. It is likely that this mechanism explains
the CuPt ordering observed recently!!” in a number of
semiconductor alloys.

Since chalcopyrite (Ref. 111), CuAu (Ref. 112), and
CuPt (Ref. 110) ordering have been observed in a number
of systems, we wish to predict the band gaps in these
various structures, and compare them to those of the ran-
dom alloy. Such calculations within the local-density ap-
proximation (LDA) used here face the well-known prob-
lem® of the “band-gap error.” We partially sidestep this
problem by (i) calculating within LDA the change in the
band gap of a given structure relative to equivalent
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amounts of the binary constituents [i.e., b, of Eq. (1.1)],
and then (ii) applying this change to the average of the
measured'?’ (low-temperature) band gaps of the binary
constituents. Since the LDA error largely cancels in step
(i), this procedure is likely to produce a reasonable esti-
mate. The results for the predicted direct I'ygyy—T,
gap are given in Fig. 13 where spin-orbit effects have been
included. We see that relative to the average gap
[E,(AC)+E,(BC)]/2, the direct gap decreases in the se-
quence chalcopyrite—random alloy—CuAu— CuPt.
The mechanism for this was discussed in detail by Wei
and Zunger” and by Bernard et al.'® These results can
be used as a guide for assessing the type of ordering on
the basis of the measured direct band gap.

H. Comparison of band gaps of SQS
with those obtained by direct sampling

We have recently constructed'!® a periodic model of
the Gag sAl) sAs alloy by populating randomly a 2304
atom unit cell by Ga and Al (As resides on a separate
sublattice). The electronic structure was then described
within a tight-binding Hamiltonian whose matrix ele-
ments were fit to the band structure of GaAs and AlAs.
A spectral weight analysis of the solutions to the 2304
atom cell produced the alloy band gaps (given in eV, with
respect to the valence-band maximum):

2.215(T,,), 2.185(L,,), 2.145(X,.),
2.645(X;.) (2304 atoms) .

(4.18)

Using SQS-8 with the same tight-binding Hamiltonian
yielded the band gaps

2.21(T,,), 2.196(L,.),

2.640(X;.) (16 atoms) ,

2.160(X,,) ,
4.19)

i.e., within ~0.02 eV of the 2304-atom/cell calculation.
Since structural relaxation is absent in this system, SCPA
calculations'!® also give similar results. Notice that the
band gap of AlGaAs, strongly depends on its crystal
structure (Table XII below), hence the success of SQS is
significant. Comparing the width of the spectral func-
tions for particular states (as measured by the second mo-
ment) shows excellent agreement between SQS, the large
supercell approach, and SCPA: the CPA “lifetime”
broadening is hence captured accurately by the SQS’s.
Hence the SQS describes correctly spectral functions of
individual states, not just averaged quantities. This ex-
ample illustrates the fact that the SQS is useful in describ-
ing optical properties despite the imposition of periodic
boundary conditions (since the width reflects primarily
the existence of a distribution of local environments, de-
scribed by the SQS).

V. CLUSTER EXPANSION OF THE BAND-GAP
ENERGIES

The cluster expansion of Eq. (2.9) has been shown by
Sanchez, Ducastelle, and Gratias’* to hold for any prop-
erty that can be defined on a fixed lattice, hence, it can
also be applied to band gaps. One needs, however, to ex-



42

amine the rate of convergence. This is done as follows:
Using band theory we have first calculated the direct
Is,—7T. band gap E,(s) of N, ordered structures
s = AC, BC, CuAu-like (C A4), chalcopyrite (CH), CuPt-
like (CP), the ( AC),(BC), (001) superlattice (denoted Z2)
and SQS-4. These values, evaluated at the average alloy
lattice constant @ =(a - t+agc)/2 and averaged over
crystal-field splitting are given in the first eight columns
of Table XII. Using Eq. (2.10), we then find the N
“band-gap interaction energies” €, for each alloy. These
are then used [Eq. (2.9)] to predict the band gap of SQS-8,
and that of the perfectly random alloy [using Eq. (4.3)].
To the extent that the cluster expansion is converged, the
two results should be similar. Comparison is given in
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Table XII for N,=5, 6, and 7. We find the following: (i)
The cluster expansion works well for I';. states of semi-
conductors, as evidenced by the good agreement between
the predicted E,(SQS-8) values, obtained from the cluster
expansion, and the directly calculated value obtained by
applying the pseudopotential method to SQS-8 (Table
XIII). For GaAsysP,s we have calculated, using the
pseudopotential method, E, (SQS-N) for three SQS’s,
finding 1.51, 1.40, and 1.40 eV for N=2, 4, and 8, respec-
tively (Table XIII), demonstrating that SQS-4 is already
adequate to find a stable value for the band gap.

(ii) Using 5-, 6-, or 7-ordered structures in the cluster
expansion of Eq. (2.9) produces rather similar values for

Average Chalcopyrite| [ Random _ CuAu - CuPt
oltTBirE‘a"tels Cie—T1c+ Alloy CicT1cH| [T1ce T 1c+
(LT, Exptl) Wic (SQS-4) X3¢ Lic
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FIG. 13. Predicted direct band gaps I'ygyy— ', of seven ABC, semiconducting system in the CA4, CH, CP, and random (SQS-4)
structures. The numbers in the parentheses are bowing coefficients for the random alloy with (first number) or without (second num-

ber) crystal-field average, respectively.
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TABLE XII. The first eight columns give the (LAPW-calculated, unless otherwise noted) direct band gaps at I'" (in eV) at the
50%-50% average volume for seven ordered structures. Application of the cluster expansion to these values gives the effective clus-
ter energies €, from which we predict through Eq. (2.7) the direct band gap of SQS-8 and that of the random alloy E,(R). For the
first four alloys we give E,(R) predicted from N, =S5, 6, and 7 ordered structures, respectively. For N,=5 we used 4,B,CA4,L1,L3
for structures (L 1 denotes Cu;Au and L3 denotes CuAus) and Jo,J,J5,1,J3,174,, for interactions. For N; =6 we used the structures
A,B,CA,CH,CP,Z2, and the interactions Jo,J|,J5 1,J32J3.3,J54. For N;=7 we added SQS-4 to the structures and J, ¢ to the in-

teractions. All the results are averaged over crystal-field splitting at the VBM.

Predicted
Band gaps from direct calculations Predicted E,(R,x = % )
System E,(A) E,B) E,JCA) EJCH) E/(CP) E;Z2) E/SQS-4) E,SQS-8) N=5 N=6 N=17
Al-Ga-As 1.85 0.24 0.91 1.07 0.69 0.95 1.02 0.98 0.91 0.93 0.97
Ga-Sb-As 0.63 —0.63 —0.29 —0.04 —0.70 —0.17 —0.16 —0.19 —022 —026 —0.22
In-Ga-P 0.97 0.54 0.72 0.84 0.54 0.75 0.77 0.76 0.69 0.73 0.74
Ga-As-P*? 2.18 0.71 1.41 1.42 1.42 1.36 1.40 1.41 1.41 1.40 1.41
In-Ga-As 0.00 —0.61 —0.32 —0.26 —0.60 —0.30 —0.30 —0.32 —0.36 —0.33
Cd-Hg-Te 047 —0.99 —0.27 —0.24 —0.37 —0.27 —0.26 —0.27 —-0.28 —0.27
Cd-Zn-Te 0.75 0.59 0.68 0.70 0.62 0.68 0.66 0.67 0.67 0.67
Hg-Zn-Te —0.78 0.57 —0.01 —0.02 —0.06 —0.07 —0.04 —0.04 —0.05 —0.04

?Pseudopotential calculation.

the band gap E,(R) of the random alloy at x = 1, despite
the fact that the band gaps E,(s) of the ordered struc-
tures used in this expansion cover a wide range of values.

(iii) SQS-8 provides a consistent description of the band
gap of the perfectly random alloy, as evidenced by the
fact that in the cluster expansion E,(SQS-8)~E,(R)
(Table XII). Furthermore, we notice that 6E -——Eg(SQS-
4)—Eg(R) is small and, in general, positive. The
discrepancy becomes larger when there is a large crystal-
field splitting (e.g., GaAs, sSby 5) or when the interband
coupling is large (e.g., Aly sGagy sASs).

TABLE XIII. Cluster-expansion prediction of the direct
band gap of GaAs, ;P s and Al, sGaj sAs in the random struc-
ture (R) and SQS-N, obtained with N, terms in the expansion
(2.10) and (2.11). For comparison we give also the directly cal-
culated gaps in SQS-4 and SQS-8 using the pseudopotential (PS)
method. Results are averaged over the crystal-field splitting.

(iv) Among the simple structures considered, the CuAu
is the single best two-atom representation of the random
alloy. A similar conclusion can be drawn from Table VI
showing that the mixing enthalpy of CA4 (denoted there
as SQS-2) best represents the results of the random alloy.
This agrees with a similar observation made earlier’” on
empirical grounds.

VI. SUMMARY

We have shown that it is possible to design periodic su-
percells with A and B atoms such that the first few
structural correlation functions closely reproduce those
in a perfectly random infinite binary alloy. Physical
properties that depend primarily on the local atomic
structure of the alloy can then be described by applying
electronic Hamiltonians to such “special quasirandom
structures.” We find that these SQS’s are (i) short-period
superlattices in unusual orientations, with (ii) just a few
atoms per cell, and with (iii) site symmetries that are dis-

E,(R) E,(SQS-4) E,(8QS-8)  tinctly lower than those of the end-point constituent

GaAsq 5Py s solids 4 and B. Description of the electronic structure of

Predictions e such SQS’s within the local-density formalism reveals
of cluster significant atomic relaxations consistent with the lower
expansion site symmetry of atoms in the alloy. This leads to (i) sub-
N,=5 1.41 1.40 1.41 stantial lowering of the alloy’s formation enthalpies, (ii)
N,=6 1.40 1.39 1.40 the existence of a bimodal bond length distribution, (iii)
N,=7 1.41 1.40 1.40 weak crystal-field splittings of states degenerate in A or
Direct PS 1.40 1.40 B, (iv) folded (no-phonon) pseudodirect transitions, (v)
strong interband mixing, (vi) broadening of the VCA

Al sGag sAs state, (vii) sublattice logalization, apd (viii) optical bowing

Predictions T of the band gaps. This method, illustrated here for fcc
of cluster semiconductor alloys at x =1, can be readily generalized
expansion to other compositions, symmetries, and to imperfectly
N = 1.42 155 142 disordergd alloys and affords accurate .descrlptlo.ns of
NSZ 6 1’32 1'33 1'3 4 electrom'c, §tructura1, and .thermo.dyna_mlc properties of
NS= 1:35 1: 40 1'37 a.lloys.thhlp any electronic Hamxlltoman (pseudopoten-
Direct PS 1.40 138 tial, tight-binding, KKR, etc.) without resort to non-

structural models such as the VCA or the SCPA.
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APPENDIX: STATISTICS FOR RANDOM ALLOYS
AT x =

Here we derive some of the basic quantities pertaining
to random alloys, i.e., the average correlation functions
[Eq. (2.8)], their variances (see Sec. II D), and the average
number of neighbors of opposite type [Eq. (3.2)]. We will
focus our discussions on the random alloy at x ==

A perfectly random alloy is characterized by statisti-
cally independent occupations at N sites. The lattice-
averaged (denoted by bar) correlation function for pairs
(k=2) of spins separated by mth-neighbor distance is

A

— s

(A1)

where §,- and § ; are spin variables at sites i and j, respec-
tively, taking values —1 (if site is occupied by A4) or +1
(if occupied by B). Here, A, (i,j) is 1 if sites i and j are
mth-order neighbors, and zero otherwise. The number of
pairs of order m per site is

D,=Z,/2, (A2)

where Z,, is the number of mth-order neighbors to a site.
The sum in Eq. (A1) extends over all N sites.

The ensemble average of Eq. (A1) for a perfectly ran-
dom alloy is

R)=(1I, )=

EA (i, j)<8:5,), (A3

2DN

where (S\,@j) is the ensemble-average spin product on
two sites. Since for independent spins at x =1,

(8:5;,)=8; (A4)
and A,,(i,i)=0, hence
M, (R)=0. (A5)
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Since
(M2)= DzNz%%A A, (k,(5,5,8,5,),
(A6)

and the average of the four-spin product for i#*j and
k#latx =1

A

(85,5,5,8,)=56,8;+8,5, , (A7)
hence
N (N)=((T 2 NH2=(D, N)"1?, (A8)

as noted in the text (Sec. II D).

Finally, we derive the expressions for the number of
opposite atoms in the mth-neighbor shell, relative to an
atom at site i. For the random alloy at x =1 we can as-
sume, without loss of generality, that an atom 4
(§,=—1) lies at i=0. Then [denoting Am (j)=Am(0, )]

Om=72Am(j)(1+Sj), (A9)
J
where the sum is extended over j alone. The term in
parentheses in Eq. (A9) is
[z if§=1
+ = P
1+, 0 if §;=—1 (4 atom) .

(B atom) ,
(A10)

For the random alloy, the combined ensemble and lattice
site average is the same as the ensemble average only,
since all the sites are equivalent. At x =1 this gives

(0, )=Lt3 A, (NI+(§;N=L3 A, ()=D,, ,
J J
(A11)
where we have used (S;)=0. Since
(02)=13 A, (DA, (K){1+8,+5,+5,8,), (A12)
J.k

we have

(0)=D:+D, /2. (A13)

Then the variance (02 )—(0,,)? is just D, /2. Hence
the average number of atoms in the mth-neighbor shell of
opposite type to the atom at site i is

(0,)=D,+VD, /2 .

This is Eq. (3.2). Some values are given in the last line of
Tables IV and V.
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FIG. 1. Crystal structure of three special quasirandom struc-
ture. (a) SQS-2 is a (1,1) superlattice in the [001] direction; (b)
SQS-4 is a (2,2) superlattice in the [110] direction; and (c) SQS-8
is a (2,3,2,1) superlattice in the [113] direction. The (113) planes
are shaded in (c), and the stacking arrangement is indicated.



