

Band-gap narrowing in ordered and disordered semiconductor alloys

S.-H. Wei and Alex Zunger

Citation: Applied Physics Letters **56**, 662 (1990); doi: 10.1063/1.103307 View online: http://dx.doi.org/10.1063/1.103307 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/56/7?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Enhancement of conduction-band effective mass in III–V semiconductor alloys induced by chemical disorder J. Appl. Phys. **80**, 6761 (1996); 10.1063/1.363804

Band-gap tailoring in amorphous hydrogenated germanium-nitrogen alloys AIP Conf. Proc. **378**, 300 (1996); 10.1063/1.51110

Atomic antimony for molecular beam epitaxy of high quality III–V semiconductor alloys J. Vac. Sci. Technol. B **14**, 2335 (1996); 10.1116/1.588854

Smooth etching of various III/V and II/VI semiconductors by Cl2 reactive ion beam etching J. Vac. Sci. Technol. B **14**, 1764 (1996); 10.1116/1.588554

Electronic structure and stability of II–VI semiconductors and their alloys: The role of metal d bands J. Vac. Sci. Technol. A **6**, 2597 (1988); 10.1116/1.575515

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.138.65.149 On: Tue, 14 Jul 2015 14:51:26

Band-gap narrowing in ordered and disordered semiconductor alloys

S.-H. Wei and Alex Zunger

Solar Energy Research Institute, Golden, Colorado 80401

(Received 13 October 1989; accepted for publication 4 December 1989)

Either spontaneous or artificial ordering of semiconductor alloys into CuAu-like, chalcopyrite, or CuPt-like structures is predicted to be accompanied by a reduction in the direct band gaps relative to the average over the binaries. In this letter calculated results are presented for seven III-V and II-VI alloys. We identify the mechanism for this band-gap narrowing as band folding followed by repulsion between the folded states. The latter is coupled by the non-zinc-blende component of the superlattice potential. The same physical mechanism (but to a different extent) is responsible for gap bowing in *disordered* alloys.

Recent theoretical predictions^{1,2} and experimental obsérvations³⁻⁶ demonstrated that isovalent pseudobinary $A_{1-x}B_xC$ semiconductor alloys can order into CuAu-like (CA),³ chalcopyrite (CH),⁴ and CuPt-like^{5,6} (CP) structures. We have calculated the band gaps of seven alloys in each of these three structures, as well as those of the disordered alloys at the same 50–50% composition. We find ordering-induced band-gap narrowing with respect to the linearly averaged gaps of the binary constituents, and analyze the physical origins for these variations.

We calculated self-consistently the relativistic band structures of AlGaAs₂, CdZnTe₂, GaInP₂, HgZnTe₂, CdHgTe₂, GaInAs₂, and Ga₂AsSb, using the local density approximation as implemented by the linearized augmented plane wave (LAPW) method.7 In each case, we first optimize the crystal structure to reach a minimum in the total energy. This includes both cell-external (i.e., lattice) parameters and cell-internal (i.e., atomic positions inside the unit cells whose value is not fixed by symmetry) parameters. Details of the method are given in Ref. 2. The 50-50% disordered alloy is represented by the "special quasirandom structures."8 These are periodic supercells whose lattice sites are occupied by A and B atoms in such a way that the radial correlation functions best match those of the perfectly random infinite lattice. Specifically, the SQS-4 structure⁸ is used. This supercell is then treated by the same band structure techniques (with the same precision) used to calculate ordinary ordered structures. This method was recently shown⁸ to reproduce the band gaps obtained with much larger supercells (containing more than 2000 atoms) whose sites are occupied randomly by A and B atoms.

The local density approximation (LDA) is known to systematically underestimate all band gaps.⁹ However, this problem can be largely circumvented when we are interested in *relative* changes in band gaps with respect to ordering at a fixed (x = 1/2) composition. To do this, we first find the *change* in the relativistically calculated band gap of an ordered structure relative to the calculated average gap of its binary constituents:

$$\delta_{\text{calc}} = E_{\text{calc}} \left(ABC_2 \right) - \frac{1}{2} \left[E_{\text{calc}} \left(AC \right) + E_{\text{calc}} \left(BC \right) \right].$$
(1)

We then obtain the predicted (p) gap by applying this change to the average of the *measured*, ¹⁰ low-temperature gaps of the constituents

$$E_p(ABC_2) = 1/2[E_{\exp}(AC) + E_{\exp}(BC)] + \delta_{\text{cale}}.$$
 (2)

The LDA error largely cancels out when this procedure is applied consistently to each state in ABC_2 and to its corresponding states in the binary constituents. The overall error in our calculation is estimated to be less than 0.04 eV.

The triply degenerate Γ_{15v} valence-band maximum (VBM) is split in the ordered ternary structures into three components both by the noncubic crystal-field (CF) and by spin-orbit (SO) interactions. These splittings reduce the direct band gap. For the *p*-like VBM states, the energies of these three levels can be described well by the quasi-cubic model¹¹; relative to their center of gravity, these are

$$E_{1,2,3}$$

$$=\begin{cases} \frac{1}{3}(\Delta_{0} + \Delta_{CF}) \\ -\frac{1}{6}(\Delta_{0} + \Delta_{CF}) \pm \frac{1}{2} \left[(\Delta_{0} + \Delta_{CF})^{2} - \frac{8}{3} \Delta_{0} \Delta_{CF} \right]^{1/2} \end{cases}$$
(3)

Here, Δ_0 is the spin-orbit splitting in a cubic field and Δ_{CF} is the crystal-field splitting (into a singly and a doubly degenerate state in the three order structures) in the absence of spin-orbit interactions. Δ_{CF} is defined as positive if the doubly degenerate states are above the nondegenerate state. We have fitted our LAPW calculated relativistic VBM energy levels to Eq. (3) and thereby extracted Δ_{CF} and Δ_0 for the seven systems, given in Table I. For comparison, we also show the values obtained by averaging over the binary constituents. The table shows the following. (i) The difference between Δ_0 for the ordered structures and the value averaged over the binary constituents is small in common-anion systems: ≤0.01 eV for III-V systems and ≤0.04 eV for II-VI systems (the larger difference in II-VI systems is probably due to the large mixing of d character into the VBM¹²). (ii) The bowing of the spin-orbit splitting can be large and negative in common-cation systems.¹³ (iii) The crystal-field splitting is small and often negative for CH but generally large and positive in the CA and CP structures (for GaInP, it is even larger than Δ_0). (iv) By Eq. (3), in structures with negative Δ_{CF} (e.g., the SQS-4 and some of the CH structures), the upward shift of the top of valence band due to spin-orbit interaction is not $\Delta_0/3$, as commonly assumed by the " $\Delta_0/3$ rule," but rather

$$\delta E = \frac{1}{3} \Delta_0 - \frac{1}{2} \{ \Delta_0 - \Delta_{\rm CF} - [(\Delta_0 + \Delta_{\rm CF})^2 - \frac{8}{3} \Delta_0 \Delta_{\rm CF}]^{1/2} \}.$$
(4)

However, the simple " $\Delta_0/3$ rule" does apply to the pure binaries as well as to ternary structures with $\Delta_{CF} > 0$.

662 Appl. Phys. Lett. 56 (7), 12 February 1990

990 0003-6951/90/070662-03\$02.00

TABLE I. Calculated low-temperature crystal-field splitting $\Delta_{\rm CF}$ and spin-orbit splitting Δ_0 (all in eV) at the VBM for seven 50–50% semiconductor alloys. For comparison, we also give the calculated binary-averaged values. The small LDA correction (<0.03 eV for III-V and <0.10 eV for III-VI) for Δ_0 is not included in the binary-averaged value.

System	Property	Binary average	CA	СН	СР
GaInP ₂	$\Delta_{\rm CF}$	0	0.191	0.032	0.212
	Δ_0	0.107	0.114	0.108	0.118
Ga ₂ AsSb	$\Delta_{\rm CF}$	0	0.085	-0.013	0.230
	Δ_0	0.523	0.554	0.522	0.595
AlGaAs ₂	$\Delta_{\rm CF}$	0	0.049	0.007	0.028
	Δ_{0}	0.319	0.317	0.319	0.320
ZnCdTe ₂	Δ_{CF}	0	0.127	0.020	0.099
	Δ_{0}	0.873	0.864	0.868	0.854
ZnHgTe ₂	$\Delta_{\rm CF}$	0	0.231	0.002	0.257
	Δ_{0}	0.831	0.831	0.828	0.793
CdHgTe ₂	Δ_{CF}	0	0.008	- 0.004	0.020
	Δ_0	0.817	0.813	0.812	0.811
GaInAs ₂	$\Delta_{\rm CF}$	0	0.134	0.020	0.121
	Δ_0	0.351	0.355	0.352	0.347

Our calculated direct $\Gamma_{VBM} \rightarrow \Gamma_{1c}$ band gaps (Fig. 1) generally increase in the sequence

$$E_{\rm CP} < E_{\rm CA} < E_R < E_{\rm CH} < E, \tag{5}$$

where \overline{E} denotes the 50–50% average of the direct gaps of the binary constituents (the only exceptions are $E_{CH} \gtrsim \overline{E}$ for lattice-matched AlGaAs₂ and CdHgTe₂). We see that the band-gap narrowing δ of Eq. (1) is generally small in the chalcopyrite structure but can be very large in the CuPt

FIG. 1. Predicted low-temperature direct band gaps $\Gamma_{\text{VBM}} \rightarrow \Gamma_{\text{tc}}$ of seven ABC_2 semiconducting systems in the CA, CH, CP, and random (SQS-4) phases. The numbers in the parentheses are bowing coefficients for the random alloy with (first number) or without (second number) crystal-field average, respectively.

phase. In fact, we predict that δ_{CP} is so large that AlGaAs₂ becomes a direct-gap material¹⁴ in this structure, despite the fact that the corresponding 50-50% random alloy and the CA structure of the alloy have indirect band gaps. The large variation of the band gaps ($\sim 0.81 \text{ eV}$ for Ga₂AsSb) with ordering highlights the possibility of tuning alloy band gaps at a fixed composition by selecting growth conditions³⁻⁶ that favor a particular structure (provided that the samples are uniform). These variations in E_g with ordering could be used as an optical fingerprint to detect particular forms of ordering in a sample. The variation is generally smaller for II-VI systems than for III-V systems. It is interesting to see in Fig. 1 some cases of "band-gap crossings" for different systems in different structures (e.g., GaInP₂ has a larger gap than CdZnTe₂ both in the chalcopyrite structure and in the random alloy, yet the opposite is predicted to be true in the CuPt structure). Similarly, CdHgTe, has a smaller gap than Ga₂AsSb in the CH, CA, and random structures, yet in the CuPt structure Ga2AsSb has a smaller gap than CdHgTe2. A limited number of other calculations for gap narrowing exist in the literature¹⁵⁻²⁰; results are quoted in Refs. 15-20 of the present letter.

The difference between the average band gap and that of the random alloy is b/4, where b is the optical bowing coefficient at x = 1/2. We give in Fig. 1 our calculated bowing parameters for the random alloy, obtained both with and without averaging over the crystal-field split components of the valence-band maximum in SQS-4. The former values, better representing an isotropic random alloy, compare favorably with the observed¹⁰ bowing parameters.

It is clear from Fig. 1 that ordering-induced changes in the band gap of the pseudobinary $A_{0.5}B_{0.5}C$ alloys far exceed the changes encountered in simple binary polytypes (e.g., zinc blende versus wurtzite). As we noted earlier,¹³ these changes can be understood by realizing that these ABC_2 ordered compounds are $(AC)_{p}(BC)_{p}$ superlattices of repeat period p and orientation G: CuAu is p = 1, G = [001]; chalcopyrite is p = 2, G = [201]; and CuPt is p = 1, G = [111]. Hence, states of different symmetries in the binary constituents can fold into states of identical symmetry in these superlattices. Examples of pairs of zinc-blende states that fold into the $\overline{\Gamma}_{tc}$ superlattice state are given in the heading of Fig. 1; more examples are given in Tables I-III of Ref. 13. This is significant in that isosymmetrical representations can interact and, hence, repel each other by an amount $\Delta E \sim (\Delta V)^2 / (\Delta V)^2$ $[\epsilon_i(k) - \epsilon_i(k')]$ that is inversely proportional to their unperturbed energy difference $\epsilon_i(k) - \epsilon_i(k')$ and directly proportional to the square of the coupling matrix $(\Delta V)^2$ (controlled by the potential difference between the A and Batoms and their bond-length mismatch¹³). This repulsion lowers $\overline{\Gamma}_{1c}$ and raises $\overline{\Gamma}_{VBM}$, thus reducing the band gap. Different ordered structures are characterized by different energy denominators and couplings (e.g., in the [111] CuPt structure L folds into $\overline{\Gamma}$, whereas in the [001] CuAu structure X folds into $\overline{\Gamma}$, and in the [201] CH structure W folds into $\overline{\Gamma}$). We can now explain the trends of Fig. 1 in terms of the properties of the binary constituents: (i) The larger band-gap narrowing δ_{CP} in the CuPt-like structure, relative to $\delta_{\rm CA}$ in the CuAu-like structure, reflects the smaller $\Gamma_{\rm 1c}$ -

 L_{1c} energy denominator (appropriate to CP) relative to the Γ_{1c} -X_c energy denominator (appropriate to CA). The effect is considerably smaller in CH, where the Γ -folded W_c states are energetically far removed from Γ_{1c} , hence the coupling is weaker. (ii) The "band crossings" noted above reflect the same effect: the calculated binary-averaged energy denominator Γ_{1c} - L_{1c} in GaP-InP (~0.4 eV) is smaller than that in CdTe-ZnTe(~0.9 eV); hence, δ_{CP} is larger (0.45 eV) for GaP-InP than for CdTe-ZnTe (0.17 eV). (iii) Among sizematched alloys, CdHgTe₂ has a small $\delta_{\rm CP} = 0.12$ eV while AlGaAs₂ has a larger $\delta_{CP} = 0.36$ eV, reflecting again a larger energy denominator in the former case (1.3 eV) relative to the latter case (0.4 eV). (iv) AlGaAs, is predicted to have a larger band-gap narrowing, upon ordering in the CuAu-like structure, than CdHgTe₂. This is because the pertinent Γ_{1c} -X_{3c} energy denominator is larger in the latter case (2.4 eV) than in the former (0.8 eV). (v) The larger crystalfield splitting at the VBM for CA and CP relative to CH (Table I) can also be explained if we notice the larger energy difference $\Gamma_{15v} - W_v$ in CH relative to $\Gamma_{15v} - X_{5v}$ and Γ_{15v} $-L_{3v}$ in CA and CP, respectively. (The coupling between Γ and X states in CH is very small due to an incompatible phase factor.¹³) (vi) Finally, the stronger $\overline{\Gamma}_4(\Gamma_{15v}) - \overline{\Gamma}_4$ (W_v) coupling relative to the $\overline{\Gamma}_5(\Gamma_{15v}) - \Gamma_5(X_{5v})$ coupling¹³ in the chalcopyrite structure can lead to an inverted valence band ($\Delta_{CF} < 0$, Table I), whereby the Γ_{4v} is above the Γ_{5v} . This is the case in Ga₂AsSb, AlGaAs₂, and CdHgTe₂ (Table I), and also in most real chalcopyrites.²¹

Our calculations compare satisfactorily with the experimental data when nearly perfect monolayer ordering has been achieved experimentally. Ellipsometry measurements²² of the direct gap of GaAlAs₂ in the CA structure gave 2.08 eV at room temperature, or \sim 2.18 eV when extrapolated to low temperatures. Low-temperature Raman scattering gave²³ 2.15 eV. These values agree well with our prediction (Fig. 1) of 2.18 eV. For GaInAs₂ the predicted $\delta_{\rm CA}$ - $\delta_{\rm random}$ value of 0.04 eV also agrees well with the experimental value of 0.035 eV of Fukui and Saito.³⁶ However, the spontaneous ordering achieved to date in most size-mismatched alloys seems to be imperfect; hence, our results (corresponding to an assumed perfect ordering) do not directly apply to currently available samples. Indeed, for metalorgainic chemical vapor deposition grown GaInP₂ in the CuPt structure the observed^{5,6} $\delta_{CP} \simeq 0.21$ eV is much

smaller than our value of $\delta_{\rm CP} = 0.46 \,{\rm eV}$. Note that currently available samples^{5,6} are not only imperfectly ordered but also show *domains* of ordered and disordered phases. We expect that as the degree of ordering and sample uniformity would improve, the measured band gap reductions would approach those of Fig. 1, e.g., E_g (GaInP₂) \cong 1.70 eV for CP ordering.

We thank Dr. J. E. Bernard and Dr. A. Mascarenhas for useful discussions. This work was supported by the U.S. Department of Energy under grant No. DE-ACO2-77CH00178.

- ¹G. P. Srivastava, J. L. Martins, and A. Zunger, Phys. Rev. B **31**, 2561 (1985); A. Mbaye, L. G. Ferreira, and A. Zunger, Phys. Rev. Lett. **58**, 49 (1987).
- ²L. G. Ferreira, S.-H. Wei, L. G. Ferreira, and A. Zunger, Phys. Rev. B 40, 3197 (1989); (to be published).
- ³(a) T. S. Kuan, W. I. Wang, and E. L. Wilkie, Appl. Phys. Lett. 51, 51 (1987); (b) T. Fukui and H. Saito, Jpn. J. Appl. Phys. 23, L521 (1984).
 ⁴H. R. Jen, M. J. Cherng, and G. B. Stringfellow, Appl. Phys. Lett. 48, 1603 (1986).
- ⁵A. Gomyo, T. Suzuki, A. Kobayashi, S. Kawata, I. Hino, and T. Yuasa, Appl. Phys. Lett. **50**, 673 (1987).
- ⁶S. R. Kurtz, J. M. Olson, and A. Kibbler, Solar Cells 24, 307 (1988); T.
- Nishino, Y. Inoue, and Y. Hamakawa, Appl. Phys. Lett. 53, 583 (1988).
- ²S.-H. Wei and H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985).⁸A. Zunger, S.-H. Wei, L. G. Ferreira and J. E. Bernard (unpublished).
- ^oFor example, see J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
- ¹⁰Landolt-Börnstein New Series, edited by M. Schulz and H. Weiss (Springer, Berlin, 1982), Vol. 17a,b.
- ¹¹J. J. Hopfield, J. Phys. Chem. Solids 15, 97 (1960).
- ¹²S.-H. Wei and A. Zunger, Phys. Rev. B 37, 8958 (1988).
- ¹³S.-H. Wei and A. Zunger, Phys. Rev. B 39, 3279 (1989); 39, 6279 (1989).
- ¹⁴S.-H. Wei and A. Zunger, Appl. Phys. Lett. 53, 2077 (1988).
- ¹⁵D. M. Bylander and L. Kleinman, Phys. Rev. B 34, 5280 (1986), find $\delta_{CA} = 0.18$ eV in AlGaAs₂.
- 16 B. J. Min, S. Massidda, and A. J. Freeman, Phys. Rev. B 38, 1970 (1988), find $\delta_{\rm CA}=0.18$ eV in AlGaAs₂.
- ¹⁷P. Boguslawski and A. Baldareschi, Solid State Commun. **70**, 1085 (1989), find $\delta_{CA} = 0.39$ eV in InGaAs₂.
- 18 A. Taguchi and T. Ohno, Phys. Rev. B 36, 1696 (1987), find δ_{CA} ~0 in InGaAs.
- $^{19}\text{R}.$ Magri, Phys. Rev. B (to be published) finds $\delta_{\rm CP}=0.67$ eV in InGaAs₂.
- ²⁰T. Kurimoto, N. Hamada, and A. Oshiyama, Superlatt. Microst. 5, 171 (1989), find $\delta_{CP} = 0.33$ eV in GaInP₂.
- ²¹A. Zunger and J. Jaffe, Phys. Rev. Lett. 51, 662 (1983).
- ²²M. Garriga, M. Cardona, N. E. Christensen, P. Lauten-Schlager, T. Isu, and K. Ploog, Phys. Rev. B 36, 3254 (1987).
- ²³M. Cardona, T. Suemoto, N. E. Christensen, T. Isu, and K. Ploog, Phys. Rev. B 36, 5906 (1987).

S. -H. Wei and A. Zunger