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Structural models used in calculations of properties of substitutionally random A l -„B,alloys are usu-
ally constructed by randomly occupying each of the N sites of a periodic cell by 2 or B. We show that it
is possible to design "special quasirandom structures' (SQS's) that mimic for small N (even N 8) the
first few, physically most relevant radial correlation functions of a perfectly random structure far better
than the standard technique does. We demonstrate the usefulness of these SQS's by calculating optical
and thermodynamic properties of a number of semiconductor alloys in the local-density formalism.

PACS numbers: 61.55.Hg, 71.10.+x, 71.25.Tn

One of the significant realizations to emerge from re-
cent electronic structure calculations of crystals, impuri-
ties, and surfaces is that electronic properties sensitively
reflect the details of the microscopic atomic arrange-
ments, including small changes in atomic positions ("re-
laxation" ). Yet, many theories of substitutional A ~ „8,
random alloys are nonstructural, in that they consider
only the average occupations by (A) or (8) of sites, re-
moving from the theory the informational content associ-
ated with the geometrical arrangements of atoms around
a site. Such is the "virtual-crystal approximation"
(VCA), where the alloy is assumed to have a single,
(AB)-averaged type of site, or the site coherent-potential
approximation (SCPA), where all A's and separately all
8's are assumed equivalent and each is embedded in a
structureless uniform average medium; structural relaxa-
tion is excluded in both approaches. Experimental tech-
niques capable of probing the average local properties of
alloys have, however, clearly demonstrated the irnpor-
tant role played by the microscopic atomic structure.
For example, even in homogeneous 3

~
—„8, alloys

without short- or long-range order the average A-A, A-B,
and 8-8 distances are generally different; in semicon-
ductor alloys similar atomic relaxations have been shown
to control the band gaps ' and thermodynam-
ic ' ' quantities. On the other hand, the obvious
difficulty with structural theories of alloys arises from
the fact that even in the simplest case of a binary system
with N sites, there are 2 possible atomic configurations
whose total energy needs to be structurally relaxed, then
averaged. One then proceeds in practice either by select-
ing a smaller number of "representative" configurations
(e.g. , the Monte Carlo approach ), or a single periodic
structure with a random distribution of 8 and 8 atoms
on its N sites. While these techniques explicitly specify
the alloy structure, and can hence incorporate atomic re-
laxation, they approach the statistical limit as slowly as
N ' . Therefore, they involve a rather large number of
configurations (e.g. , —10 in Monte Carlo studies ) or
large cell sizes (e.g. , ) 10 atoms) (Refs. 5 and 6), for
which first-principles self-consistent calculations (cur-
rently restricted to N ~ 50 atoms') are still impractical.

We show here that by selective occupation of the N lat-
tice sites by 2 and 8 atoms one can construct special
periodic "quasirandom structures" that mimic, for finite
N, the correlation functions of an infinite substitutional
random alloy far more closely than does the standard ap-
proach of occupying each of the N sites randomly by A
or B. While both approaches produce the same results
for N ~, the present approach produces excellent ap-
proximations already for N 0(10), and hence affords
application of accurate electronic structure methods' for
calculating structural, optical, and thermodynamic prop-
erties of random alloys. This is illustrated here for a
number of semiconductor alloys.

Describing random alloys by periodic structures will

clearly introduce spurious correlations beyond a certain
distance ("periodicity errors"). However, many physical
properties of solids are characterized by microscopic
length scales that can be ordered according to size to
form a hierarchy. For example, interactions between
distant neighbors generally contribute less to the total
energy than do interactions between close neighbors.
We hence guide our construction of "special quasiran-
dom structures" (SQS's) by the principle of close repro-
duction of the perfectly random network for the first few
shells around a given site, deferring periodicity errors to
more distant neighbors. This approach has an obvious
resemblance to the principle guiding the selection of
"special k points" for Brillouin-zone integration.

We characterize the structure of the alloy by the mul-
tisite correlation functions familiar from statistical lat-
tice theories. ' Here, any given arrangement of A and
8 atoms on a lattice (a "configuration" cr) is discretized
into its component "figures" f (k, m), e.g. , pairs of
atoms (a figure with k 2 vertices separated by an mth-
neighbor distance), triangles (k=3 vertices), etc. Using
the language of Ising models, ' ' we assign to each site
i in a figure a spin variable S, which takes the value —

1

if it is occupied by A, or + 1 if occupied by 8. We define
as IIf(l, cr) the product QS; of spin variables for figure f
positioned in the lattice at location I (where I includes
also its orientation). There are Df figures per site. A
lattice average (denoted by a bar) of the spin product
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(2)

over all locations of symmetry-related figures of type f
gives

IIf(~) = QIIf(l, ~) .
1 (1)

NDf
The ensemble average of a physical property P over
configurations (denoted by angular brackets) can be
rigorously ' expanded as

(P) =g Dk, (&~, )p~,
k, m

where pk „, are the "interaction parameters" of figures

f=(k,m) and (IIt, ) are the correlation functions. Ns
values of [pt, ] can be determined if Nq values of (P)
are available (e.g. , from band theory "). For a perfect-
ly random (R) A

~ „B„structure, the many-body (k&0)
correlation functions are (IIt, )tt (2x —1)"; hence, at
x = —,', they vanish to all orders, except Ho ~ 1.

The usual approach for simulating properties of ran-
dom alloys through a finite-N representation of Eq. (2)
(e.g., see Ref. 6) assumes that each site should be indi-
vidually occupied at random by A or B. The extent to
which this approach produces a finite-N-atom/cell struc-
ture that, as a whole, approaches randomness can be
measured by the standard deviation rtt, (N)
= ~(IIt. ) ~'t . While for an isolated cell with N lattice
site, rtt,

' (N) =(Dt, N) ', application of this pro-
cedure to a periodic N-atom/cell structure typical of the
sizes for which first-principles electronic structure calcu-
lations are practical, could produce even larger errors.

This is seen in Table I, which gives for x = —, the stan-
dard deviation rt& (N) obtained by randomly occupying
N fcc sites of a periodic structure in a sufficiently large
number of ways (-3000) so that converged statistics
are obtained. We see that rtl, (N) & rti,

' (N) and that
periodicity errors (denoted in Table I by correlation
function values of —1 rather than 0) occur at rather
short distances from the origin.

Our central idea here is that instead of attempting to
approach (IIt )g by statistical sampling methods, we
can design "special" N-atom periodic structures S whose
distinct (i.e., no ensemble average) correlation functions
IIk (S) best match the ensemble averages (IIk )tt of
the random alloy. Since by Eqs. (1) and (2) the error in

the property P relative to that in a perfectly random al-
loy is represented in terms of a hierarchy of distances,

(P) —P(S) g Di, [(2x—1) —IIt, , (S)]pk, , (3)
I,m

(the prime denotes omission of k =0 and 1), it is natural
to select the structure S so that the right-hand side is
minimized in a hierarchical manner. For instance, in-
sisting that the most important correlation functions—those for the first and second neighbors —have zero
errors at x —,', gives already for N =8 in fcc symmetry
an SQS (denoted in Table I SQS-8). Its unit cell is best
described as an A2B3A2B~ superlattice along the [113]
direction. Using, for example, the criterion that II2 ~

=0
and H22+H23+H24 minimum, we also find that the

TABLE I. The upper part gives the absolute values of the mth-neighbor pair-correlation
functions as obtained in SQS; for the perfectly random alloys at x=-,', (ll& „,) 0, hence
departure from zero measures errors. Below those we give the standard deviation, also about
zero, as obtained in random site-by-site occupations of N atom supercells. Finally, we give the
average number of neighbors to a given atom of opposite type.

1st 2nd 3rd

12

4th 5th

12

6th

Errors in correlation functions

CuPt
SQS-2
SQS-4
SQS-6
SQS-8

N 8"
N 16b
N 32'
N 64"
N 108'
N 125"
N 128

0
0.333
0
0
0

0.215
0.102
0.073
0.051
0.039
0.037
0.036

1

1

0.333
0. 1 1 1

0

0.504
0.206
0.146
0.073
0.054
0.051
0.051

0
0.333
0
0.333
0.042

0.215
0.102
0.074
0.035
0.028
0.026
0.026

1

1

0.333
0.1 1 1

0.083

1
d

0.206
0.146
0.073
0.039
0.037
0.036

0
0.333
0
0.333
0.083

0.215
0.102
0.073
0.051
0.039
0.026
0.025

1

1

1

0.333
0

0.504
1

d

0.249
0.127
0.048
0.045
0.062

Number of neighbors of opposite type

SQS-8
Random

6 + 1.8
6+1 ~ 7

3+ 0.5
3 ~1.2

1 1 ~ 5 + 1.1

12 +24
6.5 + 0.5
6 ~ 1.7

1 1 + 1.4
12 ~ 2.4

4+ 1

4~ 1.4

354

ufcc-type unit cell.
bcc-type unit cell.

'Simple-cubic-type unit cell.
Periodicity error: (Al, „,)=1, instead of zero.
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SQS-4 is an Aq82 superlattice along [110],while SQS-6
is an 2~8~2282 superlattice along [331]. Table I gives
for completeness also SQS-2. Although N 2 is general-

ly too small to represent a random alloy, we find that the
CuAuI structure gives the best overall N=2 representa-
tion for a random alloy. For each SQS we give in Table
I the absolute value of the correlation functions,

~
IIt,

their departure from zero reflects errors relative to an
infinite, perfectly random alloy. It is seen that SQS-8 is

an excellent choice, equivalent to N ~ for the first-
and second-neighbor correlation functions (as well as for
sixth), to N 64 for third neighbors, etc. Its many-body
correlation functions (note shown in Table I) also exhibit
small values; e.g. , the averaged value of H3 0,
f14, 1 0, and II4 2 0.167. As a further measure of the
accuracy with which the SQS's represent a perfectly ran-

dom, infinite structure we give in Table I the number
(0 ) of mth-order neighbors to a given site that are of
the opposite type. In a perfectly random structure
(0 ) D ~ (D~/2) 't . The SQS-8 reproduces this dis-
tribution within the standard deviations.

Unlike the SCPA or the VCA, the SQS exhibits a dis
tribution of local environments of inequivalent A (or 8)
atoms; hence, when treated by conventional band-
structure methods one can simply incorporate in them
realistic atomic relaxations and charge redistributions.
Unlike cluster-expansion methods, '' [Eq. (2)l, the SQS
approach is capable of depicting directly the electronic
charge distribution in a random alloy and does not re-

quire evaluation of pk from a truncated expansion. ''
We have applied self-consistently the local-density for-

malism, as implemented by the linear augmented-plane-
wave' (LAPW) and nonlocal pseudopotential' band-

structure methods to a range of pseudobinary &p, 58p 5C
semiconductor SQS's. Here, the C atoms reside on the

nominally common sublattice (so the actual number of
atoms per cell is 2N); all A, 8, and C atomic positions
are allowed to relax (without atomic interchanges) so as
to minimize the total energy. A direct band-structure
calculation of the total energy of a structurally relaxed
SQS (taken with respect to the energies of the binary
constituents AC and BC at equilibrium) approximates
the excess energy AH(x —,

' ) of a random alloy. Such
direct calculations for SQS-2 and SQS-4 are compared '

in Table II to results obtained by the cluster expansion.
The latter are given by our recent solutions of the
three-dimensional fcc Ising model [Eq. (2)], using a con-
verged set of up to fourth neighbor and four-body in-
teractions [pp in Eq. (2)]. The interaction energies
were obtained by fitting the separately calculated total
energies of eight simple periodic structures. Table II
shows that a single calculation even on SQS-4 repro-
duces well, without resorting to statistical calculations,
the corresponding results obtained from the full
statistical-mechanics simulation: The latter agrees well

with measured excess enthalpies. ' For GaPp5Asp5
and Alp 5Gap 5As we have also calculated, using the pseu-
dopotential method, ' the properties of SQS-2, -4, and
-8. For GaPp5Asp5 we find the relaxed mixing enthal-
pies dH 26. 1, 13.9, and 16.5 meV/(4 atoms) for N-2,
4, and 8, respectively (the experimental value is
—18~10 meV). For Alp5Gap5As we find 13.7, 10.5,
and 10.5 meV/(4 atoms) showing even more rapid con-
vergence.

It is less obvious that band gaps would converge rapid-
ly in Eq. (2). To examine this we have used the pseudo-
potential calculated direct band gaps [Eg(S)] of Ns or-
dered structures of Al„Ga As„+, obtaining through
Eq. (2) the Nq expansion coefficient [pt, ] for P=Eg.
These were then used to predict Eg for a diferent struc-

TABLE II. Mixing enthalpies AH [in (I meV) j(4 atoms)) attd optical bowing b of the direct
band gaps at I (in eV) as obtained by LAPW calculations on x —,

' SQS's. For comparison,
we also give eLH(x —,

' ) at T 800 K and at T ~ (random alloy) as calculated from an Is-

ing model (Ref. 7), and the observed (expt. I) bowing parameters (Ref. 14). SQS-4 denotes
results obtained after averaging the crystal-field split states at the valence-band maximum.

~H —,

Cupt
SQS-2
SQS-4
Ising
(T 800)
(T-~)

AlAs
GaAs

7.5
1 1.5
6.0

6.5
6.6

GaSb
GaAs

132
115
80

86
91

InAs
GaAs

108.5
66.7
47.3

51.0
58.8

GaP
InP

155.4
91.0
73.0

66.6
81.5

HgTe
CdTe

9.8
12.1

9.8

8.2
8.4

Zn Te
CdTe

103.5
54.2
56. 1

49.7
55.3

Hg Te
Zn Te

103.3
42.5
49. 1

40.8
47.6

b(r)
Cupt
SQS-2
SQS-4
SQS-4
Expt. I

1.45
0.61
0.12
0.10

0.0-0.37

3.25
1.30
0.98
0.64

1.0-1.2

1.81
0.66
0.51
0.43

0.32-0.61

1.82
1.08
0.80
0.62
0.65

0.49
0.09
0.02
0.01

0.0-0.23

0.65
0.44
0.40
0.35
0.26

0.77
0.45
0.32
0.20
0.14
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ture (SQS-8). Using Ns =5, 6, and 7, we predict Eg
(SQS-8) =1.42, 1.34, and 1.37 eV, respectively, showing
rather rapid convergence, despite the fact that Eg(S) of
the starting structures span a large range, between 0.7
and 2.2 eV. A direct band calculation on SQS-8 gives

Eg =1.38 ev, in excellent agreement with the cluster ex-
pansion to sixth neighbors (1.37 eV). Additional conver-
gence tests with N, =27, to be published separately,
confirm that SQS-8 predicts the gaps for GaAIAs and
GaAsP to within -0.05 eV or better. Given this suc-
cess, we have calculated the relativistic band structures
of the SQS's for the seven semiconductor alloys using the
LAPW method. Table II gives the optical bowing
coefficient b 4IEs( —,

' ) —Es(-2 )] of the direct alloy
band gap at composition x —,

' (where Eg denotes the
concentration-weighted band gap of the binary constitu-
ents; note that due to the difference taken in b, the
local-density error cancels to first order). For compar-
ison, we also give the calculated results for the CuPt
structure and experimental data' for the disordered al-

loy. Using the pseudopotential method, we find for
GaPo sAso s the crystal-field-averaged bowing coefficient
of the direct gap (in eV) of 0.14, 0.19, and 0.19 for
SQS-2, -4, and -8, respectively (the experimental value'
is 0.21 eV). We see that parameter-free self-consistent
calculations on the SQS-N converges well and repro-
duces the experimental trends. It is important to note
that neglect of structural relaxation (as done in VCA
and SCPA methods ) leads to huge errors in size-
mismatched alloys, e.g., we find that b(SQS-2) for unre-
laxed Ga2SbAs is 0.32 eV, instead of 1.30 eV for the re-
laxed structure and that hH is 237 meV instead of 115
meV. For GaAsP, AH is 60.2 meV instead of 16.5 meV.

As a final demonstration of the usefulness of the SQS
concept we quote its recent application' to the study of
the optical properties of the Al~ —„Ga„As alloy. We
have constructed a periodic model' of this alloy at the
-50%-50% composition by populating randomly a
2304-atom unit cell by Ga and Al (As resides on a
separate sublattice). The energy levels were then calcu-
lated within a tight-binding Hamiltonian whose matrix
elements were fitted to the band structure of GaAs and
A1As. A spectral weight analysis of the solutions of the
2304-atom cell produced the alloy band gaps (given in

eV, with respect to the valence-band maximum):

2.215 (I )„), 2. 185 (L),), 2. 145 (Xl, ),
2.645 (X3,) (2304atoms) .

Using SQS-8 with just 16 atoms and the same tight-
binding Hamiltonian yielded the following band gaps:

2.217 (I , ), 2. 196 (L „), 2. 160 (Xl, ),
2.640 (X3,) (16atoms),

i.e., within 0.015 eV of the 2304-atom/cell calculation.

Notice that the band gap of AIGaAs2 strongly depends
on its crystal structure (Table II); hence the success of
the SQS is significant. This example illustrates the fact
that the SQS is also useful in describing optical proper-
ties near threshold although it has artificial long-range
order.

While the SQS idea was demonstrated to work only
for semiconductor alloys, it can be easily generalized to
other compositions or lattice types (bcc, diamondlike)
and open the way for extending the application of first-
principles electronic structure techniques to a variety of
metal and semiconductor alloys.
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