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We examine theoretically the structural and electronic properties of thin Si,Ge, 
superlattices for n = 1, 2, 4 and 6, grown on (001) and (110)-oriented substrates. The 
increased repeat distance along the growth direction leads to folding of conduction 
band states to the F" point of the superlattice Brillouin zone, resulting in a significant 
reduction in the minimum direct band gap. Transitions to these folded-in states can 
have non-zero dipole matrix elements because of(i) atomic relaxation, leading to the 
accommodation of distinct Si-Si and G e - G e  bond lengths and (ii) the superlattice 
ordering potential. Our calculations show that superlattices grown coherently on a 
(001)Si substrate remain indirect band gap materials, with a minimum gap from F" to 

(near the X point) of the f.c.c. Brillouin zone. We find, however, that increasing the 
lattice parameter as of the substrate will further reduce the direct band gap. For 
as ~> & where fi is the average of the lattice constants for silicon and germanium, we 
predict a nearly direct band gap: for Si6Ge 6 the indirect band gap for a s = fi is only 
~0.01 eV smaller than the direct band gap. The lowest conduction band states in 
this case are localized on the silicon sublattice. For  (I 10)-oriented substrates, a 
similar degree of directness in the band gap can be achieved even on silicon. 

|. INTRODUCTION 

The most widely used semiconductors are the indirect band gap materials 
silicon and germanium. Most applications in optoelectronics, however, require 
semiconducting materials with direct band gaps. If silicon or germanium could 
somehow be manufactured with direct band gaps of the appropriate magnitude, 
their already mature technology could be harnessed in integrated optics. One way to 
modify the electronic structure of a material is to impose additional structural order, 
e.g. by ordering the atoms of a disordered alloy into a superlattice. Such order will 
modify the Brillouin zone of the material and may cause the electron energy bands to 
fold, making previously indirect transitions direct. This possibility has spurred the 
current interest in short-period superlattices of silicon and germanium 1-13, in 
particular superlattices grown in the [001] direction. Here X and points along the A 
symmetry direction fold to the center, F, of the superlattice Brillouin zone, raising 
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the possibility of a direct band gap material. Short periods are necessary to obtain 
significant oscillator strength for such folded, pseudodirect transitions; as the 
thickness increases, the transition matrix elements quickly approach their vanishing 
bulk values. Growth of such materials has recently become possible through 
molecular beam epitaxy. Pearsall et al. ~'8"~ studied electroreflectance of SinGe, 
superlattices on (001)Si for n = 1, 2, 4 and 6 and observed new optical transitions at 
0.76, 1.25, 1.70 and 2.31 eVfor n = 4. 

Motivated by these results, in 1986 we began studies of the electronic structure 
for such superlattices. In this paper we review earlier results, present results from 
pseudopotential calculations on actual superlattices, and discuss the physics 
necessary to understand the design criteria for a direct gap superlattice. The paper is 
organized as follows: Section 2 describes the first principles pseudopotential 
method, Section 3 gives results for structural properties and total energies, in Section 
4 we describe the electronic structure of the superlattices emphasizing the underlying 
physics, and finally Section 5 contains a short summary and conclusions. 

2. METHOD 

We have used the first principles pseudopotential method 1*'t5 to calculate 
both total structural energies and electronic energy levels for the following SinGe, 
superlattices: n = 2, 4 and 6 on (001)Si, n = 4 on germanium and lattice-matched 
(001) alloy substrates, and n = 4, 6 and 8 on (ll0)Si. In the [001]-oriented 
superlattices, n is equal to the number of monolayers in each sublayer. In the [ 110] 
superlattices, each monolayer contributes two atoms to the unit cell, hence the 
number of monolayers is n/2. Semirelativistic pseudopotentials are generated using 
Kerker's method16, and the wave functions are expanded in plane waves with kinetic 
energies up to 12 rydbergs for total energies and 15 rydbergs for the electronic energy 
levels. The calculation is done self-consistently and the charge density is evaluated at 
the equivalent of six special k-points 17.18 (10 for the n = 4 [001 ] and n = 4 and n = 8 
[110] superlattices) in the irreducible part of the f.c.c. Briliouin zone. Exchange and 
correlation are treated within the local density approximation ~9'2° (LDA) using the 
electron gas data of Ceperley and Alder as parameterized by Perdew and Zunger 21. 
Atomic positions are determined by total energy minimization ~4'~ 5 The electronic 
structure is then computed for the equilibrium, minimum energy configuration. The 
LDA, with its well-known band gap problem 21, underestimates the conduction 
band energies. Fortunately, the lowest superlattice conduction bands derive only 
from silicon and germanium X states. We can therefore approximately correct for 
the LDA error, at least for these X-derived states, by shifting our calculated 
conduction band states upwards by 0.64 eV, as discussed in ref. 6. 

3. STRUCTURAL PROPERTIES 

We calculate equilibrium lattice constants of 5.41 and 5.61/~ for pure silicon 
and germanium respectively. The experimental values 22 are 5.430 and 5.657/~. 

Assuming that strain induced by the mismatch between silicon and germanium 
lattice constants is accommodated elastically, the Si,Ge, superlattices will grow 
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coherently without misfit dislocations on a substrate. The lattice constants parallel 
to the substrate, all, are therefore fixed by the substrate and, except for the lattice- 
matched systems, the superlattices deform in the perpendicular direction to relieve 
part of the strain. We find that all superlattices grown on silicon or germanium 
substrates deform by 3~o, i.e. c/all ----- 1.03 + 0.01 for silicon and c/all = 0.97 __+ 0.01 for 
germanium substrates. The uncertainty is caused partly by numerical uncertainty in 
locating a shallow minimum in the total energy vs. c/all, and partly by our 
underestimation of the lattice mismatch between bulk silicon and germanium. 
Interplanar relaxations restore the spacings in the silicon and germanium layers to 
very close to those for the pure constituents. For a Si(Ge) substrate virtually all the 
strain is taken up by the Ge(Si) layers. The S i -Ge  interlayer distance is close to the 
average of the Si-Si and G e - G e  interlayer spacings. 

Our total energy calculations permit assessing superlattice stability. To within 
3 meV all superlattices ([001] and [110]) grown on silicon substrates have the same 
energy per atom. The epitaxial formation energy 6H, i.e. the total energy of the 
relaxed superlattice relative to equivalent amounts of silicon and germanium grown 
coherently on silicon, is likewise 

0 + 30 meV 
6H(.~ _ 

(Si-Ge) pair 

The formation enthalpy relative to equivalent amounts of bulk silicon and 
germanium is 

34 + 30 meV 
AH(,) - 

(Si-Ge) pair 

Thus as long as coherent growth is maintained, superlattices of any period n can be 
grown with the same ease. 

4. ELECTRONIC PROPERTIES 

4.1. Qualitative physics 
The common approach to superlattice electronic structure is to start with the 

band structure of the constituents and then apply effective mass, particle-in-a-box 
type descriptions. Such models rest on the identification of states in terms of their 
localization on a sublattice (silicon and germanium). However, our results show that 
very few states in these superlattices show appreciable localization on any sublattice, 
a reflection of the very narrow width of the layers. While the results of our first 
principles numerical calculations are, of course, independent of such approxi- 
mations, it is still advantageous to analyze them in terms of simple conceptual 
models, so that their physical content becomes clear. We propose the following 
sequence. 

(1) Start from the calculated energy bands of a Sio.sGeo.5 alloy on a lattice- 
matched substrate. Here the average strain is zero and there are no superlattice 
effects. Figure l(c) shows the electronic energy levels of the alloy at selected 
symmetry points calculated using the virtual crystal approximation (VCA); 
corresponding results for the constituents, silicon and germanium, are shown in 
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Fig. 1. Calculated LDA energy levels (in electronvolts) relative to the average of the strain split valence 
band maximum states at F, X and L of(a) bulk silicon (asi = 5.41/~), (e) Sio.sGeo. ~ alloy (asloe = 5.51/~), 
and (e) germanium (a6e = 5.61 ~), as well as (b) and (d) [001] tetragonally distorted Sio.sGeo. 5 alloy. The 
calculated equilibrium lattice constants are used. 

Figs. l(a) and l(e). The energy levels for the alloy occur at approximately the average 
of the corresponding levels for silicon and germanium. Since the Lc and F¢ states of 
silicon are considerably above those of germanium, whereas the X c states are low 
energy in both silicon and germanium, this averaging causes the alloy conduction 
bands at L and F to move upwards relative to the X states. The alloy becomes 
indirect from F to X and, as will be confirmed later, the states at L and F become 
irrelevant for the question of superlattice directness. 

(2) Next we consider the effect of substrate-induced strain on the Sio.sGeo.s 
alloy. This is shown in Figs. l(b) and l(d), which show a VCA alloy grown on (001) 
silicon and germanium respectively. The alloy is now under compressive (Fig. l(b)) 
or tensile (Fig. l(d)) strain. We see that the tetragonal deformation associated with 
the substrate constraint removes the equivalence of the six X valleys. The two X 
valleys with their k vectors in the [001] directions (X°°I), perpendicular to the 
substrate, shift up in energy with respect to the other four (X~ °°) for alloys on silicon 
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lattice constants. The'conduction band offsets place the X °°' conduction-band 
minimum on the silicon sublattice. For [001 ]-oriented superlattices, a large offset for 
the X °°1 states causes the lowest superlattice states at r to localized in the silicon 
region. For [110] superlattices, the offset is much smaller and the lowest r folding 
state is delocalized. 

In the following we will label superlattice states with f.c.c, symmetry labels 
indicating the alloy origin of each state and adding an overbar to indicate that it is a 
superlattice state. 

4.2. [O01]Si, Ge, superlattices on silicon substrates 
We now turn to our calculated results for actual superlattices. We start with 

[001] Si,Ge, superlattices grown on silicon substrates since these were the first to be 
studied experimentally 1. In the random alloy, the relative position of the folding vs. 
the non-folding X states is completely determined by the tetragonal strain. In the 
superlattice, quantum confinement effects (i.e. the ability of the superlattice states to 
localize in the silicon or germanium regions of the system) will modify the simple 
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Fig. 2. Calculated LDA energy levels (in electronvolts of (a) r" folding and (b) non-folding states of 
strained [001] Si,Ge, superlattices grown on silicon for n = 2, 4 and 6 and for the random Si0.~Geo. 5 alloy 
on silicon. Cross-hatched regions indicate the extent of downward dispersion of a band away from the 
symmetry point. The zero of energy is taken as the average of the top three valence states at r .  
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Fig. 3. (001) planar-averaged wave functions for selected states in the [001] Si4Ge 4 superlattice on a 
silicon substrate. 

arguments given in the previous section. Detailed calculations are therefore needed 
to predict the nature of the band gap confidently. Such results are shown in Figs. 2 
and 3. We find that the superlattice conduction band states (Fig. 2) naturally divide 
into two categories: the i ~ folding states (Fig. 2(a)), which behave as conventional 
quantum-confined states, and the non-folding states at R, t°° and E (Fig. 2(b)) which 
are delocalized in nature (see Fig. 3). 

4.2.1. F folding states for [O01]Si, Ge, on silicon 
Figure 2(a) shows the energies of states that fold to the center of the superlattice 

zone, F. The valance band maximum is located here and is formed from the alloy 
F~5 v p states. They are split into a pair -vlrl°°, -v2rl°° and singlet -var°°~ by substrate- 
induced strain. The pair is then slightly split because of the orthorhombic symmetry 
of the superlattice. These states are delocalized on both sublattices, but with a slight 
emphasis on the germanium sublattice (see Fig. 3) reflecting the fact that the valence 
band offset places the germanium valence band maximum above silicon 6. 

The r folding conduction band states behave as conventional quantum- 
confined states in two respects. First, except for the n = 2 superlattice, they are 
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confined to the silicon sublattice, as can be seen by inspecting the ~oo,.c, and ~.oo~,,c2 
wave function amplitudes in Fig. 3. Secondly, the energy of the F folding states drops 
as the silicon sublayer thickness n increases. The localization on a single sublattice of 
these states (reflecting the heavy longitudinal electron mass at X) emphasizes the 
possibility of quantum confinement even in atomically thin superlattices. These r" 
folding states are seen to occur in pairs, mirroring the original degeneracy at X. 

For n = 4 and 6 the additional states along A which fold to F still leave the 
conduction band minimum along A unfolded. As discussed above, this leads to a 
downward dispersion of the lowest conduction band state away from r" in the [001] 
direction. The magnitude of this dispersion is indicated in Fig. 2(a) by the boxed 
region. 

Comparison of the direct transitions in the strained Sio.sGeo. s on silicon alloy 
with those of the strained superlattice reveals a dramatic change: whereas the lowest 
direct (F v ~ F¢) transitions in the strained alloy appear above 1.9 eV, four new direct 
transitions appear in the SigGe 4 superlattice below this energy. 

Since the new low energy conduction band states are folded-in states, they 
would normally be expected to have small transition matrix elements with the upper 
valence band states. (In the absence of superlattice ordering and atomic relaxations, 
such pseudodirect transitions carry no oscillator strength.) The transition matrix 
elements are, however, enhanced by the S i - G e  potential difference and by the 
different interplanar distances in the two sublayers. As the layers become thicker the 
matrix elements must decrease and approach their vanishing bulk values. This is 
clearly seen in Table I, where the squares on the matrix elements are tabulated. 
Notice that in the n = 4 superlattice the symmetry of the lower conduction band is 
opposite that of the n = 2 and 6 superlattices and all transitions to the lowest 
conduction band state are dipole forbidden. 

We see that for parallel polarization, corresponding to the experimental 
situation in ref. 1, we expect three groups of transitions for n = 4, denoted A, B and C 
in Fig. 2(a). Their LDA energies (Table I) are 0.63, 1.11 and 1.84, respectively. 
Correcting approximately for the LDA error (see Section 2), this gives, 

r loo  c,.ool 1.27 + 0.04 eV (A) v l , 2  - '~ Z~'c2 ~ 

Floo Xool 1.75 + 0.04 eV (B) v l , 2  ~ L-~c3 ~ 

FlOO Fool vl,2 ~ -c  = 2.6 +0.3 e V _  (C) 

We assign transition A to that observed ~ at 1.25 eV (with a line width of 0.24 eV). 
Transition B, not seen in the original experiment, was later observed 8' ' ~ at 1.70 eV. 
We assign the alloy-derived transition C to the one observed 1 at 2.31 eV (line width 
of 0.24 eV). The transition observed 1 at 0.76 eV is not a direct transition according to 
our calculation. It could correspond to the indirect F x ° ° ~  A°°. 1 transition we - -v  -- intn 

calculate at 0.92 + 0.04 eV after correcting for the LDA error. It is also possible, given 
the small thickness of the overall superlattice, that the observed transition is from 
the superlattice Fv state to the conduction band minimum of the silicon substrate. 
Such a transition would be 0.19 eV lower in energy than the F~ °° ~ --m,.A001 transition 
and therefore closer to the observed value (see Fig. 11 and Section VI in ref. 6.) 
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TABLE I 
CALCULATED TRANSITION ENERGIES AE AND DIPOLE MATRIX ELEMENTS. I(i1~" ~lf)[ 2 FOR [001] Si,Ge, 
SUPERLATTICES W I T H  n = 2 ,  4 AND 6 ON A SILICON SUBSTRATE. (THE VALUES FOR A GERMANIUM 

SUBSTRATE ARE GIVEN IN PARENTHESES FOR n = 4 . )  ( i  I 1S A VALENCE STATE AND If)  A CONDUCTION 

BAND STATE AS INDICATED; ~ IS THE DIRECTION OF POLARIZATION. THE NOTATION FOR THE STATES REFER 

TO F I G .  2. EACH TRANSITION HAS A NON-ZERO MATRIX ELEMENT FOR A GIVEN POLARIZATION,  e~ ONLY. 

THE MATRIX ELEMENTS HAVE BEEN NORMALIZED SO THAT THE STRONG, 1-~5 v -'* F~c DERIVED TRANSITION 

IS UNITY.  ENERGY DIFFERENCES ARE IN ELECTRONVOLTS 

(i[ I f )  P°°'(d = 001) F'~°°(d = 100/010) ~-]oo(d = 100/010) 
n 

I(~ ; ) l  ~ AE I(~" ;)1~ t,E 1(~" ;)1 ~ AE 

2 ~ool 0.21 0.93 1.28 0.65 0.07 0.61 
X TM 0 1.i1 0 0.83 0 0.79 
~'¢ 1 2.30 1 2.02 1 1.98 

4 ~oot 0 0.80 0 0.53 0 0.52 
(0.24) (0.43) (0.41) 

~oo~ 0.02 (0.08) 0.91 0.04 (0.05) 0.63 ~ 0 (0.02) 0.63 
(0.34) (0.53) (0.52) 

~oo~ 0.04(0.06) 1 . 3 9  0.12(0.08) 1.11 ~0 (~0 )  1.11 
(0.79) (0.97) (0.96) 

,~oo, 0 1.58 0 1.30 0 1.30 
(0.95) (1.13) (1.12) 

re 1 2.12 I 1.84 1 1.84 
(1.39) (1.57) (1.56) 

6 X °°1 0.01 0.67 0.11 0.37 ~0  0.37 
~001  2o 0 0.73 0 0.43 0 0.43 
A TM 0 1.13 0 0.83 0 0.83 
~oox 0.03 1.24 0.10 0.94 0.01 0.94 
z~ °°~ 0.04 1.88 0.i1 1.59 ~0 1.59 
Z~ TM 0 2.02 0 1.72 0 1.72 
i~¢ 1 2.05 1 1.75 1 1.75 

4.2.2. Non-folding states for [O01] Si, Ge, on silicon 
F i g u r e  2(b) shows ,  for  a s i l icon subs t r a t e ,  the  v a r i a t i o n  in the  ind i rec t  b a n d  g a p  

s ta tes  wi th  the  supe r l a t t i c e  p e r i o d  n. The  n o n - f o l d i n g  ~1oo, E l I 1  a n d  E r l l  s ta tes  a re  
e x t e n d e d  on  b o t h  s i l icon  a n d  g e r m a n i u m  s u b l a y e r s  (see Fig .  3). The  four fo ld  
d e g e n e r a c y  of  the  a l l oy  X~ °° s ta te  ( twice the  f.c.c, va lue  because  of  zone  folding)  is 
spl i t  by  the  supe r l a t t i c e  p o t e n t i a l  i n to  u p p e r  a n d  lower  pairs .  

T h e  d o u b l y  d e g e n e r a t e  L p o i n t  is spli  t a t  E, ~ ~ ~ i n to  ,~clr~ 1 ~ a n d  ~c2r~ ~ 1 bu t  r e m a i n s  
d e g e n e r a t e  a t  L i l i .  F i g u r e  2(b) shows  t ha t  the  sp l i t t ing  of  the  ~ctrJ ~ ~ a n d  -~2rl ~ ~ s ta tes  
osc i l l a tes  wi th  n, exh ib i t i ng  a l a rge  ene rgy  difference for  n = 2 a n d  6 a n d  nea r  
d e g e n e r a c y  for  n = 4. Th is  v a r i a t i o n  wi th  n has  been  s h o w n  6 to  be a m e a s u r e  of  the  
c o m m e n s u r a b i l i t y  o f  the  su p e r l a t t i c e  p e r i o d  wi th  the  p e r i o d  of  the  wavefunc t ions .  
The  u n d e r l y i n g  p e r i o d  of  the  w a v e f u n c t i o n s  is four  m o n o l a y e r s .  T h u s  the  la t t i ce  is in 
perfect  r eg i s t ry  wi th  the  w a v e f u n c t i o n  in the  n = 2 supe r l a t t i c e  a n d  the s ta tes  a re  
ab le  to  s a m p l e  ful ly the  di f ference b e twee n  the s i l icon a n d  g e r m a n i u m  po ten t i a l s .  
F o r  n --- 4 the  s t a tes  a re  forced  to  s a m p l e  b o t h  sub la t t i ce s  e q u a l l y  a n d  the  sp l i t t i ng  is 
c lose  to  zero .  F o r  n = 6 each  w a v e f u n c t i o n  can  p lace  t w o - t h i r d s  of  i ts we igh t  on  one  
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sublattice and one-third on the other, giving one-third of the splitting of the n = 2 
superlattice. In general the splitting is zero for n a multiple of four. For other n the 
wavefunction has relative amplitude of 2/n and (n-2) /n  on the two sublattices, 
leading to a splitting 2In times that for n = 2. Because of their delocalized nature, the 
average of the states changes only slightly with n, although for sufficiently thick 
layers the states will localize and their energy will drop. This non-monotonic 
behavior of the superlattice L,~ 11 and X ~°° conduction band energies, coupled with 
the small variations with n we find for the corresponding valence band energies, 
suggests that the energy of direct ,X~. ~ ,X~ and Lv ~ Lc transitions should be non- 
monotonic as a function ofn. Our calculations (corrected for LDA errors) predict ,Xc 
- -Xv splitting of 4.07, 4.37 and 4.28 ( _+ 0.04) eV, and E,~ - L V splitting of 1.95, 2.45 and 
2.30 (+0.12)eV for n = 2, 4 and 6 respectively. Experimental testing of this 
prediction is lacking. 

4.3. [001] Si4Ge4 superlattices on other substrates 
In all the superlattices described so far, the indirect states at X~ °° are well below 

the F folding ~zool,,~ states. This makes all of these superlattices indirect band gap 
systems. The origin of this (the tetragonal deformation imposed by the substrate) 
was discussed in Section 4.1. If the substrate lattice constant is increased, the 
tetragonal strain changes sign, and the order of Rool and qlOO,,cl in Fig. 2 should be 
reversed (compare with Figs. l(b) and l(d)). To test this hypothesis, we performed 
two calculations: one for an n = 4 superlattice with a substrate lattice constant equal 
to the average of silicon and germanium (appropriate for a superlattice grown on a 
Sio.sGeo.5 alloy substrate or for a free-standing superlattice), and the other for an 
n = 4 superlattice on germanium. Results for these calculations are shown in Fig. 4. 

We observe that as the substrate lattice constant increases, the ~xoo and ~ o o  ~"c I --min 
states shift up in energy with respect to the r" folding states at ,~ool. For an alloy 

minimum a t  '~min a b o v e  substrate this shift is already sufficient to place the previous • - lOO 
the lowest direct conduction band -" ~oo~ at A cl • The n = 4 superlattices remain indirect, 
however, because of the 0.1 eV downward dispersion away from [" in the [001] 
direction. The magnitude of this dispersion can be reduced by increasing n. For 
n -- 6 it is already only 0.01 eV (see Fig. 2(a)) and for even-n superlattices with n = 10 
or 12 or odd-n superlattices with n = 5 or 7 it should vanish completely as the 
minimum of the alloy's first conduction band folds to r (see Section 4.1). Zachai et 
al? 3 have recently observed strong photoluminescence from a Si6Ge4[001] 
superlattice grown on a lattice-matched ("strain-symmetrized") substrate, suggest- 
ing that this is a direct band gap material in agreement with our prediction. 

The growth of Si,Ge, on a lattice-matched alloy substrate is facilitated by the 
smaller strain in the layers (2~o) relative to the situation with a silicon or germanium 
substrate (4~o). An added advantage is that since the superlattice on the average is 
lattice matched, there is no limit on the total thickness of the superlattice and the 
growth of optical thicknesses should be possible. 

4.4. [1 lO] SinGe, superlattices on silicon substrates 
As discussed in Section 4.1, for superlattices grown in the [110] direction the 

effect of strain on the F folding X °°~ states is reversed. To investigate this possibility 
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for a direct band gap superlattice on a silicon substrate, we have performed 
calculations for Si,Ge,[110] superlattices on silicon for n = 4, 6 and 8. The results 
are shown in Figs. 5 and 6. Figure 5 shows calculated band energies at symmetry 
points for the superlattices. We also show (as n = ~ )  values appropriate for a Si/Ge 
interface, i.e. calculated band offsets. The band energies for each superlattice have 
been appropriately aligned so that any band offset can be read offthe figure. Figure 6 
shows planar-averaged wavefunctions I~12 for the F' folding states in the n = 6 
superlattice. We next discuss separately the r folding and the nonfolding states. 

4.4.1. r-folding states for [l lO] Si.Ge, on silicon 
Figure 5(a) shows the energies of states that fold to the center of the superlattice 

zone, [', Again the valence band maximum is located here. The states are now 
completely split by the substrate-induced strain as well as by interaction between 
folded-in states of the same symmetry. The uppermost valence band state, rye, is 
localized on the germanium sublattice (see Fig. 6(c)) and its energy approaches the 
germanium valence band edge as the superlattice thickness increases. 

The lowest conduction band at F, --c1~°°1, is formed by a folded-in [001] X state. 
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TABLE II 
SYMMETRY LABELS FOR i ~ FOLDING STATES IN [|  10] Si.Ge. 
SUPERLATT1CES, POINT GROUP SYMMETRY mlTlm. THE SYMMETRY 
NOTATION IS FROM TINKHAM 26 

State Symmetry 

n = 4  n = 6  n = 8  

Fc B1. Blu B1. 
~c2, I~c2 131u B2g 
Zcl, I~¢~ B2g B1. 
X °°1 B2, 131, B2, 
gOOl B3 u Alg B3 u 

Fvi B3g B3g B3g 
F~2 AI~ AI, Al, 
i~v3 B2g 132g B2g 

The symmetry of this state (see Table II) changes with n, causing a small shift 
upwards for n = 6 as it interacts with the valence band state Fv2. This is also seen in 
the complementary nature of the wavefunctions (see Figs. 6(b) and 6(d)). There is a 
small residual downward dispersion immediately away from F', reflecting the 
downward dispersion from X to the conduction band minimum at A in the alloy. 
This dispersion is indicated by the shaded area in Fig. 5(a), and amounts to 35, 72 
and 50 meV for n = 4, 6 and 8 respectively. For  comparison, the dispersion of the 
folded-in [001] X states in [001J-oriented superlattices is 99, 85 and 12meV for 
n = 2, 4 and 6 grown on silicon and l l 4 m e V  for the n = 4 superlattice grown on 
germanium. The folding of states along the superlattice direction Y, does not lead to 
low energy states until n = 6, when a point close to K folds, and n = 8, when the K 
point itself folds. For  n = 6, the folding state labeled ~,c2 interacts strongly with the 
original alloy F~c state (both of Blu symmetry), making identification of their origins 
in alloy states impossible. The r folding conduction band states are delocalized with 
the exception of the qool ,-¢2 state, which is localized on the silicon sublattice, and the 
upper of the F¢, Ec2 pair, which is localized on the germanium sublattice (see Figs. 
6(e) and 6(g)). 

Table III shows calculated dipole matrix elements for the F folding states up to 
and including the alloy F state at about 2 eV. Matrix elements for transitions to 
states folded from the [001] X point are smaller than those folded from the Z or K 
points and are much smaller for n = 4 and 8. This can be understood by considering 
the orientation dependence of the ordering potential: the difference between the 
potentials of the ordered superlattice and of the disordered alloy after planar 
averaging in a given direction. Assigning constant potentials Vsl to the silicon layers 
and Voe to the germanium layers, we can approximate the ordering potentials as 
follows. In the [110] direction the ordering potential is simply the difference 
Vsi- Vce, independent of the repeat period. In the [001] direction, responsible for the 
folding of the [001] X point, the ordering potential is 2(Vsl- VG,)/n for n = 2, 6, 10, 
etc., and zero otherwise. This explains the extraordinary small matrix elements for n 



46 s. FROYEN, D. M. WOOD, A. ZUNGER 

TABLE II1 
CALCULATED TRANSITION ENERGIES AE AND DIPOLE MATRIX ELEMENTS 1<i1~" rlf)l  2 IN [110] Si~Ge~ 
SUPERLATTICES FOR r/ = 4 ,  6 AND 8 ON A SILICON SUBSTRATE. EACH TRANSITION HAS A NON-ZERO DIPOLE 

MATRIX ELEMENT FOR THE GIVEN POLARIZATION, e, ONLY. THE NOTATION FOR THE STATES REFER TO F I G .  

5. THE TRANSITION ENERGIES ARE IN ELECTRONVOLTS AND CAN BE APPROXIMATELY CORRECTED FOR LDA 

ERRORS BY ADDING 0 . 6 4 e V  

(i[ I.l'> Fv, l"v2 F~3 
n 

~E I<~'r>l 2 ~ AE I<~'r>l = ~ AE I<~'r>l 2 

4 -ool Xc~ 0.24 0.0 0.32 7.2x 10 -5 1-110] 0.50 4.8x 10 -5 [001] 
- -001 X~2 0.61 0.0 0.69 0.0 0.87 0.0 
F~ 1.60 3.0x10 -2 [110] 1.68 7.0x10 2 [001] 1.86 0.12 [110] 

6 -OOl Xcl 0.22 0.0 0.37 0.0 0.53 0.0 
--001 X~2 0.48 1.5x10 3 [110] 0.63 1.0xl0 -3 [001] 0.79 8.5x10 -3 [110] 
Zcl 1.39 0.0 1.54 0.0 1.70 0.0 
Fc,Ec: 1.55 1.9×10 -2 [i10] 1.70 2.9x10 2 [001] 1.86 5.9x10 -2 [110] 
F~,£,2 1.63 2.8x10 2 [110] 1.77 3.9x10 -z [001] 1.94 7.0×10 -2 [110] 

8 --001 X~l 0.15 0.0 0.33 4.1 × 10 6 [110] 0.51 1.1 × 10 -5 [001] 
,~oo~ 0.38 0.0 0.56 0.0 0.74 0.0 
Kct 0.94 4 . 3 x 1 0  - 3  [110 ]  1.12 8.5x10 3 [001] 1.31 1 . 5 X 1 0  - 2  [110] 
K¢2 1.23 0.0 1.41 0.0 1.60 0.0 
Fc 1.51 6.1 x 10 -2 [il0] 1,69 7.0x 10 -2 [001] 1.88 0.12 [110] 

= 4 and 8, and why they are orders of magni tude  larger for n = 6. Unfor tunate ly ,  the 
lowest energy dipole t ransi t ions in the n = 6 superlattice are symmetry forbidden. 

For  the new optically allowed transi t ions the LDA corrected energies are 0.96 
and 1.14eV (for n = 4), 1.12, 1.27 and  1.43 eV (for n = 6), and 0.97 and 1.15eV (for 
n = 8). The m i n i m u m  indirect gaps (to A °°a --mi,, are 0.74, 0.97 and 0.89 eV respectively. 

4.4.2. Non-folding states for [l lO] Si, Ge, on silicon 
Low energy non-folding states are shown in Fig. 5(b). These are derived from 

the various alloy A, X and L points  and  are labeled accordingly, z~l= °° is the 
conduct ion  band  m i n i m u m  along [100] and  [010] directions and ,~clx°°l and A °°1 are 

states folded from [O01]n/a. Compar ing  Figs. 5(a) and 5(b) we see that  the r" folding 
[001] ,~ool state is indeed below all non-folding X, ~ and L states. The downward  
dispersion immediately away from r still leaves the superlattice indirect, but  its 
small magni tude  (35 meV for n = 4) makes this superlattice quasi-direct at room 
temperature.  

4.5. Spin-orbit coupling 
Our  calculat ion does not  include s p i n - o r b i t  coupling, a l though quali tative 

features can be estimated from per turba t ion  theory. 25 Its ma in  effect is to couple the 
top three states, Fvl_3, at the valence band  maximum.  This can make dipole 
forbidden transi t ions weakly allowed, and can shift the top valence band  state 
upwards by at most  A0/3 , where A o is the s p i n - o r b i t  splitt ing at the valence band  
max imum for the uns t ra ined solid: 0.04 eV for silicon, 0.30 eV for germanium,  and  
abou t  0.17eV for the superlattices (the average of the constituents).  This shift 
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reduces the direct  band  gap  and  sl ightly modifies  the valence band  offsets. The  effect 
of  s p i n - o r b i t  on the conf inement  of  the super la t t ice  states is thus expected to be 

small.  

5. CONCLUSIONS 

We have shown that  shor t -pe r iod  S i - G e  superlat t ices  exhibit  new low energy 
opt ica l  t rans i t ions  and that  they are  excellent candida tes  for direct  band  gap  
mater ia ls .  Superlat t ices  or ien ted  in the [001] di rect ion show the highest  p romise  to 
be direct.  Because of  the s train spl i t t ing of  the X valleys, they should  be grown on 
Si /Ge al loy (with more  than  50~o germanium)  or  ge rman ium substrates .  If  a sil icon 
subs t ra te  must  be used, superla t t ices  g rown in the [110] d i rec t ion  exhibi t  quasi-  
direct  band  gaps,  i.e. f" is lower in energy than  X, but  the super la t t ice  is nevertheless 
indirect  because of a small  d o w n w a r d  d ispers ion  (of the order  kB T) of  the lowest  
conduc t ion  band  away  from F'. 
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