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The three-dimensional spin-% Ising model with multiple-site interactions provides a natural
framework for describing the temperature-composition phase diagram of substitutional binary al-
loys. We have carried out a “first-principles” approach to this problem in the following way: (i)
The total energy of an 4,_, B, alloy in any given substitutional arrangement of 4 and B on a given
lattice is expanded in a series of interaction energies {J,(V)} of “figures” f. (ii) The N; functions
{J;(V)} for “figures” f are determined as a function of volume V¥ by equating the total energies of a
set of N, periodic structures, calculated in the local-density formalism, to a series expansion in J
with known coefficients. The calculation includes in a natural way atomic relaxation and self-
consistent charge transfer, hence providing a link between the electronic structure and the interac-
tion energies which decide phase stability. (iii) The number N, and range of the interaction energies
needed in such an Ising description is determined by the ability of such cluster expansions to repro-
duce the independently calculated total energy of other structures. We find that this requires ex-
tending the expansion for zinc-blende-based alloys up to the fourth fcc neighbors. (iv) Using such a
“complete” set of N, interaction energies, {J,}, we find approximate solutions to the corresponding
Ising Hamiltonian within the cluster-variation method, retaining up to four-body and fourth-
neighbor terms. A renormalization procedure, whereby distant-neighbor correlations are folded
into a compact set of effective near-neighbor correlations, is used and tested against Monte Carlo
solutions. This yields the phase diagram and thermodynamic properties. The set {J} is also used
to perform a ground-state search of all stable structures. This identifies stable and metastable
phases. This approach has been applied to five III-V pseudobinary alloys (Al,_,Ga,As,
GaAs,_,P,, In,_,Ga,P, In,_,Ga,As, and GaSb,_,As,) and three II-VI pseudobinary alloys
(Cd,_,Hg,Te, Hg,_,Zn, Te, and Cd,_,Zn, Te). We have calculated (i) excess enthalpies, (ii) phase
diagrams, (iii) clustering probabilities, and (iv) equilibrium bond lengths. We discuss in detail the
chemical trends in these properties and offer a simple (“e-G”’) model which reveals the underlying
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physical factors controlling such trends.

I. INTRODUCTION

While recent advances in first-principles formulations
of the Born-Oppenheimer total-energy surfaces of crystal
lattices' "¢ have produced a wealth of information on the
zero-temperature structural properties of solids,” !! rela-
tively little has been done in describing with such tech-
niques temperature-mediated structural transformations
and thermodynamic properties.'>?”2° In this paper, we
apply our recently formulated “first-principles
statistical-mechanics” approach (Ref. 21; hereafter re-
ferred to as I) to study composition-temperature phase di-
agrams of A,_, B, substitutional alloys. Here, one con-
siders a given lattice with N sites, each occupied by either
atom A or atom B in any one of the 2V possible
configurations o, and seeks, as a function of temperature
T and composition x, the phases which minimize the free
energy. The excess internal energy AE (o, V) is expanded
in an hierarchical series of volume (V) -dependent mul-
tisite interaction energies, {J(V)}, of “figures” f; the
convergence of the series is established by increasing the
number and sizes of such figures. The interaction func-
tions {J (V)] are obtained from first-principles self-
consistent total-energy calculations on periodic structures
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exhibiting various arrangements of atoms A and B. The
generalized Ising Hamiltonian?*?* corresponding to the
set {J,(¥)]} is then solved, finding for each (x, T) the mul-
tisite correlation functions and their thermal averages.
These are wused to calculate the enthalpy and
configurational entropy of the various phases; common-
tangent constructions are then used to obtain the phase
diagram. Since we are treating alloys which have the fcc
structure at all compositions, the excess vibrational en-
tropy of the alloy relative to its constituents is small?}
and will be neglected here (this is not the case for?> fcc-
bee alloys). In the present work we apply this approach
to study the phase diagrams of a series of tetrahedral
face-centered-cubic (fcc) pseudobinary semiconductor
alloys Al _,Ga, As, GaAs,_,P,, In,_,Ga,P,
GaSb,_,As,, In; _,Ga As, Cd,_,Hg, Te, Hg,_,Zn Te,
and Cd,_,Zn, Te. Our objectives are as follows: (i) to es-
tablish the extent to which the underlying Hohenberg-
Kohn-Sham local-density approximation! (LDA) used to
obtain the interaction energies {J (V)} is capable of
describing temperature-mediated configurational phe-
nomena through an Ising model, and (ii) to establish
physical trends among tetrahedral semiconductors as per-
taining to patterns of order-disorder and phase separation
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in their pseudobinary phase diagrams.

In Sec. IT we describe the basic methodology of obtain-
ing (x,T) phase diagrams from volume-dependent total-
energy calculations on simple periodic structure. Section
III gives results using these volume-dependent Ising ener-
gies. Section IV analyzes and explains the chemical
trends obtained in terms of a simpler model in which the
interaction energies are transformed to a volume-
independent set, resulting in the addition to the Hamil-
tonian of a global volume-dependent term. Section V
uses this transformed Ising Hamiltonian to search among
all possible configurations for ground-state structures.
Section VI studies the effects of pressure on the phase di-
agram. Section VII provides a summary and a
classification of all zinc-blende alloys in light of our
analysis.

II. CALCULATING PHASE DIAGRAMS
FROM FIRST PRINCIPLES

The method of calculation used here was described in
Ref. 21. In this section we give a brief description of the
salient features as implemented here.

The excess configurational energy AE(o, V') for any of
the 2V arrangements o of atoms 4 and B on a fixed lat-
tice of N sites is defined with respect to the energy of the
pure solids 4 and B at their equilibrium volumes ¥ 4, and
Vg, respectively. AE(o,V) can be rigorously expanded?*
in an infinite series of multiatom interaction energies
J (V) of “figures” f consisting of k vertices (the number
of sites allowed to interact simultaneously) and up to m
neighbors,

AE(U,V)=N2Jf(V)Dfﬁf(U) , 2.1
f

where TT r(o) are lattice averages of products of the spins

of the figure f in configuration o and where D, is its de-

generacy. Calculation of the phase diagram requires the

evaluation of the ensemble average of the excess energy,

denoted by angular brackets:

(AE(V))=N§Jf(V)Df<ﬁf), (2.2)
and the configurational entropy for the different possible
phases (ordered or disordered) of the alloy. The problem
then naturally separates into two parts: (i) “energetics,”
i.e., calculation of {J(¥)} from a microscopic model of
A-B interactions, and (ii) ‘“‘statistics,” i.e., finding the
energy-minimizing correlation functions {(TI,)}. The
free energy, and hence the phase diagram, can be calcu-
lated?! ~ % from these quantities.

A. Energetics

Our first approximation is to assume that the series
(2.1) converges reasonably rapidly and hence can be trun-
cated at some maximum K-body, M-neighbor interaction.
This approximation is then examined by the ability of a
truncated expansion to reproduce the directly calculated
total energy of other structures 0’7o . To the extent that
a finite and ‘“small” set of functions, {J,(V)}, can cap-
ture through Eq. (2.1) the essential energetics of arbitrary
configurations o on a given substitutional lattice, we can
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determine {J/(¥)} from the total energy of a correspond-
ing set of simple periodic structures.!? Specializing Eq.
(2.1) to such ordered structures {s}, we have

AE(s,V)=N§ JA(V)D T f(s) . 2.3)
The left-hand side of Eq. (2.3) is defined as
AE(s,V)=E(4,B,,V)~~ _ZmE(A,,Am,V,,)
- Zm E(B,B,,,Vs) , (2.4)

where 4, A,, or B,B,, denote the pure 4 and B solids,
respectively. Note, therefore, that the scale of AE(s, V) is
not that of the total energy of a given structure (~ 10% eV
for GaAs), or that of the cohesive energy (~5-7 eV for
binary semiconductors), but rather the relative energy of
A,B,, with respect to its constituents (~1072 eV). The
large constant terms appearing in E(s) (e.g., sum of atom-
ic energies) are cancelled in the construct of Eq. (2.4).
We calculate AE(s, V) in the local-density formalism! as
implemented by the general-potential, linear augmented-
plane-wave (LAPW) method.® In one case (GaAs-GaP),
we have used the first-principles nonlocal pseudopotential
method.? In either case, the total LDA energy includes
kinetic-energy, interelectronic Coulomb, and exchange
and correlation terms, as well as the ion-ion and
electron-ion interactions:

E(s,V)= 3 Ne—1 [pox(nidr—13 z,V\(R,),

(g;<eg)
(2.5a)

where

X(r)=Ve(r)+2[V, (r)—¢,(r)] . (2.5b)

Here, N; is the occupation number of level i below the
Fermi energy €, p(r) is the electronic charge density ob-
tained from the self-consistent single-particle wave func-
tions, Z, is the atomic number of atom a at R, V(R,)
is the Coulomb potential at R, due to all electrons and
nuclei except the charge Z, at R,, V- and V,_ are, re-
spectively, the Coulomb and electronic exchange-
correlation potentials, and ¢, is the exchange-correlation
energy density. The Ceperley-Alder exchange-
correlation functional as parametrized by Perdew and
Zunger?> was used for GaSb,_, As, and In,_,Ga As in
the LAPW calculations and in the pseudopotential calcu-
lation; the Hedin-Lundqvist exchange-correlation formu-
1a%® was used for the others. The charge density is deter-
mined self-consistently and variationally from the semi-
relativistic (i.e., retaining all relativistic terms but spin-
orbit interactions) local-density Hamiltonian. For each
unit-cell volume V, we minimize the total energy with
respect to the cell-internal atomic coordinates, thereby
obtaining relaxed energies. To assure effective numerical
cancellation of systematic errors in Eq. (2.4), we use for
A,B,, A, A,, and B, B, precisely equivalent basis sets
and integration methods, and sample the Brillouin zone



8242

by sets of wave vectors k which are geometrically
equivalent in 4,B,,, A, 4,,, and B,B,,. We use for the
zinc-blende structure the two special k points®’’ in the
LAPW calculation and ten special k points in the pseudo-
potential method; equivalent k points are used for all oth-
er structures. Convergence tests with respect to k-point
sampling show that the error in AE is less than 5 meV
per four atoms.?’®’

As shown by Connolly and Williams,'? for a nonsingu-
lar det|TI ;(s)|70 in Eq. (2.3), knowledge of N, equations
of state AE(s, V') provides the N, interaction energy func-
tions

N

1 S [T, (s)] ' AE(s, V) .

J V)=—]‘V7)7

(2.6)

This permits expression of the excess energy of general
configurations ¢ of Eq. (2.1) as a linear combination of
equations of state of periodic structures,

NS
AE(o,V)=3 E(0)AE(s, V), 2.7
where the weights are
§5(a)=z[f_1f(s)]*lﬁf(a) . (2.8)
G

The key problem is to find a set of structures {s} and
figures {f} which affect rapid convergence of Egs. (2.3)
and (2.6). The procedure used is as follows: we select a
set of N, periodic structures {s}, compute the excess to-
tal energies {AE(s,V)} from electronic structure theory
[Egs. (2.4) and (2.5)], and obtain from Eq. (2.6) the N, in-
teraction energy functions {J (V)}. This set is then used
in the series expansion of Eq. (2.3) to predict the total en-
ergies {AE(s’,V)} for another set {s'}5{s} of periodic
structures. This prediction is compared to the directly
calculated values of AE(s’,V) from electronic-structure
theory [e.g., LAPW, see Egs. (2.4) and (2.5)]. The
difference between the energies {AE(s’,V)} obtained

S.-H. WEI, L. G. FERREIRA, AND ALEX ZUNGER 41

FIG. 1. Schematic depiction of fcc pair interactions between
first (J,), second (K,), third (L,), and fourth (M,) neighbors.
Note that J, passes through a single common sublattice (open
circles), while K, L,, and M, pass through two C atoms. More
distant neighbor interactions involve three or more C sites.

from the series-expansion prediction and the ‘“exact”
(LAPW) excess energies is then minimized by varying the
number and types of figures {f} used in Eq. (2.1), estab-
lishing the minimum sizes of K and M required to pro-
duce a given maximum error we are prepared to tolerate.
Our study of isovalent zinc-blende semiconductor alloys
in I showed that to achieve a relative error of few percent
in AE requires retention in Eq. (2.1) of up to fourth fcc
neighbors for M and up to four-body nearest neighbors for
K. These include eight J, ,, terms: (i) a normalization
term Jg,; (i) a sites-only term J,,; (iii) four pair-
interaction terms J, |, J,,, J, 3, and J, 4 between first,
second, third, and fourth fcc neighbors, respectively (ab-
breviated in what follows as J,, K,, L,, and M,, respec-
tively); and (iv) a three-body J;; and a four-body J,,
nearest-neighbor term. Figure 1 depicts by the heavy
dashed lines the pair interactions in the fcc unit cell.
(Note that what is denoted here as, e.g., “first-nearest
neighbors,” refers to first fec neighbors, i.e., 4-B in
A,_,B,C; counting the C atoms too, this corresponds to
second neighbors.) Our study in I has also established an
optimal set of structures {s} consistent with the above re-
quirements. Figure 2 depicts these structures, gives their

Orderii
Vector. (0,0,0) (0,0,1) (2,0,1) (1,1,1)
N Zincbiende Layered I 2 layer Layered |
ame (Sphalerite) tetragonal ‘“Luzonite” | gyperiattice | Chalcopyrite Trigonal
Formula: __n=04AC __n=2ABC; n = 1,3; AsBC, n = 2Z;ABC, n = 2,ABC; | n = 2ABC,
. 4K ¢ P p r
L [: ¢ 3 [ < §
‘o O €e ® O Jo e O ¢ O ‘o e O (@)
Zn S In Ga As As  Cu S A‘l G.l As Cu Fe S 2 g [
(tornary) ZnS-type |inGaAss-type |CusAsS.-type| (AlAs),(GaAs), | CuFeSa-type | CrCuSs-type
(CA) (L1 OrL3) (Z2) (CH) (CcP)
Bravais Lattice: Face centered cubic Simple tetragonal Simpie cublic Simple tetragonal Body centered Rhombohedral
tetragonal
Space Group
Int. Tables: FA3m Pim2 PI3m Pim2 1a2d R3m
Schoentlies: 12 [ T o, D cs

FIG. 2. The crystal structures and their space-group notations (in the International Tables and Schoenflies conventions) for the
special periodic structures used to obtain the interaction energies. In parentheses we give the abbreviated structure symbols (e.g.,
CA, CP, and CH) used in the text.
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space groups, ordering vectors, Bravais lattices, and the
notation used to designate them.

B. Discussion of the energy expansion

Our formulation of the method of obtaining the in-
teraction energies requires some general comments.

(i) Equation (2.6) shows that J,(¥) are combinations of
total energies, i.e., they are not interaction potentials often
used to fit Born-Oppenheimer energy surfaces.?® The
convergence of a series of interaction potentials is often
slow, and should not be used to judge the convergence of
Eq. (2.1).

(i) Use of Eq. (2.5) to calculate the total energy of the
interacting electron plus nuclear systems avoids the use
of the procedure, common in many phase-diagram calcu-
lations,?® ~3? whereby only the sum of single-particle ener-
gies [first term in Eq. (2.5)] is retained. Despite oft-
quoted claims?® ™3 that the remaining terms of Eq. (2.5)
“cancel” (in particular, if charge transfer is ‘“small”), it
was never demonstrated, to our knowledge, that useful
accuracy [i.e., on the scale of AE(o, V)] can be obtained
in such an independent-particle scheme.

(ii1) In the applications of the Ising model to magnetic
interactions,?? there was no reason to assume that the in-
teraction energies {J,} depend on internal variables such
as magnetization. However, it is obvious that when the
endpoint components have different molar volumes
V ,#Vjy, changing the composition x (analogous to
changing the magnetization) of A4,_,B, from zero
(V=V,)to 1 (V=Vp) can change also the alloy volume
V(x). Since the correlation functions are volume in-
dependent, one must represent the volume dependence of
the alloy energy, AE(o,V), by volume-dependent func-
tions J,(¥). We will see that in many cases the volume
dependence of J (V) is significant, leading to predictions
which depart appreciably from those obtained in a simple
Ising model with fixed, volume-independent interactions.

(iv) It was often stated previously in the literature (e.g.,
Ref. 32) that the excess energy AE(oc =R, V) of a ran-
dom (R) structure cannot be represented as a cluster ex-
pansion of the type of Eq. (2.1), and that the energy
AE(o=s, V) of ordered structures s is unrelated to
AE(c=R, V). We have shown in I (see Table VII
therein) that AE(R,V) is, in fact, rapidly convergent in
terms of a series in {J,(V)]. Furthermore, specializing
Eq. (2.1) to a random structure and substituting from it
Js=o(V) into Eq. (2.3) for an ordered structure s, one ob-
tains

AE[s,V(x)]=AE[R,V(x)]

+ 3 (M) -T(R,,
f(#0,1)

2.9

where we have used the property that II,(s)=II,(R) at
the same composition. This establishes the relationship
between the energies of random and ordered structures,
independent of any perturbation expansion.’"3? It fur-
ther shows that while AE(R) is composition dependent,
this does not require J, >, to be composition dependent,
as previously thought in the generalized perturbation
method (GPM).3!"32
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(v) One might wonder if our procedure of describing
the excess energy AE(o,V) of an alloy in an arbitrary
configuration (say, random) by constructs obtained from
ordered structures is likely to be valid, given the often
noted*® differences in the electronic structure of random
and ordered alloys of the same composition. Equation
(2.9) serves to establish explicitly the terms distinguishing
AE(s) from AE(R): the sum of interactions J; g 1)
modulated by the difference in correlation functions. In-
spection of the observed formation enthalpies®”*® AE(s)
of ordered intermetallic phases and the mixing enthal-
pies’® AE(R) of the disordered alloy at the same compo-
sition shows that while both are typically of order of a
few kcal/mol, their difference is often 1 or more order(s)
of magnitude smaller. Hence, despite differences in the
electronic energy levels (Fermi surfaces, band gaps) of
random and ordered compounds, the difference in in-
tegrated quantities such as total energies tend to be small.
This is so since the the dominant J, and J, terms in the
expansion (2.1) are common to both random and ordered
phases at the same composition. In all cases studied, we
find that the expansion of Eq. (2.9) converges rather rap-
idly when the correct volume-dependent J’s are used.

(vi) Alloys whose constituent atoms have strong chemi-
cal interactions or significant size mismatch are known*
to exhibit “structural relaxation” in the sense that the
atomic positions at equilibrium are displaced from
‘“ideal” lattice sites. Such effects are introduced in the
present formalism in a natural way by obtaining J (V)
from relaxed energies AE(s,V). We distinguish three
forms of relaxation: (a) Volume relaxation, whereby the
equilibrium alloy volume is determined through estab-
lishing dAE(o,V)/dV=0. This provides the equilibri-
um (eq) alloy volume V. (x,T) as well as the equilibrium
volumes of ordered phases 0 =s. (b) Cell-internal relaxa-
tion associated with the minimization of AE(s,V) with
respect to the positions of the common sublattice (e.g., C
in A,_,B,C). In typical semiconductors this relaxation
lowers AE(s,V,) by*! up to 80%. (c) Cell-external relax-
ation associated with displacing the mixed ( 4-B) sublat-
tice, e.g., relaxation of the interplanar distances in the
CuPt structure or in the A4,B, “superlattice” (Fig. 2).
This relaxation was found?! to lower AE by ~20%, and
substantially alters the phase diagram. All three forms of
lattice relaxation are included in the present calculation.
Note that in calculations based on the site-coherent-
potential approximation'® (S-CPA), type-(b) and -(c) re-
laxations are ignored. The same is true for GPM calcula-
tions>"32 and for those'>!* based on the approach of Con-
nolly and Williams.'?

(vii) Expansion (2.1) is rigorously correct if all 2V
figures are included;?* it is approximate if truncated. It is
common, in many applications of the Ising model to al-
loys!1416:22=2442 4 postulate the maximum range of in-
teraction, e.g., to retain only the nearest-neighbor term
J,1 or just pair interactions J, ,,; one then often adjusts
J, m to fit transition temperatures (e.g., Ref. 42). Our
study shows that when {J} are calculated from a micro-
scopic model of electronic interactions, such truncations
are often not warranted. For example, our previous stud-
ies of semiconductor-alloy phase diagrams?' showed that
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the series expansion (2.1) departs significantly from con-
vergence if only first-neighbor (“tetrahedron’) interac-
tions (M =1) are retained. Such nearest-neighbor models
were found?! to be nonunique and lead to ~60% errors
in miscibility and order-disorder transition temperatures.
On the other hand, inclusion of second-, third-, and
fourth-neighbor interactions leads to a highly stable rep-
resentation of all aspects of the fcc phase diagram. Note
that calculations based on the CPA (Ref. 13) or on the
GPM (Refs. 31 and 32) or the Connolly-Williams ap-
proach!>!* do not provide an intrinsic mean of assessing
the number of interactions needed to achieve conver-
gence.

C. Statistics

Having established a self-consistent and practically
complete set of interaction-energy functions {J , (V)},
one can proceed to calculate the correlation functions
and free energy by any of the available methods for calcu-
lating the approximate solution of the generalized Ising
Hamiltonian [Eq. (2.1)] underlying {J, ,,(¥)}. The most
straightforward method here is the Monte Carlo*® (MC)
method. A more economical method is the tetrahedron
cluster-variation method®*** (CVM), which provides for
fcc systems an excellent approximation to the Monte
Carlo method, at a fraction of the computational cost.
We refer the reader to Refs. 23 and 44 for a discussion of
the CVM (comparison between CVM and MC solutions
to the same Ising Hamiltonian is deferred to Sec. IV E).
Our calculation here is naturally divided into that for or-
dered and disordered structures.

1. Statistics for ordered structures

Equation (2.2) gives the average alloy energy in terms
of the average product {TI f) of the spin variables at the
vertices of figure f. This average represents (i) an ensem-
ble average (denoted by angular brackets), and (ii) an
average over equivalent sites in the lattice (denoted by an
overbar). An ordered structure has generally a lower-
symmetry space group than the disordered alloy, and
hence sites which were equivalent in the disordered phase
need not be equivalent in certain ordered phases. In gen-
eral, when figures with vertices corresponding to different
sublattices must be considered distinct, we have

(AE(M)=N3 J(V)D,(Il/), (2.10)
s

where the correlation function (Hf> (without an over-
bar) has been redefined with respect to the ordered space
group. The variational value of the free energy,
AF=AE —T AS, is searched by minimizing it simultane-
ously with respect to all {(Il,)}, i.e., 3AF /3(II,)=0.
This is done in practice using a Newton iteration
scheme*® (limiting, however, the steps in (Ilf) so that
the reduced density matrix* remains positive at each
step). More details are given in Refs. 24, 44, 45, and 47.
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The basic remaining question is how many figures
should be used for the energy expansion in Eq. (2.10) and
for the entropy expansion* (the two need not be the
same). In paper I we have addressed the first question,
finding that for fcc semiconductors one needs to include
in Eq. (2.10) figures up to fourth-nearest-neighbor pairs
(eight figures). This was decided on the basis of energy-
convergence tests (Tables V and VII in paper I). Naively,
one would have guessed that the same figures should be
used in evaluating the entropy term. However, previous
calculations*® suggest but small (and irregular) changes in
AS as the figures used to calculate it extend beyond a
tetrahedron. In fact, the tetrahedron approximation pro-
vides excellent estimates of the configurational entropy as
calculated by accurate Monte Carlo simulations; see Fig.
15 below. We hence calculate the entropy by limiting the
correlation functions to a nearest-neighbor tetrahedron.
This strategy of extending {f} for energy calculations
beyond the limit used for entropy calculations is executed
by our renormalization procedure,”! whereby higher-
order correlations are folded into tetrahedron correla-
tions. This leads us to our second approximation (the
first was discussed in Sec. I A): If a figure has two spin
variables separated by a distance larger than some critical
distance d,,, they will be assumed to be statistically un-

correl/qte;\i. Hegce, if a figure ¢ has sites ,f3, ..., and
My=S,Sp---S,, we will assume
((8,—g)S5—g5) - (8,—¢,))=0 (2.11)

if ¢ is outside the range d,,, where g, =(S,). Using
d ., =first-neighbor distance, this leads for ordered struc-
tures to

(I, Y =<1, )T, ;) , 2.12)

for m > 1 as proposed by Morita.*” Here the vertex la-
beled 1’ may belong to a different sublattice than the ver-
tex labeled 1. Note that as T—0 and the partially or-
dered structures become perfectly ordered, the point
correlation functions (II;,) and (Il,.,) become either
+1 (if the sublattice has atoms B) or —1 (if 4), and so
does the pair correlation (II,,, ). In this case the aver-
age in the fcc lattice, ¢ ﬁZ,m ) (note the overbar), calculat-
ed in Eq. (2.12) reduces to the ﬁz,m of the perfectly or-
dered phases. When T— o the sublattices become
equivalent and (1T, ,, ) reduces to (2x —1)%

2. Statistics for the disordered phase:
The renormalized interaction approach

Our basic approximation of Eq. (2.11) for renormaliza-
tion of distant-neighbor correlations led to Eq. (2.12) for
ordered structures. For the high-symmetry disordered
phase, g, of Eq. (2.11) is simply 2x —1; hence, for m > 1,

(I, ) =(I, | )?=(2x —1)*. (2.13)
This leads to a simple renormalization of the distant-
neighbor interaction energies, whereby the volume-



41 FIRST-PRINCIPLES CALCULATION OF TEMPERATURE- . ..

dependent set {J (V)} transforms into a volume- and
composition-dependent set {J,(x,¥)}. While {J (V)]
has figures { f} extending beyond d,, (e.g., to fourth pair
interactions), the set {jg(x, V)} is limited to g within the
range d,, (i.e., in our example to first neighbors, i.e., five
g values), and folds figures with f > g into the set {g}:

T, V) =J,(N+ 3 A,x)J(V). (2.14)

f(>g)

The ensemble-average energy for the disordered phase
[Eq. (2.10)] then becomes

AEC(V))=N3Z Dy T, (x, V) (T, ), (2.15)
k

where the sum extends only to figures within d,,, i.e.,
here to a nearest-neighbor tetrahedron.

It is useful to define?! the effective equations of state
£ ({P,},V) which depend on composition and tempera-
ture through the probabilities P, =P, (x,T). We found in
practical applications?! that this temperature dependence
is negligible in the range 0 < T <40000 K; hence, replac-
ing the variational P,(x,7T) by the value P;(x, ) ap-
propriate to the random alloy introduces numerically
insignificant errors in the phase diagram. Explicit equa-
tions are given in Egs. (6.15)-(6.16) of Ref. 21. These
effective equations of state can be used to express the en-
semble average of the total energy, Eq. (2.15), as?!

(AE(0,V))=3 P,&,(x,V), (2.16)

where P, are the effective probabilities of finding cluster
n.

Neglecting distant-neighbor interactions J,,,=0 in
Eq. (2.14) gives the simple first-nearest-neighbor model
used in many previous applications of the Ising model to
alloys.'2141622.23 Using Eqs. (2.13)-(2.16) instead, we in-
clude further-neighbor interactions without introducing
any major complication over the nearest-neighbor model.

It is interesting to observe how the inclusion of
distant-neighbor interactions modifies the equations of
state €, (V) relative to the five simple first-nearest-
neighbor unnormalized equations of state AE(n,V). For
this purpose it is useful to represent both by the same an-
alytic form,

€, (V)=AH,+f[V,,B,.B ],
AE(n,V)=AH,+f[V,,B,.B,],

(2.17)

where the equilibrium energies are AH, and AH,, respec-
tively, and [V,,B,,B ,] and [ V,,B,,B,] are the equilibri-
um volume, bulk modulus, and the latter’s pressure
derivative; values with an “overtilde” denote results ob-
tained with renormalized interactions. This comparison
is given and discussed in Sec. III G.

While intuitively appealing, our second approximation
of Eq. (2.11) requires demonstration. In Sec. IVE we
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compare the phase diagram calculated with the CVM
and folded interactions to that obtained from a Monte
Carlo simulation on the same Hamiltonian, but retaining
J5,2, J,3, and J, 4 without folding. The results show that
virtually no precision is lost by the folding procedure.

ITII. RESULTS

This section describes the phase diagrams and thermo-
dynamic properties obtained from the Ising model with
volume-dependent interaction energies.

A. AE(s, V) for the ordered structures

Table I gives for each of the eight alloy systems studied
the calculated equilibrium lattice constants, cell-internal
relaxation parameter u, and the formation enthalpy
AE(s,V,)=AH, of the eight periodic structures of Fig. 2.

The results can be classified into two groups: those for
the nearly-lattice-matched alloys (Al1As-GaAs and CdTe-
HgTe) and those for the lattice-mismatched alloys (all the
rest).

For the lattice-matched structures, we find the order of
formation enthalpies

AH(CA)>AH(CH)>AH(CP)>AH(Z2) , (3.1)
whereas for the lattice-mismatched systems we find
AH(CP)>AH(CA)~AH(Z2)>AH(CH) (3.2)

(the structure symbols CP, CA, Z2 and CH are defined in
Fig. 2). The order in the first sequence has been previous-
ly explained®® in terms of the electrostatic energies of
these lattices at fixed volume, whereas the order in the
second sequence has been shown to reflect the ability of
the different lattices to reduce the strain energy associat-
ed with atomic-size mismatch through structure-
dependent relaxation patterns.

Lattice-matched systems exhibit little structural relax-
ation (u =7 in Table I), whereas lattice-mismatched sys-
tems show significant relaxation, leading to dissimilar
A—C and B—C bond lengths. The equilibrium lattice
constants tend to be linear with composition, and exhibit
a very weak dependence on the crystal structure for fixed
compositions.

For all of the six ternary structures studied in the eight
alloy systems, we find

AE(s,V,)=AH, >0, (3.3)
i.e., a phase-separated 4AC + BC systems is lower in ener-
gy than any of these ordered structures. In recent
work,** however, we find AH(AlInP,) <0 in the chal-
copyrite structure.

Other total-energy calculations exist in the litera-
ture®®™ 3 for a few of the compounds studied here. The
results are compared in Table II (Refs. 50-55) for the
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(Continued).

TABLE 1.

E(.v)

AH,

(meV /four-
atoms)

E(:)
(meV /four-
atoms)

AH;

(meV /four-
atoms)

(meV/four-
atoms)

e
(A)

Struct.

Compound

Struct.

Compound

0.0
—100.53

0.0
33.0
103.5

6.470 0.25

ZB
L1

CdTe

0.0

—80.3
—104.66

0.0
88.0
132.0

6.1068 0.25

6.0071

ZB
L1

GaSb

0.2397
0.2393
0.2608

6.368
6.263

Cd 3ZI1TC4
CdZnTe,

0.2417
0.2410
0.2590

Ga4Sb3AS
Ga,SbAs

—81.11

CP

5.8974

CP
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0.25

6.158

6.052

L3
ZB

CdZn;Te,
ZnTe

—87.30

100.0

0.2579
0.25

5.7852
5.6816

L3

Ga,SbAs;
GaAs

0.0

0.0

0.0

0.0

ZB

binary constituents where experimental data®® is also in-
cluded and in Table III for the ABC, CuAu-I structure.
Note that pseudopotential calculations®*~* tend to pro-
duce systematically smaller equilibrium lattice constants
for binary semiconductors with d-shell cations than do
the all-electron (e.g., LAPW) approaches. The difference
is substantial in systems where the anion valence p-orbital
energy is close to the highest occupied cation d-orbital
energy (e.g., HgTe). The origins of this effect is probably
the absence of p-d repulsion in the pseudopotential repre-
sentation, and this was discussed in detail in Ref. 57. Our
calculated excess energies for the CuAu-I structure
(Table III) are systematically lower than that obtained by
Bogouslawski and Baldereschi,’! while the relaxation pa-
rameters and the strain energies of the binary constitu-
ents are similar. We attribute the former difference to a
better convergence in basis functions in the present (all-
electron) calculation. Our results for AlGaAs, are close
to those of Bylander and Kleinman,** for InGaAs, to
those of Ohno,’? and for Ga,SbAs to those of Qteish
et al.®® The results of Nelson and Batra®® for InGaP, are
significantly different, presumably due to poor conver-
gence.

For convenience of calculation, we have fitted each
AE(s,V) to a volume-dependent (Murnaghan)’®*° equa-
tion of state whose parameters are B; and B, (the bulk
modulus and its pressure derivative, respectively), and ¥V,
(the equilibrium volume). In the course of the work de-
scribed in I, we found that the numerical errors associat-
ed with obtaining high derivatives of AE(s, V) (i.e., B,
and B,) for the ternary compounds can be as large as
~10% for B and even larger for B/, leading to an ~5%
uncertainty in the calculated miscibility gap. Calculation
of the phase diagram for a prototype system (GaAs-
GaSb) showed?! that use of the concentration-weighted
linearized quantities

V==X,V 4 +X,Vac ,
B,=(1—X,)B ;c+X,Bsc , (3.4)

B.=(1—X,)B'yc+X,Bpc ,

where X, is the fraction of B atoms in the ordered struc-
ture, produced results that are within the range obtained
from AE(s,V) with numerically computed {V,,B;,B,},
given the error in the latter. We hence judge approxima-
tion (3.4) to be both useful (since it requests a full volume
scan only for AC and BC, and only a limited scan, near
equilibrium, for the intermediate compounds) and
sufficiently accurate (~5% in miscibility temperature).
It is important to note that while { V,,B,,B,} are linear-
ized for the ordered structures, the formation enthalpies
AH, are not linearized, as they obviously exhibit
significant deviation from zero.

The first three columns of Tables IV and V give the
calculated V,, B, and B, values for the eight semicon-
ductor systems studied here; Table I gives AH,. This
defines the full input to the phase-diagram calculations.
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TABLE II. Comparison of the calculated equilibrium lattice constants (in A) of the zinc-blende semiconductors discussed in this
study, as obtained from various nonlocal first-principles pseudopotential (ps) and all-electron (AE) implementations of the local-
density formalism. For comparison, low-temperature experimental values are also shown. References below indicate the basis-set
cutoff (E, ) and type of exchange correlation (xc) used in each case.

Present
a b c d e f g LAPW
(ps) (ps) (ps) (ps) (ps) (ps) (ps) (AE) Expt.}
AlAs 5.6696 6.657 5.662
GaP 5.31 5.406 5.34 5.462 5.451
GaAs 5.613 5.57 5.572 5.56 5.6548 5.682 5.653
GaSb 6.01 5.96 6.107 6.096
InP 5.60 5.75 5.918 5.869
InAs 5.95 5.905 6.084 6.058
ZnTe 5.618 6.052 6.089
CdTe 5.818 6.470 6.481
HgTe 5.616 6.492 6.461

“Reference 50, E| =10 Ry, 48 superlattice k points, Wigner xc.

®Present pseudopotential study, E, =15 Ry, 10 k points, Ceperley-Alder xc.
‘Reference 51, pseudopotential, E; =12 Ry, two k points, Ceperley-Alder xc.
dReference 52, pseudopotential, E, =13 Ry, 12 superlattice k points, Wigner xc.
‘Reference 53, pseudopotential, E; =12 Ry, two k points, Ceperley-Alder xc.
fReference 54, Gaussian basis, 12 k points, Wigner xc.

8Reference 55, pseudopotential, E, =8 Ry, two k points, Hedin-Lundqvist xc.
"Reference 56.

TABLE III. Calculated formation enthalpies AH (in meV/four-atoms) of the n=1 (001) superlattice
(the CuAu-I-like structure) using pseudopotential (ps) and the present all-electron (AE) implementa-
tions of the local-density formalism [Ref. 27(b)]. We also show the cell-internal distortion parameters u
and the “constituent strain energies,” i.e., the energy AE,, of the binary constituents constrained in the
parallel dimension to a substrate @, (and relaxed in the perpendicular dimension). Note that
AH —AE_, is the “epitaxial formation enthalpy” 8H (see Ref. 41). This quantity was found to be posi-
tive for GalnP, and GalnAs, in the ps calculations of Ref. 51, but it is close to zero or negative in the
present AE calculation. References pertain to the notation of Table II.

ag u or AH
(A) u—+ (meV /four-atoms) Ref.
GaAlAs, 5.6622 T 15.1 a
5.6569 T 11.5 present
GalnP, 5.45 0.2317 54.4 b
5.530 0.23 115.6 c
5.6905 0.2257 91.0 present
GalnAs, 5.756 0.233 83.6 c
5.701 0.234 60.1 d
5.883 0.230 66.7 present
Ga,AsSb 5.812 0.234 129.2 c
5.76 0.234 114.8 e
5.8927 0.2336 115.0 present
GaP+InP a;,=5.53 102.8 c
on a; a, =5.6905 98.0 present
GaAs+InAs a,=5.76 54.0 c
on ag a,=5.70 534 d
a,=5.883 72.1 present
GaAs+GaSb a;,=5.81 81.2 c
on a a;,=5.893 80.0 present

*Reference 54.
"Reference 50.
‘Reference 51.
dReference 52.
‘Reference 53.
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TABLE IV. Calculated values of the equilibrium molar volumes V,,, the bulk moduli B,, and their
pressure derivatives B, for III-V alloys. Values in parentheses are interpolated as indicated in Eq. (3.4).

Also given are the values deduced from the renormalized equations of state, indicated with an overtilde
(see Sec. III G).

v, B, v, B, AH,
Compound  (cm*/mol) (GPa) B, (cm®/mol)  (GPa) B (meV /four-atoms)
AlAs 27.254 74.0 5.0 27.254 74.0 5.0 0.0
Al;GaAs, 27.254 74.0 5.0 27.254 74.0 5.0 6.68
AlGaAs, 27.254 74.0 5.0 27.254 74.0 5.0 8.85
AlGa;As, 27.254 74.0 5.0 27.254 74.0 5.0 6.42
GaAs 27.254 74.0 5.0 27.254 74.0 5.0 0.0
GaAs 26.631 75.6 4.0 26.631 56.31 4.13 0.0
Ga,As;P (25.920) (78.275) (4.0 25.917 58.69 4.07 0.00
Ga,AsP (25.209) (80.950) (4.0) 25.205 61.02 4.01 12.49
Ga,AsP; (24.498) (83.625) (4.0 24.495 63.30 3.95 9.02
GaP 23.787 86.3 4.0 23.787 65.52 3.89 0.0
InP 31.209 68.70 4.31 31.209 52.40 2.03 0.0
In;GaP, (29.538) (72.875)  (4.38) 39.500 53.61 2.23 11.54
InGaP, (27.868) (77.050)  (4.45) 27.811 54.62 2.45 34.53
InGa,P, (26.197) (81.225) (4.52) 26.150 55.40 2.65 37.40
GaP 24.527 85.40 4.59 24.527 55.86 2.87 0.0
GaSb 34.287 51.8 6.78 34.287 36.08 8.15 0.0
Ga,Sb;As (32.619) (57.5) (6.54) 32.590 40.61 6.17 48.94
Ga,SbAs (30.951) (63.2) (6.30) 30.887 43.64 4.03 60.57
Ga,SbAs; (29.283) (68.9) (6.06) 29.205 44.56 1.37 56.05
GaAs 27.615 74.6 5.82 27.615 36.08 —2.45 0.0
InAs 33.905 58.70 4.15 33.905 44.07 —0.79 0.0
In;GaAs, (32.332) (62.68) (4.57) 32.288 44.74 1.27 21.95
InGaAs, (30.760) (66.65) (4.99) 30.714 46.42 3.63 24.56
InGa;As, (29.187) (70.63) (5.40) 29.168 48.98 6.21 29.42
GaAs 27.615 74.60 5.82 27.615 52.52 8.83 0.0

TABLE V. Calculated values of the equilibrium molar volumes V,, the bulk moduli B,, and their
pressure derivatives B, for II-IV alloys. Values in parentheses are interpolated as indicated in Eq. (3.4).

Also given are the values deduce from the renormalized equations of state, indicated with an overtilde
(see Sec. ITI G).

Vv, B, v, B, AH,
Compound (cm’/mol)  (GPa) B, (cm’/mol)  (GPa) B (meV/four-atoms)
CdTe 40.776 44.00 4.40 40.776 45.0 4.5 0.0
Cd;HgTe, (40.880) (44.53)  (4.45) 40.881 45.0 4.5 10.06
CdHgTe, (40.985) (45.05) (4.50 40.985 45.0 4.5 11.63
CdHg;Te, (41.089) (45.58)  (4.55) 41.089 45.0 4.5 6.85
HgTe 41.193 46.10 4.60 41.193 45.0 45 0.0
HgTe 41.193 46.1 4.60 41.193 34.77 0.91 0.0
Hg:ZnTe, (39.238) (47.6) (4.65) 39.177 33.48 0.75 11.19
HgZnTe, (37.283) (49.1) (4.70) 37.184 31.88 0.47 17.87
HgZn;Te, (35.328) (50.6) (4.75) 35.235 29.99 0.09 15.53
ZnTe 33.373 52.1 4.80 33.373 27.90 —0.45 0.0
CdTe 40.776 44.00 4.40 40.776 35.55 1.19 0.0
Cd;ZnTe, (38.925) (46.03)  (4.50) 38.884 35.47 1.49 16.05
CdZnTe, (37.074) (48.05)  (4.60) 37.015 35.36 1.83 29.33
CdZn;Te, (35.224) (50.08) (4.70) 35.176 35.21 2.21 26.55

ZnTe 33.373 52.10 4.80 33.373 34.99 2.65 0.0
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B. Multiatom interaction energies J (V)

Using {AE (s,V)} for the eight special periodic struc-
tures (Fig. 2) and Eq. (2.6), we obtain the volume-
dependent interaction energies depicted in Fig. 3 for
three alloy systems. These show the following.

(1) Jo(V) and J,(V) have a significant volume depen-
dence; Jo(¥) is much larger at x = than all J,.,. Many
applications of the Ising model to alloy phase dia-
grams?2232%42 peglect this volume dependence. Since the
correlation functions for a random alloy are

M, (R)=2x—1)k, (3.5)

all but the k =0 term vanish at x =1. Hence, J; at x =1
gives the energy of the random alloy at this composition:
AH(R, x=1)=Jy(V(x =1)). Since J, is by far the larg-
est of all interaction energies at x =1, the energy of the
random alloy at x =1 dominate the expansion of Eq.
(2.9).

(i1) Three- and four-body terms are rather small for
semiconductor alloys.

(ii)) Regarding the pair interactions J, ,, between m
neighbors, we find J,; (first-neighbor pair) to be dom-
inant. Yet the fourth-neighbor interactions J,, are
larger than the second- (J,,) and third-neighbor (J, ;)
pair interactions. This result is found to hold for all eight
semiconductor systems, and was previously noted® to
hold in binary fcc transition-metal alloys. Figure 1 shows
that J, , indeed encompasses the most direct path be-
tween non-first-neighbor atoms. This nonmonotonicity
of J, ,, with m,

2R P A v A E T AN I (3.6)

serves as a warning against simple truncation of the ener-
gy expansion (2.2) on the basis of an hierarchy in m.
Note (Fig. 1) that while J,, passes through a single C
site, and J,,,J,3,J,4 all pass through two C sites,
further-neighbor interactions pass through more than two
C sites and are hence considerably smaller.

C. Formation and mixing enthalpies

Figures 4 and 5 show the reduced mixing enthalpy
(“interaction parameter”’)

S.-H. WEI, L. G. FERREIRA, AND ALEX ZUNGER
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Qx, T)=AH(x,T)/x(1—x) (3.7)

for the disordered alloy at two temperatures (solid lines),
and the analogous quantity (reduced formation enthalpy)
for the ordered compounds s at T =0 K,

A

O.(X,, T=0 K)=AE(s,V,)/X,(1—X,) , (3.8)

depicted as solid diamonds. Table VI gives our calculat-
ed Q(x,T) at x =0, 1,and 1 at T=800 K. In Ref. 20 we
calculated AH(x =4, T=300 K) for GaAsSb using the
same approach as here, but the fourth-neighbor pair in-
teraction J,, was not included. This gave
AH(x =4, T=300 K)=103 meV/four-atoms, or
Q(x=1)=4.75 kcal/mol, instead of AH(x =1, T=800
K)=86 meV/four-atoms, or {(x =1)=3.96 kcal/mol
given here in Table VI.

The basic features of our results in Figs. 4 and 5 are as
follows.

(i) For size-mismatched alloys, the (201)-type structures
such as chalcopyrite have lower enthalpy than the disor-
dered alloy. We will see in Sec. V that this will lead to
metastable long-range ordering of size-mismatched semi-
conductor alloys, as indeed seen in liquid-phase-epitaxy
growth of® In,_ Ga,As and in vapor growth of®'~%3
GaSb,_,As,.

(ii) For size-matched alloys, the disordered alloy has a
lower enthalpy than any of the studied simple ordered
structures; hence no thermodynamically mandated order-
ing is expected in size-matched semiconductor alloys. The
CuAu-I-like ordering seen by Kuan et al.* in
Al,_,Ga, As is likely to be surface induced.

(iii) The CuPt phase, recently observed in epitaxial
growth of size-mismatched semiconductor alloys,* ™78 is
characterized by a considerably higher enthalpy than the
disordered alloy; hence bulk effects produce neither stable
nor metastable CuPt ordering in size-mismatched semicon-
ductor alloys.

(iv) Q(x,T) has a significant composition dependence,
neglected by most previous phenomenological mod-
els.””"% Note that when B is the smallest of the two
atoms in A4,_,B,, we find that Q(x =0)<Q(x =1).
This reflects the fact that it requires more energy to in-
corporate a large atom A in a small host crystal B (i.e.,
x —1) than to incorporate a smaller atom B in a large

TABLE VI. Calculated miscibility-gap temperatures Ty, composition xyg =X (Tyg), interaction parameters Q(x) of Eq. 3.7)
at T=2800 K, and spinodal ordering temperatures for a number of long-range-ordered phases (defined in Fig. 2 and Table XI).

Interaction parameters

Ordering temperatures

Tumc (kcal/mol) (K)

(K) XMG Q) Q) Q) Ten Te Tc, T
Al,_,Ga,As 64 049 0.30 0.30 0.30 0 0 0 0
GaAs,_ P, 277 0.603 0.53 0.86 1.07 75 91 67 80
In,_,Ga,P 961  0.676 2.92 3.07 4.60 463 305 215 450
GaSb, _, As, 1080 0.595 3.78 3.96 4.51 285 170 139
In,_,Ga,As 630  0.770 2.68 235 3.56 320 167 136 80
Cd,_, Hg,Te 84 040 0.45 0.38 0.31 0 0 0 0
Hg,_,Zn,Te 455 0.560 2.13 1.88 2.15 256 135 87 200
Cd,_,Zn,Te 605  0.623 2.24 2.29 2.87 270 158 117 205
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FIG. 3. Volume-dependent interaction energies J; ,,( V) for three semiconductor alloys; see Eq. (2.6). Here, J, =/, J,,=K;,
Jy3=L,, and J, ,=M, are pair interactions between first, second, third, and fourth fcc neighbors. J; and J, are three- and four-
body nearest-neighbor interactions, respectively.
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host crystal 4 (i.e., x —0).

(v) Unlike the situation in metallic alloys,’® no direct
calorimetric measurements exist for AH(x,T) in semicon-
ductor alloys. Currently available values’”® % were ob-
tained by fitting the observed liquidus and solidus lines to
simple thermodynamic models whose adjustable parame-
ters include Q. This procedure can lead to substantial
uncertainties, depending on the type of model used and
the number of parameters varied simultaneousl}y, e.g., for
GaAs, _ P, Brebrick and Panlener® find that Q= —1.72
or +2.06 kcal/mol produce similar fits in strictly
regular-solution models. Table VII compares our pre-
dicted values of Q(x = 1, T=2800 K) to the experimental-

ly available data.”” %" The results are also compared to
the fit of Stringfellow® to his “delta-lattice-parameter”
(DLP) model, those obtained by Martins and Zunger®
from an elastic model, and to the empirical tight-binding
perturbation model of Sher et al.°® Our present first-
principles results seem to agree with the available data,
given the great uncertainty in the latter. However, better
experimental precision will be needed to further assess
the theoretical model. Despite the uncertainties, our
parameter-free calculation does reproduce the global
trends evident in the data, e.g., the rapid increase of Q
with the relative size mismatch |a , —ag|/|a  +ap| and
its decrease with ionicity for a fixed size mismatch (e.g.,
Cd;_,Zn,Te and In,_,Ga,As have a similar size
mismatch, yet the former, more ionic, compound has a
smaller ).

(vi) The reduced enthalpy {(x,T) of disordered semi-
conductor alloys is temperature dependent, although this
was neglected in simple phenomenological parametriza-
tions of semiconductor-alloy phase diagrams.® % OQur
calculated temperature dependence of AH(x =1,T) is
depicted in Figs. 6 and 7. Interestingly, as the tempera-
ture is lowered, AH(x,T) becomes less positive. This
reflects spatial correlations in the alloys which we discuss
next.
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D. Spatial correlations in the disordered phase

The calculated weights P, (x, T) of Eq. (2.16) reflect the
short-range order in the alloy as they measure the proba-
bility of finding cluster 4,_,B, at (x,7). In the simple
case of a perfectly random (R) alloy, the probability is
given by

PR(x)=($)x"(1—x)*". (3.9)

In Figs. 8 and 9 we depict the excess probability of the ac-
tual alloy relative to a random alloy at the same composi-
tion,

AP, (x,T)=P,(x,T)—PR(x) . (3.10)

It vanishes as T— o when the alloy becomes perfectly
random. Despite the fact that both size-matched and
size-mismatched alloys have AH(x,T)>0 and AH, >0,
and would hence appear to exhibit repulsive interactions,
we find the following.

(i) For size-matched alloys, AP,(x,T) exhibits enhance-
ment of the A, (i.e., n =0) and B, (i.e., n =4) clusters
over what random statistics would grant (“clustering”),
while the mixed 4AB;, A,B,, and A4;B clusters are gen-
erally deficient relative to the random alloy.

(i1) For size-mismatched alloys the opposite is true: the
A, and B, clusters are deficient, while the mixed clusters
are generally in excess (“anticlustering”). Clearly, AH it-
self does not explain clustering versus anticlustering.
This will be explained in Sec. IV B.

E. Phase diagrams

1. Disordered phases

Figures 10 and 11 depict the calculated phase diagrams
of the eight alloy systems in the high-temperature range
where disordered alloys exist. The calculations show the
binodal (“miscibility”’) line as well as the spinodal. The

TABLE VII. Comparison of calculated interaction parameters (in kcal/mol) at 7=800 K [Eq. (3.7)] with values deduced from ex-
periment (“model-dependent fits”) and with various calculations. These include the ‘“‘delta-lattice-parameter” (DLP) model and the

tight-binding (TB) perturbation model.

Qb Model-dependent fits DLP Elastic TB

System (present) to data model model* perturb.'
Al,_.Ga,As 0.30 0.0,>® —0.01° 0.00 0.0 —0.07
GaAs,_, P, 0.91 0.368,9 0.4,® 1.258,° 1.0° 0.985 1.15 0.94
In,_,Ga,P 3.07 3.40,7 3.5,° 3.575,¢ 3.258 3.63 4.56 2.54
GaSb, _, As, 3.96 4.00,7 4.5,% 4.27° 3.36 4.58 3.67
In,_.Ga,As 2.35 2.0, 3.0,> 2.51,¢ 1.658 2.815 2.49 1.60
Cd,_,Hg,Te 0.38 1.40," 0.72' 0.00 0.00 —0.07
Hg,_.Zn,Te 1.88 3.0 1.81 1.91 1.50
Cd,_,Zn, Te 2.29 1.34 1.97 2.12 1.24

?Reference 79.
bReference 80.
‘Reference 81.
dReference 82.
‘Reference 83.
fReference 84.

EReference 85.
"Reference 86.
'Reference 87.
JReference 89.
kReference 90.
'Reference 91.
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FIG. 6. Temperature dependence of the mixing enthalpy AH'?/(x =1, T) and free energy AF'”(x =1, T) of the homogeneous
disordered (D) alloys and ordered compounds CH (chalcopyrite), CP (CuPt) and CA (CuAu). The arrows denote the miscibility-gap
temperature where d?AF /dx? changes sign. Dashed lines denote unstable regions. This figure gives results for the III-V alloys (a)
Al,_,Ga,As, (b) GaAs,_,P,, (c) In,_,Ga,P, (d) In,_,Ga,As, and (e) GaSb,_, As,.

binodal is the line in the (x,7T) plane where the A- and
B-rich disordered phases have equal chemical potentials
. The spinodal line describes the limit of metastability
of the disordered phase when d*F/dx*=du/dx =0, F
being the free energy.

In all cases we find that the thermodynamically stable
ground state corresponds to phase separation. The phase
diagrams are generally asymmetric with respect to x =1.
Table VI gives the calculated maximum miscibility-gap
temperature T and the composition x,; where it
occurs.

Experimental data on the solid-state part of
semiconductor-alloy phase diagrams are fragmentary:
While detailed data exist on the high-temperature
liquidus and solidus lines,”? the low atomic-diffusion con-

stants at lower temperatures make such studies in solid
semiconductors difficult. A notable exception is the re-
cent data of Ishida et al.”® for GaSb,_,As, shown in
Fig. 10(e), exhibiting close agreement with the calcula-
tion. Less complete results for this system are given by
Gratton and Woolley.** Bublik et al.® have calculated
the solid-solid phase diagram of a number of semiconduc-
tor alloys, finding for GaAs,_ P, Al _,Ga,As,
In,_,Ga,P, and In,_,Ga,As miscibility-gap tempera-
tures Ty of 514, 400, 996, and 875 K, respectively. Us-
ing a simple-solution theory, Stringfellow?®®"9®) calcu-
lated empirically the values 246, 0, 908, and 629 K [729
K in Ref. 96(c)], respectively, while for GaSb,_, As, he
finds Ty =856 K. In their semiempirical model,”’
Letardi et al.®”® and Czyzyk et al.””® find a rather
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FIG. 7. Like Fig. 6 (see caption), but for the II-VI alloys (a) Cd,_,Hg, Te, (b) Hg,_,Zn, Te, and (c) Cd,_ Zn, Te.
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FIG. 8. Excess cluster probabilities P,(x,T) at T=800 K,
with respect to the values obtained for a perfectly random (R)
alloy [Eq. (3.10)]. Observe the (small) clustering in the size-
matched Al,_,Ga,As system and the (larger) anticlustering
found in the size-mismatched systems (all others). Results are
given for the III-V systems whose clusters are denoted (a)
Al,_,Ga,As,, (b) GasAss_,P,, () In,_,Ga,P,, (d)
In,_,Ga,As,, and (e) Ga,Sb,_,As, for 0<n <4,
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unusual phase diagram for Cd,_,Zn Te, In,_,Ga,As,
and In;_,Ga,P, exhibiting a set of local minima and
maxima in the binodal lines, which we do not find. Their
Ty values are 320, 483, and 620 K, respectively, while
for Al,_,Ga,As they find T =360 K.

2. Metastable ordered phases

The persistently lower formation enthalpy of the
ABC, chalcopyrite structure relative to the disordered
phase in size-mismatched alloys (Figs. 4 and 5) suggests
the possibility of metastable long-range ordering into this
structure. We calculated the temperature limit of stabili-
ty for this phase, according to

2
OF .
ox?
The results are summarized in Table VI under “ordering
temperature.” At thermodynamic equilibrium the sys-
tem phase separates below T into AC- plus BC-rich

(3.11)
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FIG. 9. Same as Fig. 8 (see caption), but for the II-VI alloys
whose clusters are denoted (a) Cd,— ,Hg,Tes, (b) Hgy,Zn, Te,,
and (c) Cd4—,Zn, Te,.
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FIG. 10. Calculated phase diagrams for the III-V alloys (a)
Al,_,Ga,As, (b) GaAs,_P,, (c) In,_,Ga,P, (d) In,_,Ga,As,
and (e) GaSb,_,As,. The solid (dashed) lines give the binodal
(spinodal) lines. Low-temperature observed ordered phases are
not shown (given in Tables VI, X, and XI). The arrows point to
the maximum miscibility-gap (MG) temperatures and composi-
tions. The circles in (e) are the recent experimental data of Ref.
93; the horizontal line represents the peritectic line.

mixtures, while above T an homogeneous alloy per-
sists. If, however, phase separation is kinetically inhibit-
ed, metastable long-range ordering will persist below T,
(Table VI). These structures are metastable in a very
specific manner: they are stabler below T, than the
homogeneous disordered alloy, but unstable with respect
to phase separation. Note that other ordered structures
such as CuPt or CuAu-I are not metastable: they are un-
stable both with respect to disordering and phase separa-
tion. This result highlights the significance of interac-
tions beyond first-nearest neighbors: retaining interac-
tions only up to first neighbors (J,) leads to a degeneracy
of the energies of the CuAu-I and chalcopyrite struc-
tures. Tables I (showing AH,) and VI (showing T) clear-
ly demonstrate that this is not the case. A complete dis-
cussion of these ordered metastable phases is postponed
to Sec. V, where a full search of ground state structures is
discussed.

F. Alloy bond lengths

Equations (2.7) and (2.8) describe the proportion (o)
that ordered clusters s occupy in an alloy of configuration
o. If each structure s has bond lengths R (s, V(x)) and
Rpc(s,V(x)) at composition x, the average alloy bond
length can be described as

100
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FIG. 11. Like Fig. 10 (see caption), but for the II-VI alloys
(a) Cd,-,Hg,Te, (b) Hg,_,Zn, Te, and (c) Cd,_,Zn, Te.
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1
RAC(X)za)_(x7§ E(xX)w ()R 4¢(5, V(X)) (3.12)

(and similarly for BC), where w 4(s) is the average num-
ber of AC bonds in structure s, and

o(x)=3 E(x)w 4¢c(5) . (3.13)

In calculating AE (s, V) for each structure, we also obtain
R (s, V) (see Table I for the relaxation parameters deter-
mining the equilibrium bond lengths). Using these
R(s,V) in Eq. (3.12), we calculate the composition depen-
dence of the alloy bond lengths, depicted in Figs. 12 and
13. In this calculation a normalization factor
v=agM /a[P* has been used to scale the calculated
LDA bond lengths for the pure binary compounds to
agree with the experimental (expt) values. We show in
Figs. 12 and 13 the “ideal” zinc-blende bond lengths
R%A—C)=(V'3/4)a 4 as dashed horizontal lines, and
the linearly weighted average (1—x)R%.+ xR 5. denoted
R(x). Clearly, the equilibrium alloy bond lengths
R ,c(x) and Ryc-(x) deviate significantly from the aver-
age R(x), as noted first by Mikkelson and Boyce**® and
found in recent calculations.’®®' These bond lengths also
deviate somewhat from the “ideal” bond lengths R° (by
an amount highlighted in Figs. 12 and 13 by the shaded
areas). These deviations freeze into the alloy a certain
amount of strain energy. Indeed, alloys of pseudobinary
semiconductors are “structurally frustrated,” in the sense
that despite structural relaxations, the bond lengths and
bond angles do not attain the “ideal,” strain-free values.
The residual amount of frozen-in strain leads to positive
excess enthalpies (Figs. 4 and 5).

G. Effective equations of state

Equations (6.15) and (6.16) of Ref. 21 give the five
effective equations of state €,(V) into which long-range

interactions have been folded. It is interesting to contrast
these five effective equations of state with the results ob-
tained without folding distant-neighbor interactions. To
examine this we have fitted both equations to the expres-
sion of Murnaghan.”® Tables IV and V give the parame-
ters of the fit (denoted by an overtilde) and compare them
to the corresponding parameters of the explicit equations
of state. This comparison shows that the effective equi-
librium volumes ¥, are unchanged for n =0 and 4 (pure
binary compounds), and are just slightly changed relative
to V, for n =1, 2, and 3. In contrast, the effective bulk
moduli B, are dramatically reduced in the size-
mismatched systems relative to B,. This can be inter-
preted as follows. There are five possible local nearest-
neighbor arrangements around a C atom in a fourfold-
coordinated tetrahedral alloy, i.e., 4,, 4;B, A,B,, AB;,
and B,. These five arrangements are geometrically iden-
tical to those encountered in the five (001)-type (Fig. 2)
ordered compounds A4, ,B,C,, i.e., zinc-blende for
n =0 and 4, CuAu-I for n =2, and Cu;Au for n =1 and
3. The equilibrium molar volumes in these ordered com-
pounds will be denoted V,(X,), where X, denotes the
stoichiometry; the equilibrium molar volume of a disor-
dered alloy will be denoted V(x). While V,(X,)
represents the equilibrium volume of cluster n embedded
in an ordered structure, we will denote by V,(x) the equi-
librium volumes of such clusters in the disordered medi-
um. One can take two extreme views of the relationship
between the alloy values ¥V, (x) and those extracted from
ordered compounds ¥V, (X, ). (i) Assume that fixed atomic
sizes can be associated with each type of atom; these radii
(or molar volumes) can then be transferred with no
change from one chemical environment to the other.
This view, underlying Pauling’s concept of transferable
atomic radii, implies

V,(x)=V,(X,) (no relaxation) . (3.14)
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FIG. 12. Calculated equilibrium alloy bond lengths R ( A—C) and R (B—C) at T=2800 K (solid lines), compared with the “ideal”
zinc-blende values R%( A—C) and R%B—C) (dashed horizontal lines). The composition-weighted average R (x) is given for compar-
ison. The shaded areas represent deviations of equilibrium alloy bond lengths from the “ideal” values. The strain, frozen-in due to
such deviations leads to AH > 0. Results are given for the size-matched III-V alloys (a) GaAs,_,P, (b) In,_,Ga,P, (c) In;_,Ga,As,

and (d) GaSb,_, As,.
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FIG. 13. Like Fig. 12 (see caption), but for the II-VI size-
mismatched alloys (a) Hg,_ ,Zn,Te and (b) Cd,_,Zn, Te.

(ii) Assume alternatively that molar volumes are averaged
in the alloy environment; hence,

V,(x)=V(x) (full relaxation) . (3.15)

Both views are extreme cases of the Taylor-series expan-
sion

V,(x)=V, (X )+K,[V(x)—V, (X,)]+ - . (3.16)
Pauling’s view [Eq. (3.14)] corresponds to no relaxation
(K,=0), whereas the virtual-lattice model [Eq. (3.15)]
corresponds to full relaxation (K, =1). Using Eq. (3.16),
the effective excess energy of cluster n in the alloy is

given for small volume changes by the harmonic expan-
sion,

15
2V,

n

AE(n,V,(x))=AH,+ (1=K, [V(x) =V, (X,)]

+ -, (3.17)
where AH, is the relaxed effective energy at equilibri-
um.?! Equation (3.17) can be mapped into an effective ex-
cess energy

At’(n,V,,(x))=AH,,+%—I;/B—[V(x)—V"(Xn)]2+... ,
(3.18)
where
B, vV,
(1—-K,’=—" — (3.19)
B, v

n

Our calculations, which include relaxation of all clusters,
can be used to obtain the relaxation constants K, from
Eq. (3.19) and Tables IV and V. For n =2, for example,
this gives

K,(GaAs,_,P,)=0.132,
K,(GaSb,_, As,)=0.168 ,
Kz(Inl_xGaxP)=0.157 ,

(3.20)
K,(Hg,_,Zn,Te)=0.198 ,
K,(In;_,Ga,As)=0.165 ,
K,(Cd,_,Zn, Te)=0.141 .
The fluctuations of K, about n =2 are small. This

demonstrates that the ‘“softening” of the effective bulk
moduli evident in Tables IV and V can be thought of as a
relaxation effect associated with interactions outside the
nearest-neighbor environment, and that this effective re-
laxation (13-20 %) is considerably closer to Pauling’s
limit [Eq. (3.14)] than to the virtual-lattice limit [Eq.
(3.15)].

IV. ANALYSIS OF TRENDS

This section analyzes the global trends underlying our
results (Sec. III) in terms of a simple model in which the
volume-dependent interaction energies {J (V)} are
transformed into volume-independent energies {v,} plus
a global volume-dependent term.

A. Summary of regularities

Our foregoing discussion demonstrated a number of
global features of semiconductor phase diagrams which
we will now analyze. The salient trends are the follow-
ing.

(i) AH(x,T) is positive for all isovalent semiconductor
alloys studied. It is about an order of magnitude larger in
size-mismatched relative to size-matched alloys.

(i) Despite this ‘‘universality,” size-matched alloys
show clustering, whereas size-mismatched alloys exhibit
anticlustering.

(ii1) Size-matched alloys do not exhibit any long-range-
ordered phases, whereas size-mismatched alloys are pre-
dicted to exhibit universally a number of (201)-ordered
phases at low temperatures.

(iv) There are obvious regularities in miscibility-gap
temperatures T, and mixing enthalpies, both increasing
with the relative size mismatch |a , —ap|*/|a , +apl.

In what follows we present a simple model that analyzes
these trends.

B. The €-G approach

We found for semiconductor alloys?' that while the
equilibrium volume V(x), the bulk modulus B(x), and
the latter’s pressure derivative B’(x) all depend on com-
position, at a fixed composition these quantities are rath-
er insensitive to the specific “state of order” (e.g., chal-
copyrite versus CuPt versus CuAu-I for x =1). A similar
observation was made in Ref. 98 for transition-metal al-
loys. This opens the way to a simplification of the expan-
sion of Eq. (2.1) which isolates explicitly volume-
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dependent from volume-independent terms and is useful
in analyzing chemical trends.

In Ref. 98 it was proved that if the equilibrium volume
of the alloy at composition x does not depend on the state
of order, the equation of state of configuration o
separates rigorously at the equilibrium volume
V. =V(x) into the “spin-flip” or “substitutional” ener-
gies € which depend on the state of order o, but not on
the volume, and the “elastic” energy G(V (x)) which is
volume dependent, but otherwise order independent.
That is,

AU(o,V(x))=elo)+G(x) . 4.1)

Here we will generalize this “e-G approach” to Eq. (2.1)
with an arbitrary (but finite) number of interaction ener-
gies.

Assume that the equilibrium volume V(x), the bulk
modulus B(x), and the latter’s pressure derivative B'(x)
are known as a function of x (and, hence, also at the sto-
chiometric composition x =X, ). Specializing Eq. (4.1) to
stochiometric periodic structures {s} with arbitrary
volume V gives the equation of state®®

AU(s, V)=e¥+g(X,, V), (4.2)
where, as shown in Ref. 98, g(X_, V') has the general form

|

2
d*AU(s, V)

dv? v=

dX

dv

=Z[X (V)]
v

s

at the equilibrium volume V. Thus,

2
B, |av

Z =
(X;) vl ax

s

V=V
s
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+[X(V)—X,]

(V)

g(XS,V):(1—X§)f0X yZ(y)dy

1
+ — . .
X, fX(V)(l V)Z(p)dy 4.3)

For a carefully chosen function Z(y), the equation of
state AU(s, V) of Eq. (4.2) can be made to have the same
(given) physical parameters AH, V,, B, and B, as the
true equation of state AE(s, V) of structure s. This estab-
lishes the following conditions.

(i) Requiring AU(s,V,)=AE(s,V,) (i.e., the same for-
mation enthalpy in both approaches) sets the condition
that the substitution energy €'*' be obtained from the in-
dependently calculated AH, and G(Xj),

AU(s,V,)=AH, ="'+ G(X,) . 4.4)

(i) Requiring that the equilibrium volume V; be the
same in the two approaches in a set of compositions X
[where V(X,)=V] gives the condition

dAU(s, V)
dv

V=V,

’

— _ 4ax
=X =X 1Z[X )

V=V,

4.5)

which is naturally satisfied at X(V,)=X,.
(iii) Requiring the same bulk moduli in the two ap-
proaches sets the condition

(iv) Requiring the same pressure derivative B, sets the condition

|

d AU
dv?

d*x

=3Z(X )ﬂ
v=v, dv?

v=v 1%

s I

+22!
V= VS

where Z; denotes the derivative of Z (x) with respect to x
at x =X,.

Had we known V(x), B(x), and B'(x) for a continuous
range of compositions, we could have calculated Z (x) so
that it satisfies Eqs. (4.4)-(4.8) at all x’s. In practical ap-
plications we often know these quantities only on a
discrete “‘grid” of compositions {X }. We will hence ap-
ply the conditions (4.4)—(4.8) to such a discrete set {X,].
These conditions are then satisfied by selecting Z (x) as
an interpolating polynomial which assumes the values
Z(X,) at the composition X, [Eq. (4.7)] and has composi-
tional derivatives Z; which satisfy Eq. (4.8). Dealing, for
example, with five compositions X, =0, 1, 1,2,and 1, the
minimal polynomial passing through the five points
Z(X,) with given slopes Z'(X,) is of the ninth degree. Its
general form is

dX

v

2 B
74X dZ |dX =— (4.6)
dv? dX |dV v=v, V;
4.7)
=2 g 4
- = y2 s ) (4.8)
Z(x) Z,+(x—X,) |Z, 22y
X)= X = n ’l~ vV v
% ! jgn)Xn_Xj
) —X,)" .9)
j1ﬁ,,)(X,,_Xj)2, )
where Z,=Z(X,). With Z(x) defined as above,

AU(s, V) of Eq. (4.2) has all the required properties of
AE(s,V) on the grid of points {X;}. A potential source of
error is then the use of an interpolation between these
points.

Because the function AU(s, V) has the virtue that its
volume-dependent term g (X, V) is linear in composition
X, [Eq. (4.3)], the configurational energy can be written
as
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AU(o,V)=G(x)+ 3 D,v, M (o), (4.10a)
f

and the excess enthalpy for the alloy [ensemble average of

Eq. (2.7)] can be written as a superposition of AU(s, V) of

Eq. (4.1) instead of AE(s,V) as

Aﬁ(x,T)=(AU(U,V)>=G(x)+2(§(S’(x, 7)€",

(4.10b)
or

AH(x,T)=(AU(0,V))=G(x) +2Dfuf(r1f> (4.10c)

where v, are volume-independent interactions energies
given, in analogy with Eq. (2.6), by

1 z[nf(s ]—l (s)

The substitution energies €'* are given by Eq. (4.4), while

x)=(1=x) [yZ(pdy+x [ (1-»Zpdy . @.12)

The “e-G” form of the excess energy AU(s, V) is evalu-
ated as follows. (' Using {V,,B,,B/} at the five composi-
tions X, =0, 1 4, 2, 4, and 1, we evaluate Z(X,) of Eq. (4.7)
and Z(x) for all x’s from Eq. (4.9). (ii) Integration of Eq.
(4.12) with this Z(x) provides the elastic energy function
G (x). (iii) Using the values of G(x) at x =X, and the
eight formation enthalpies AH_, we obtain from Eq. (4.4)
the eight substitution energies {&'’}. (iv) To obtain the
volume-independent interaction energies {v,} for the
figures f, we use Eq. (4.11).

Since the equations of state AU(s, V) reproduce the
first three volume derivatives of AE(s,¥) and have the
same minimum energy AH, these two sets can be essen-
tially used interchangeably. However, the ¢-G form has
the added virtue in that it transparently separates ener-
gies associated with volume changes (‘“elastic” effects)
from constant-volume energy changes (“chemically”).

C. Testing the £-G approach

To convince the reader that there is no significant loss
of precision in using AH(x,T) of Eq. (4.10) (i.e., the
volume-independent representation of v, termed ‘“model
a” in Table VIII) instead of Eq. (2.1) [the volume-
dependent representation of J,(V), termed “model b”],
we compare the transition temperatures obtained from a
CVM solution to both Hamiltonians. The results for
GaSb,_,As, are presented in the first two columns of
Table VIII and indicate only small deviations.

It is useful to present the results of the -G approach in
close form, i.e., represent the (numerically obtained) func-
tion G(x) by an analytical expression. This can be done,
e.g., by using the form

G(x)=x(1—x)Qx) , (4.13)
where Q(x) is a two-parameter linear function,
Qx)=a+p(x —1) (4.14)

The parameters are determined by equating the areas of
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TABLE VIII. Comparison of miscibility-gap temperatures
(Tyg) and composition xyg =X (Tyg), as well as the order-
disorder temperatures of various long-range-ordered phases as
obtained by three model Hamiltonians for GaSb, _, As,: (a) Eq.
(4.10a) using the volume-independent {v,} representation plus
the (numerically calculated) elastic energy G (x), (b) Eq. (2.2) us-
ing the volume-dependent {J (V)} representation, and (c) like
(a), but using an analytic fit [Egs. (4.13)-(4.16)] to G (x).

Model a Model b Model ¢
using {v,} using {J (V)] using {v/}
[Eq. (4.102)]  [Eq. 2.2)]  +fitted G (x)
Tue (K) 1075 1080 1122
XMG 0.656 0.595 0.692
Ten (K)? 287 285 285
T, (K 153 170 153
T, (K 165 139 163

*Phases CH, Cl1, and C2 are explained in Table XI.

the functions G(x) and (x —1)G(x) on either side of Eq.
(4.13), giving

a=3f'x<1— (x)dx (4.15)

—1of (1=x)(2x —1)Z(x)dx , (4.16)

where Z (x) of Eq. (4.9) satisfies Z(x)=—d>G(x)/dx>.
To test this analytical form of the -G representation, we
give in the third column of Table VIII (“model c”’) the re-
sults obtained using the CVM solution to this form of the
e-G approach (here, a=10.93153 kcal/mol and
B=2.38501 kcal/mol). The results show only a negligi-
ble loss of precision relative to the complete -G solution
(“model a”).

Table I gives the substitution energies €'’ for the semi-
conductors studied here; Table IX gives {v,] for these al-
loy systems. It also includes a simpler, one-parameter fit
of G(x)=Q0x(1—x), which, while not as accurate as the
two-parameter fit of Eqgs. (4.13)-(4.16) (it yields
Ty =956 K, Tcy =285 K, T; =147 K, T, =170 K),
it is more convenient. These define completely the Ising
Hamiltonian in either of the three forms of Egs. (4.10). It
can be solved by any of the available techniques (e.g.,
MC, CVM), yielding practically the same results obtained
in Sec. III using {J(¥)}]. Note that size-matched alloys
have v, | <O (ferromagnetic repulsion), while v, ; and Uya
are positive (antiferromagnetic attraction). In contrast,
size-mismatched alloys exhibit positive (i.e., attractive)
Uy 1s Uy3, and v,,. Figure 14 depicts for these alloys
G(x =1) and €' for the three ordered x =1 structures,
and that for the disordered alloy at T=800 K.

D. Analysis of trends in the £-G representation

The e-G representation of the mixing enthalpy of Eq.
(4.10) is not only useful in quantitatively reproducing
phase diagrams (Table VIII), but also makes a number of
physical trends transparent.

(i) We find (Fig. 14) that the lattice-matched systems
(AlAs-GaAs and CdTe-HgTe) have G ~0 and £*'>0,
whereas the lattice-mismatched systems have G >0 and
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TABLE IX. Volume-independent interaction energies 2vy ,, of the Ising model of Eq. (4.10a) (in meV) and the average elastic ener-
gy parameter () (in meV/four-atoms) corresponding to the G (x)=x (1 —x) approximation. Here, k denotes the number of sites in-

teracting simultaneously; m is the neighbor separation.

Interaction AlAs GaP GaP GaSb InAs HgTe HgTe CdTe

energy D, GaAs GaAs InP GaAs GaAs CdTe ZnTe ZnTe
209, 1 6.6047 —47.8160 —240.1940 —145.9788  —164.6280 7.8761 —161.8135  —129.4630
20y, 1 —0.1518 3.5594 5.3439 —3.4977 —1.6352  —1.6046 —0.6551 1.9546
vy, 6 —1.591 4.7822 23.9011 13.2334 15.5053 —1.5633 14.8303 13.1823
2v;, 8 0.0190 —0.4449 —0.6679 0.4372 0.2044 0.2006 0.0819 —0.2443
204, 2 0.0190 1.2138 0.3793 —1.8617 —1.6893 0.0650 —0.0144 0.1952
2v,, 3 0.1757 —0.8604 —1.3832 3.5176 0.6822  —0.1166 —3.1839 —2.9110
20,3 12 0.0757 0.1568 2.4495 0.9876 2.0151 0.0427 3.0225 1.5586
20,4 6 0.2443 2.899 11.7974 8.0036 8.1244 0.2020 7.6905 6.6681
Q 0.0000 269.6946 1287.2400 948.5059 893.0924 1.9870 838.0564 739.1497

g9 <o. Hence, while AH(x,T) and AH, are positive in
both classes of systems, this is so for different reasons:
unfavorable chemical interactions in the first case (where
sublattice relaxation is small owing to R%-=RJ.), and
strong, repulsive elastic interactions in the second case.
These different origins of AH >0 have a number of im-
mediate implications.

(ii) Both AH(x =1, T) and AH_ are about an order of
magnitude smaller in lattice-matched systems than in
lattice-mismatched systems since “‘stiff”” bulk moduli and
significant size differences combine to produce in the
latter case larger elastic energies G(x) which overwhelm

400+

~=GayAsSb
=InGaAs,
—=HgZnTe,
~CdZnTe,
—CdHgTes
~AlGaAs,

N
a
©
o
£
¥

<—Ga2PAs

300+

200+

-

o

o
T

G(x=1/2)

-100}

Energy (meV/4-atoms)
o

-200{CA

D¢ CP =[111] I
-300F CA =[001] +5
CH CH = [201]
D = Disordered
(T=800K)

FIG. 14. Breakdown of the formation enthalpies of ordered
50%-50% intersemiconductor compounds CP (CuPt), CA
(CuAu), and CH (chalcopyrite) into elastic G (x = %) and substi-
tutional €’ pieces [Eq. (4.4)]. For comparison, we also give the
substitutional energy for th disordered 50%-50% alloy at
T=800 K. Note that €' > 0 (inset) for the two size-matched al-
loys.

the smaller chemical energies.

(iii) The relative population P'""(x,T) of clusters n at a
fixed composition x is unaffected by G (x), which is com-
mon to all clusters at the same x. Hence, systems with
£*)>0 (AlAs-GaAs and CdTe-HgTe in Fig. 14) exhibit
clustering (Figs. 8 and 9 )—enhancement of the 4, and
B, clusters—whereas systems with €'’ <0 exhibit “‘anti-
clustering” (Figs. 8 and 9). This highlights the fact that
knowledge of AH alone is insufficient to judge such
effects, and its decomposition into € and G is necessary.

(iv) An order-disorder transition at a fixed composition
X, occurs when the free energies of the ordered and
disordered phases are equal. Since G(X,) is common to
both phases at X, it does not determine the transition
temperature 7, —this is determined by the substitution
energies alone. Hence, lattice-matched alloys having
¢/ >0 do not exhibit any (stable or metastable) simple
ordered states, while lattice-mismatched alloys, having
e <0, can exhibit metastable long-range-ordered
phases. Figure 14 shows that at x = only the chalcopy-
rite phase has a substitution energy lower than that of the
random alloy; hence, it alone will show up at this compo-
sition as a metastable ordered phase.

(v) The order of the formation enthalpies for the
different structures given in Eqgs. (3.1) and (3.2) reflects
the order of the substitution energies (Fig. 14).

E. Comparison of Monte Carlo and CVM solutions
to the Ising Hamiltonian

Another advantage of the representations (4.10) of the
Ising Hamiltonian is its amenability to Monte Carlo
simulations, which are considerably more difficult when
J; are functions of volume. To assess the validity of our
folding method, whereby second-, third-, and fourth-
neighbor pair interactions are renormalized into effective
nearest-neighbor interactions J(x,V), we compare the
CVM solution of this Ising Hamiltonian [Eq. (4.10a)], in-
cluding folding, to a MC solution of the full (unfolded)
Hamiltonian.

For _simplicity we select in Eq. (4.10a)
G (x)=Qx (1—x) and remove the three- and four-body
terms, i.e., v;,=v,, =0. We find Q through Eq. (4.13)
using 1 =Q(x). These simplifications lead to a phase dia-
gram which is symmetric about x =1, and the two-phase
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equilibrium occurs at the chemical potential u=0. Thus,
the search for the phase-equilibrium lines in the (u,T)
plane (a very time-consuming step in MC) is simplified.
The parameters used, appropriate to GaSb; _, As_, are (in
meV)

vy 1=6.6167, v,,=1.7588 ,
v, ;=0.4938, v,,=4.0018 ,
Vo1 =— 3Dy mym=—T4913,

(4.17a)

(4.17b)

and 1 =948.5059 meV /four-atoms.
Note that the volume-independent Hamiltonian of Egs.
(4.10) satisfies the sum rules

even
Vo1 = — 2 sz,mvk,m ’
k m

o (4.18)

Vii=" 2 2 Dimlim
k m

evident in Table IX. These sum rules do not apply to the
volume-dependent energies J, ,,(¥). Our vy, of Eq.
(4.17a) differs from the value given in Table IX since in
the former case v; | =v,, =0, and, hence, the sum rules
yield a slightly different v ;.

Via use of Eq. (4.10c), the excess enthalpy of this spin-
1 three-dimensional fourth-nearest-neighbor Ising Hamil-
tonian is

AH (x)=0x (1=x)+v, +6v, (I, ;) +3v,,(I0,,)

+12”2,3<ﬁ2,3>+6vz,4<ﬁ2,4> , (4.19)

where v, ,, represents the mth-neighbor pair interaction.
Although this simplified Hamiltonian is not designed to
capture the full detail of the phase diagram in which the
complete G (x) as well as three- and four-body terms are
retained (Table VIII), its parallel solution via the MC
method and the CVM with folding will serve to assess the
validity of our folding method, in which
The Monte Carlo runs were made using single-spin-flip
kinetics.® We used a cell of 12°=1728 fcc sites, with 100
flip attempts per site to reach steady state and 400 at-
tempts per site to collect data. The acceptance ratio,
which is defined as the fraction of successful flip at-
tempts, was minimum at 700 K, when it attained a value
of 19%, and increased fast as the temperature was raised.
The results are presented in Figs. 15 and 16. The bino-
dal points of Fig. 15(a) were determined by starting from
a random sample with x=0.99, letting it stabilize, and
collecting data at £u=0. Above 850 K and below TG,
the spin-flip process led to a two-phase system and the
sample oscillated between these two phases in equilibri-
um. Thus, it was impossible to determine accurately the
equilibrium concentration of each phase. Although the
oscillations of x are large, we observed that the probabili-
ty of finding pairs 4B, which is equal in the two phases,
had small oscillations. Therefore we used this fact to find
the critical temperature according to the construction of
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FIG. 15. (a) Phase diagram (binodal) for CVM with folded
distant-neighbor interaction (solid line), Bragg-Williams method
(BW, dashed line), and Monte Carlo method (MC, dots and
bar). The Hamiltonian is given in Egs. (4.17)-(4.19). (b) gives
the normalized mixing enthalpies for these three models. The
rectangles depicting Monte Carlo results have the size of the
standard deviation in x and AH /x (1—x). The standard devia-
tion is smaller than the sizes of the solid circles.

Fig. 16. Figure 15(b) presents the interaction parameter
at 1000 K. In all cases, the dots, bars, or rectangles have
size equal or greater than the standard deviation. We
have also included for comparison results obtained by the
mean-field Bragg-Williams (BW) approach!® in which all
correlations are neglected, and one has

T T T

0.6t .

o
(3]
T

-
[ Lt

A

P,
OAB
IS

T
\
\

o
w
T

I

T,=937 K

Average probability
o
n

o
-

T
1

T

700 800 900
Temperature (K)

1000

FIG. 16. Average nearest-neighbor ( 4-B) pair probability in
the Monte Carlo calculation (Fig. 15) as a function of tempera-
ture. The crossing point is used to determine the transition tem-
peratures of Fig. 15.
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(M, ,, Y pw=(2x —1)? 4.21) _x—X
’ &= ; (5.4)
X, —X,
and
— x—X,
AHBW(X)ZX(I‘—X)(Q+4U01) ) (422) 52:— 5 (55)
' X, — X,
with . " .
X, and X, being the composition at the vertices.
Vo1 =—6v,,—3v,,— 120, ;—6v, 4 . (4.23)  Kanamari and Kakehashi'®? performed such a constant-

Figure 15 shows an excellent agreement between the
phase diagram [Fig. 15(a)] and mixing enthalpy [Fig.
15(b)] obtained from Monte Carlo and CVM solutions.
We conclude that our tetrahedron CVM with folded dis-
tant pair interactions in no way worsens the good agree-
ment between standard CVM and MC methods. Thus,
the folding method opens the way to the inclusion in
CVM of more realistic and complicated Hamiltonians.

V. THE SEARCH FOR GROUND STATES

The use of the energy expansion in terms of
multistate-interaction energies [Egs. (2.1) or (4.10)] and
the determination of the interaction energies permits us
to capitalize on known results'®"!9? from Ising-model
studies on the allowable ground states supported by this
Hamiltonian. The basic problem is to identify those
structures which minimize the energy expression (4.10) at
each composition x. The stability analysis is most simply
made in the e-G formalism, where the configuration o
has the energy given by Eq. (4.10a). We will refer to the
second term of this equation as the “‘chemical” energy
AE j.n(0). To establish the stability conditions, we
proceed in two steps.

(i) Constant-composition (homogeneous equilibrium)
search: First, we compare structures with fixed composi-
tion x, and search for the lowest energy at each x. In this
case the term G (x) is not considered because it is com-
mon to all structures at the same x; this procedure is pre-
cisely what is done in usual studies of Ising models'®!"1%2
with fixed interactions v, i.e., neglecting G(x). The
ground states for a fcc Ising Hamiltonian containing up
to second-neighbor terms is well known; ! these are par-
tially known if the interactions are extended up to the
fourth neighbor.!”? Since the correlation functions
1 rlo) determine the probability of the figures in
configuration o, and since the probabilities must be posi-
tive, the correlations IT s are limited to a configurational
polyhedron in the space of {II r}. Because the Hamil-
tonian is linear in the correlation functions, the vertices
of the polyhedron represent states of order whose ener-
gies are extrema. For an arbitrary composition x, the
minimum energy will be that of a linear combination of
the energies of rwo vertices 1 and 2:

AE (x)=AE(0,,)=G (x)+ &V +E&e? | (5.1)
where £, and &, satisfy

§t&6=1, (5.2)

X6+ X,6=x, (5.3)

or

composition ground-state study of the fcc Ising Hamil-
tonian with pair interactions extending to fourth neigh-
bors. Their study is, however, only partially useful for
our aim here, since they excluded three- and four-body
interactions and limited the search for Hamiltonians
where the nearest-neighbor interaction v, ; dominates all
other pair interactions. Our first-principles study shows
(Fig. 3 and Table IX) that this promise is not satisfied in
semiconductors where v, 4 is competitive with v, ;. We
have hence repeated and generalized Kanamori’s study to
include three- and four-body terms and treat all v, ,,
equally for all m’s up to m=4. We limited, however, the
search to unit cells containing up to 15 4 or B atoms
(Kanamori included up to 16-atom structures). Despite
this limitation, our study gives a reasonable description
of the ground-state line and identifies the most important
vertices of the not considered polyhedron. The ground-
state structures [with G (x)=0] found in the six lattice-
mismatched alloys are given in Table X; for each struc-
ture, we give the Kanamori symbol,!?? the number of
atoms per cell, and its description as a superlattice. One
observes that the chalcopyrite phase (CH), and two
phases with composition x =1 and 1, all [201] superlat-
tices, belong to the ground state of all lattice-mismatched
systems.

7 “GK ]
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FIG. 17. Schematic plot of the chemical ground-state line
AE em (T mn) [see Eq. (5.1)], the elastic energy G (x), and their
sum AE(o,,,). Note that at compositions “y” between vertex
points of AE em (0 my,) the system can lower its energy by local
decomposition, whereas the vertices points X, X,, and X; are
locally stable with respect to decomposition and will hence pro-
duce metastable long-range ordering.
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For the purpose of a qualitative discussion, we show in
Fig. 17 a schematic and simplified version of the ground-
state line AE ;. (0;,) with just three vertices. Note
that only when € <0 do we find a nontrivial ground-state
line, while when £ > 0, as is the case in lattice-matched al-
loys, the ground-state line is purely horizontal at the
E=0level. Clearly, no ordering is possible in this case.

(ii) Heterogeneous equilibrium search: In the second
step we consider the possibility of decomposition of a
phase af3 into two phases of different compositions, e.g.,

2af(x)za(x tw)+B(x —w) , (5.6)

where o is an infinitesimal composition change. In this
case the elastic energy G (x) is included. Figure 17 shows
schematically G (x), and the sum AE(o,;,) of G(x) with
the ground-state line AE ;.. (o.:,) as a solid line. For
size-mismatched semiconductors the positive elastic ener-
gy G (x) overwhelms the negative chemical energy; since
the sum of these two contributions, AE(o,;,), is non-
negative for all x’s, the ground state at 7=0 K corre-
sponds to a mixture of the pure binary constituents.
However, a local minimum can exist. This can be seen by
considering a composition y between two vertices of the
ground-state line (say, 1 and 2 in Fig. 17). In this case the
energy change associated with reaction (5.6) is purely
elastic, i.e.,

SAE=G(y tw)+G(y —0)—2G(y)=w d——

(5.7a)

Since by use of Eq. (4.12), d?G/dx*=—Z(x), where
Z(x)>0 by Eq. (4.7), this energy change must be nega-
tive, i.e.,

S8AE=—w’Z(y)<0, (5.7b)

and the reaction (5.6) proceeds to the right (decomposi-
tion). This process can continue until one reaches a com-
position x corresponding to a vertex in the ground-state
line surrounded by two minima (e.g., vertex 2 surrounded
by vertices 1 and 3 in Fig. 17). Now the energy change
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associated with reaction (5.6) has both elastic and chemi-
cal contributions. By use of Egs. (5.1)-(5.5), we have

8(3)—8(2) 8(2)_5(1)

8AE =—w’Z(x)+ -
CERTe N, TG

(5.8)

Since the second term (“chemical”) is positive and linear
in the concentration fluctuation w, it will overwhelm the
elastic term (quadratic in @) for small w. In this case
8 AE is positive and reaction (5.6) proceeds to the left:
compound formation is favored. Hence, the local minima
of AE (0 ;) (Fig. 17 and Table X) correspond to metasta-
ble long-range ordering. We conclude that at a general
composition x, phase separation will occur until a special
composition X, is encountered, at which point AE (X,)
becomes locally stable against composition fluctuations.
In perfect equilibrium at X, the system will overcome the
barriers evident in Fig. 17 and produce the true phase-
separated ground state. However, at sufficiently low tem-
peratures the system cannot surmount these barriers and
will exhibit long-range ordering in the phases shown in
Table X. This demonstrates that metastable long-range
ordering found in our phase-diagram calculations is a
consequence of the coexistence of negative chemical ener-
gies with (larger), positive elastic energies.

Having identified the ground-state structures, it
remains to be seen whether the stability-limit tempera-
ture given by d?F/dx*=0 is sufficiently high to allow
growth of these ordered phases. For this purpose, we
constructed a CVM-correlation-function computer pro-
gram able to calculate the free energy of any fcc-based
structure specified by its unit vectors. The input to the
program is only the triad of unit vectors and the occupa-
tion (with 4 or B) of its sublattices. The program itself
generates the space group, determines the independent
figures, finds the Kikuchi coefficients** for the CVM en-
tropy expansion using Barker’s procedure,*® finds the
linear relations between reduced density matrix elements
and correlation functions, and determines how the non-
first-neighbor pair correlations decouple into products of
point figure correlations. Applications of this procedure
to the ground-state structures of Table X provides their

TABLE XI. Limiting temperature T, of stability for some GaSbAs phases belonging to the ground-
state line of chemical energies. Calculations were made with Eq. (4.10). We characterize each structure
by the number and type of independent figures appearing in it. Here, Q means a tetrahedron, T a trian-
gle, P1 a first-neighbor pair, D a point, and P2, P3, and P4 second-, third-, and fourth-neighbor pairs.

Kananori Atoms

Our symbol per Independent T,
X symbol (Ref. 100) Cell figures (K)
3 [0,1,4,0;1] 5 2Q +3T +3P1+2D +3P2+3P3+2P4 123
T [$.1,50;41] 8 50 +12T +14P1+4D +10P2+ 10P3+ 6P4 137
1 Cl1 [1,1,6,1;1 3 2Q +4T +4P1+2D +3P2+3P3+3P4 153
2z [3,2.6,3;2 5 3Q +6T +6P1+3D +6P2+6P3+5P4 172
1 CH [2,2,8,2;1] 4 1Q +2T +4P1+2D +3P2+3P3+3P4 287
3 [3,2,6,3;2 5 3Q +6T+6P1+3D +6P2+6P3+5P4 178
- C2 [1,1,6,1;2] 3 2Q +4T +4P1+2D +3P2+3P3+3P4 165
% 1,1,5,0;3] 8 50 +12T +14P1+4D + 10P2+ 10P3+ 6P4 145
4 [0,1,4,0;%] 5 2Q +3T +3P1+2D +3P2+3P3+2P4 140
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free energies AF (x,T) from which the stability limit is
calculated.

In Table XI we present the stability-limit temperature
for phases belonging to the ground-state line of GaSbAs.
We see that these stability temperatures are well below
current growth temperatures. Other effects (e.g., surface
reconstruction) may modify these ordering temperatures.

VI. EFFECTS OF PRESSURE

The results discussed so far are for zero pressure. For
any configuration o under a hydrostatic pressure p, the

volume- and pressure-dependent enthalpy is given by
E(o,p,V)=E(o,V)+pV , (6.1

where E (o,V) is the volume-dependent internal energy.

At equilibrium the enthalpy is
H(o,p)=E[o,V(o,p)]+pVio,p), (6.2)

where V(o,p) is the equilibrium volume at pressure p.
Noticing that, from Eq. (6.2),

AHl9.p) _y (5 p),

6.3
dp (6.3)

one can write
H(o,p)=H(0,0)+ fopV(a,p’)dp’ . (6.4)

Equation (6.4) provides a convenient way to relate the
enthalpy at pressure p to that at zero pressure.

A. The equation-of-state approach

In the case where the internal energy is written as a

linear combination of the energies of special
configurations [Eq. (2.7)], we can write
NS
E(o,p,V)= 3 & (0)E(s,p, V), (6.5)
where, from Eq. (6.1) for o =5,
E(s,p,V)=E(s,V)+pV . (6.6)

Equations (6.5) and (6.6) can be easily implemented into
the current program (see Sec. II) by simply adding the
term pV to the equation of state (EOS) (e.g., Ref. 58).

Figure 18 depicts the calculated results for
GaAs, Sb,_,, where we show the calculated phase dia-
gram of p=0 and 30 Gpa, and indicate how the critical
points (Tyg,Xpyg) move with pressure (dashed line). In
this calculation we have used the numerically calculated
€,[V,x,p] rather than its fitted form.>® The results (Fig.
18) show that under pressure the miscibility-gap tempera-
ture T increases and the position of the critical point
Xmg shifts towards the constituents with the larger
volume (GaSb). This and other qualitative trends with
pressure can be conveniently discussed within the €-G ap-
proach, as follows.

B. &-G approach

The pressure dependence of the enthalpy of Eq. (6.4)
can be expressed in the -G model (Sec. IV B) as
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FIG. 18. Calculated [Egs. (6.5) and (6.6)] pressure depen-
dence of the phase diagram of GaSb, _ , As,. The dashed line in-
dicates the position of the top of the miscibility gap as a func-
tion of pressure.

H(o,p)=[elo)+G(x)]+ fOpV(x,p')dp' ) (6.7)

The first two terms in square brackets are H (0,0) of Eq.
(4.1). The last term can be expanded in a power series of
pressure to give

H(o,p)=[elo)+G(x)]+pV(x,0)

2
_p VX0 .
2 Bx0) + (6.8)
Recalling that, by definition,
e(4)=e(B)=0,
(6.9)
G(0)=G(1)=0

for the pure material (x=0,1), the mixing enthalpy then
becomes

AH(o,p)=[e(o)+G(x)]+p AV (x,0)

2
_p° V(x,0)
I TR R (6.10)
for 4,_,B,, and
AV =V(x,00—xV(1,00—(1—x)¥(0,0),  (6.11a)
Vix,00 V(1,0 ¥(0,0)
A(V/B)= - 0 (- :0)
V/B)= g0 5o 500
(6.11b)

We conclude the following.

(i) The enthalpy difference H(a,p)—H (B,p) of two
homogeneous phases at constant pressure and composi-
tion does not depend, in lowest order, on the pressure.
Hence, the a—f transition (e.g., order—disorder) tem-
perature depends but weakly on p.

(i) In phase-separating alloys, AH (o,p) and Tyg(p)
depend on pressure linearly at low p, through p AV (x,0):
positive (negative) deviations from Vegard’s rule!® lead
to increase (decrease) with p.

(iii) For systems obeying Vegard’s rule'® (e.g., most of
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the isovalent semiconductor alloy) the change with pres-
sure of AH and Ty, following the bowing [Eq. (6.11b)]
of V/B. At low p the change is very slow because it de-
pends quadratically on p.

To have a more qualitative understanding of this
change, we use Eq. (3.4) to describe the change of V(x)
and B (x). In this case

Vix)
B(x)

_Vytxdv V4
“B,tx08 1T¥F, B,+6B
_ 8B(B,8V—V,5B)
B (B ,+x8B)B ,+5B)

A

x(1—x). (6.12)

where 8V =Vy,—V, and 6B =Bz —B,. For semicon-
ductors the bulk modulus B is a decreasing function of
volume V (i.e., 8V /8B <0), and hence A[V(x)/B(x)] is
always negative. This means that AH and Tyg are in-
creasing functions of p [see Eq. (6.10)]. Furthermore, Eq.
(6.12) is asymmetric relative to x =1. It has a minimum
at X .. which is closer to the constituents with small
bulk modulus (larger volume for semiconductors). This
suggests that X will shift towards X ;, with increasing
pressure. The discussion above explains the trend of
phase boundary as a function of pressure depicted in Fig.
18 (dashed line) for GaSb,_, As,.

Other phase-diagram calculations with pressure
have been reported for the Ge,_,Si, system. Similar
trends (i.e., increased T and shift of X towards Ge
under pressure) were observed.

104,105

VII. SUMMARY

Our study suggests that the thermodynamic properties
of bulk isovalent zinc-blende semiconductor alloys can be
qualitatively understood in terms of a general Ising model
with up to fourth-neighbor interactions and that the
LDA forms an adequate basis for self-consistently
describing those interactions. The global trends can be
understood by separating [Eq. (4.10)] the excess enthalpy
AH (x,T) into a volume- (or composition-) dependent
term G (x), reflecting microscopic size mismatch, and a
sum over volume-independent configurational (or substi-
tutional) energies € reflecting events at constant molar
volume, i.e., sublattice relaxation and charge redistribu-
tion. The alloys studied then naturally separate into the
following two groups.

Size-matched alloys (Al;,_,Ga,As and Cd,_, Hg, Te):
Here, G (x)=0 and, owing to negligible sublattice relaxa-
tion and unfavorable charge redistribution the substitu-
tional energies € are (slightly) positive. This leads to the
following characteristics.

(i) The disordered alloy has a lower excess enthalpy
than any of the short-period ordered structures, reflecting
the fact that for positive €’s a superposition of clusters has
a lower energy than a single cluster. Hence these systems
will appear as disordered alloys above T\ and will
phase-separate into their constituents below it. No meta-
stable long-range ordering occurs.

(ii) Above T the systems exhibit enhancement in the
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populations of the pure 4, and B, clusters and a de-
pletion of the mixed clusters (“clustering”), again
reflecting € > 0.

(iii) The mixing enthalpies are small and positive
reflecting G 2 0 and £ > 0.

Size-mismatched alloys (GaAs,_ P,, In,_.Ga,P,
In,_,Ga, As, GaSb,_ As,, Cd,_,Zn,Te, and
Hg, ,Zn,Te): Here, G(x)>0 owing to the 4-B size
mismatch, yet € <0, predominantly due to an effective
sublattice relaxation which leads to bond alternation and
a partial accommodation of strain. This leads to the fol-
lowing characteristics.

(i) Like size-matched alloys, size-mismatched alloys
also have AH(x,T)>0, and hence at T=0 they will
phase-separate when perfect equilibrium is achieved.
However, if phase separation is slow, long-range ordering
will occur in the structures identified in Table X at the
temperatures predicted in Tables VI and XI. These spe-
cial arrangements have a lower enthalpy than the disor-
dered alloy of the same composition. These conclusions
pertain to bulk growth (e.g., liquid-phase epitaxy, or oth-
er melt techniques) since we have addressed in this work
the thermodynamics of three-dimensionally coordinated
atoms. Growth techniques involving a free surface (e.g.,
molecular-beam epitaxy) would have a different thermo-
dynamics owing to the lower symmetry (e.g., surface clus-
ters are likely to have different energies than clusters sur-
rounded by atoms in all three directions). Indeed, in the
presence of surface-reconstruction effects the energy-
minimizing structure can be qualitatively different than
that obtained by minimizing the bulk energy. To the ex-
tent that coverage of the surface freezes-in the surface
stable structure, it could persist metastably to macro-
scopic dimensions. The fact that growth techniques
which involve free surfaces exhibit CuPt ordering®” ~ 7% is,
most likely, a reflection of this surface thermodynamic
effect.

(i) Above T\, lattice-mismatched systems will exhib-
it an excess of the mixed ( A3;B, 4,B,, and AB;) clusters
and a deficiency in the “pure” ( 4, and B,) clusters (“an-
ticlustering™).

(ii1) Their excess enthalpies reflect largely strain effects
and, hence, approximately scale with the relative size
mismatch |a,—ag|/|la,+ap|. These enthalpies are
temperature dependent due to the pronounced tempera-
ture dependence of the cluster probabilities.

We conclude by contrasting our conclusions with those
reached by their alloy models.

In classic models, based on constant interaction ener-
gies, alloys are broadly classified into two groups.

(i) Alloys for which AH(x,T) in the disordered phase is
known to be positive are said to be characterized by
repulsive interactions. This is said to lead to clustering in
the disordered phase and, at sufficiently low temperature,
to phase separation. Repulsive interactions and long-
range ordering are taken to be mutually exclusive. All
isovalent semiconductor alloys are said to belong to this
class.

(i) Alloys for which AH (x,T) in the disordered phase
can be negative are said to be characterized by attractive
interactions. This is expected to lead to anticlustering in
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the disordered phase and to long-range order at
sufficiently low temperatures.

Our work shows that this classification is false: Alloys
with AH(x,T)>0 (all isovalent semiconductors) can
show clustering and phase separation (when size
matched) or anticlustering and metastable long-range or-
dering (when size mismatched). This reflects the fact that
there are two distinct physical sources of AH >0: G(x)
and ¢, which control different aspects of the thermo-
dynamics.

Note added in proof. After the acceptance of this paper
for publication, K. Ishida, T. Nomura, H. Tokunaga, H.
Ohtani, and T. Nishizawa [J. Less-Common Met. 155,
193 (1989)] have reported an experimental determination
of the phase diagram of solid In,;_,Ga,P alloys. They
find a miscibility-gap temperature Ty =933 K with a
maximum of x5 =0.62, very close to our predictions
[Table IV and Fig. 10(c)] of Tpyg=961 K and
xpmg =0.676. This differs substantially from the predic-
tions of Czyzyk et al.”’™® giving Ty =620 K and
xpmg =0.15. Ishida et al. have also estimated the interac-
tion parameter (x, T =800 K) of Eq. (3.7), finding 2.95,
3.56, and 4.17 kcal/mol for x=0, %, and 1, respectively,
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close to our predicted values (Table VI) of 2.92, 3.07, and
4.60 kcal/mol. Their suggested empirical model for the
temperature coefficient of Q(x,T) produces a value of
—0.48 calmol 'K ™! (not measured) which is of the op-
posite sign of what is expected fom thermodynamic con-
siderations: AH (x,T) should increase with temperature
(Figs. 4 and 6) as the alloy becomes more random. Our
calculated value of the temperature coefficient is ~0.15
calmol 'K ™! A direct calorimetric measurement of
this quantity will be useful.
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FIG. 12. Calculated equilibrium alloy bond lengths R ( A—C) and R (B—C) at T=2800 K (solid lines), compared with the “ideal”
zinc-blende values R 4—C) and R%(B—C) (dashed horizontal lines). The composition-weighted average R (x) is given for compar-
ison. The shaded areas represent deviations of equilibrium alloy bond lengths from the “ideal” values. The strain, frozen-in due to
such deviations leads to AH > 0. Results are given for the size-matched III-V alloys (a) GaAs,_ P, (b) In,_,Ga,P, (c) In,_,Ga,As,
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CA, CP, and CH) used in the text.



