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We examine theoretically the structural and electronic properties of thin Si,Ge,
superlattices for n = 1, 2,4 and 6, grown on (001) and (110)-oriented substrates. The
increased repeat distance along the growth direction leads to folding of conduction
band states to the I" point of the superlattice Brillouin zone, resulting in a significant
reduction in the minimum direct band gap. Transitions to these folded-in states can
have non-zero dipole matrix elements because of (i) atomic relaxation, leading to the
accommodation of distinct Si—Si and Ge—Ge bond lengths and (ii) the superlattice
ordering potential. Our calculations show that superlattices grown coherently on a
(001)Si substrate remain indirect band gap materials, with a minimum gap from I’ to
A (near the X point) of the f.c.c. Brillouin zone. We find, however, that increasing the
lattice parameter a of the substrate will further reduce the direct band gap. For
a, = a, where a is the average of the lattice constants for silicon and germanium, we
predict a nearly direct band gap: for SigGe, the indirect band gap for a;, = ais only
~0.01 eV smaller than the direct band gap. The lowest conduction band states in
this case are localized on the silicon sublattice. For (110)-oriented substrates, a
similar degree of directness in the band gap can be achieved even on silicon.

1. INTRODUCTION

The most widely used semiconductors are the indirect band gap materials
silicon and germanium. Most applications in optoelectronics, however, require
semiconducting materials with direct band gaps. If silicon or germanium could
somehow be manufactured with direct band gaps of the appropriate magnitude,
their already mature technology could be harnessed in integrated optics. One way to
modify the electronic structure of a material is to impose additional structural order,
e.g. by ordering the atoms of a disordered alloy into a superlattice. Such order will
modify the Brillouin zone of the material and may cause the electron energy bands to
fold, making previously indirect transitions direct. This possibility has spurred the
current interest in short-period superlattices of silicon and germanium!~!3, in
particular superlattices grown in the [001] direction. Here X and points along the A
symmetry direction fold to the center, T, of the superlattice Brillouin zone, raising
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the possibility of a direct band gap material. Short periods are necessary to obtain
significant oscillator strength for such folded, pseudodirect transitions; as the
thickness increases, the transition matrix elements quickly approach their vanishing
bulk values. Growth of such materials has recently become possible through
molecular beam epitaxy. Pearsall et al."'3'! studied electroreflectance of Si,Ge,
superlattices on (001)Si for n = 1, 2, 4 and 6 and observed new optical transitions at
0.76,1.25,1.70 and 2.31eV forn = 4.

Motivated by these results, in 1986 we began studies of the electronic structure
for such superlattices. In this paper we review earlier results, present results from
pseudopotential calculations on actual superlattices, and discuss the physics
necessary to understand the design criteria for a direct gap superlattice. The paper is
organized as follows: Section 2 describes the first principles pseudopotential
method, Section 3 gives results for structural properties and total energies, in Section
4 we describe the electronic structure of the superlattices emphasizing the underlying
physics, and finally Section 5 contains a short summary and conclusions.

2. METHOD

We have used the first principles pseudopotential method!* ! to calculate
both total structural energies and electronic energy levels for the following Si,Ge,
superlattices: n = 2, 4 and 6 on (001)Si, n = 4 on germanium and lattice-matched
(001) alloy substrates, and n =4, 6 and 8 on (110)Si. In the [001]-oriented
superlattices, n is equal to the number of monolayers in each sublayer. In the [110]
superlattices, each monolayer contributes two atoms to the unit cell, hence the
number of monolayers is n/2. Semirelativistic pseudopotentials are generated using
Kerker’s method!®, and the wave functions are expanded in plane waves with kinetic
energies up to 12 rydbergs for total energies and 15 rydbergs for the electronic energy
levels. The calculation is done self-consistently and the charge density is evaluated at
the equivalent of six special k-points!”-18 (10for then = 4[001]and n = 4andn = 8
[110] superlattices) in the irreducible part of the f.c.c. Brillouin zone. Exchange and
correlation are treated within the local density approximation!®-2° (LDA) using the
electron gas data of Ceperley and Alder as parameterized by Perdew and Zunger?!.
Atomic positions are determined by total energy minimization'*!>, The electronic
structure is then computed for the equilibrium, minimum energy configuration. The
LDA, with its well-known band gap problem?!, underestimates the conduction
band energies. Fortunately, the lowest superlattice conduction bands derive only
from silicon and germanium X states. We can therefore approximately correct for
the LDA error, at least for these X-derived states, by shifting our calculated
conduction band states upwards by 0.64 eV, as discussed in ref. 6.

3. STRUCTURAL PROPERTIES

We calculate equilibrium lattice constants of 5.41 and 5.61 A for pure silicon
and germanium respectively. The experimental values®? are 5.430 and 5.657 A.

Assuming that strain induced by the mismatch between silicon and germanium
lattice constants is accommodated elastically, the Si,Ge, superlattices will grow
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coherently without misfit dislocations on a substrate. The lattice constants parallel
to the substrate, ay, are therefore fixed by the substrate and, except for the lattice-
matched systems, the superlattices deform in the perpendicular direction to relieve
part of the strain. We find that all superlattices grown on silicon or germanium
substrates deform by 3%, i.e. ¢/a; = 1.0310.01 for silicon and ¢/a; = 0.97 + 0.01 for
germanium substrates. The uncertainty is caused partly by numerical uncertainty in
locating a shallow minimum in the total energy vs. c/q;, and partly by our
underestimation of the lattice mismatch between bulk silicon and germanium.
Interplanar relaxations restore the spacings in the silicon and germanium layers to
very close to those for the pure constituents. For a Si(Ge) substrate virtually all the
strain is taken up by the Ge(Si) layers. The Si—Ge interlayer distance is close to the
average of the Si—Si and Ge—Ge interlayer spacings.

Our total energy calculations permit assessing superlattice stability. To within
3meV all superlattices ([001] and [110]) grown on silicon substrates have the same
energy per atom. The epitaxial formation energy 0H, i.e. the total energy of the
relaxed superlattice relative to equivalent amounts of silicon and germanium grown
coherently on silicon, is likewise

0+30meV
(Si—Ge) pair

The formation enthalpy relative to equivalent amounts of bulk silicon and
germanium is

34+ 30meV
(Si—Ge) pair

Thus as long as coherent growth is maintained, superlattices of any period n can be
grown with the same ease.

SH™ =

AH® =

4. ELECTRONIC PROPERTIES

4.1. Qualitative physics

The common approach to superlattice electronic structure is to start with the
band structure of the constituents and then apply effective mass, particle-in-a-box
type descriptions. Such models rest on the identification of states in terms of their
localization on a sublattice (silicon and germanium). However, our results show that
very few states in these superlattices show appreciable localization on any sublattice,
a reflection of the very narrow width of the layers. While the results of our first
principles numerical calculations are, of course, independent of such approxi-
mations, it is still advantageous to analyze them in terms of simple conceptual
models, so that their physical content becomes clear. We propose the following
sequence.

(1) Start from the calculated energy bands of a Si, ;Ge, 5 alloy on a lattice-
matched substrate. Here the average strain is zero and there are no superlattice
effects. Figure 1(c) shows the electronic energy levels of the alloy at selected
symmetry points calculated using the virtual crystal approximation (VCA);
corresponding results for the constituents, silicon and germanium, are shown in
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Fig. I. Calculated LDA energy levels (in electronvolts) relative to the average of the strain split valence
band maximum states at T, X and L of () bulk silicon (a5, = 5.41 A), (e) Siy. sGe,.5 alloy (agige = 5.51 A),
and (¢) germanium (ag, = 5.61 A), as well as (b) and (d) [001] tetragonally distorted Si,, sGe, s alloy. The
calculated equilibrium lattice constants are used.

Figs. 1(a) and 1(e). The energy levels for the alloy occur at approximately the average
of the corresponding levels for silicon and germanium. Since the L, and I', states of
silicon are considerably above those of germanium, whereas the X, states are low
energy in both silicon and germanium, this averaging causes the alloy conduction
bands at L and I'" to move upwards relative to the X states. The alloy becomes
indirect from I' to X and, as will be confirmed later, the states at L and I" become
irrelevant for the question of superlattice directness.

(2) Next we consider the effect of substrate-induced strain on the Siy sGeg s
alloy. This is shown in Figs. 1(b) and 1(d), which show a VCA alloy grown on (001)
silicon and germanium respectively. The alloy is now under compressive (Fig. 1(b))
or tensile (Fig. 1(d)) strain. We see that the tetragonal deformation associated with
the substrate constraint removes the equivalence of the six X valleys. The two X
valleys with their k vectors in the [001] directions (X%°!), perpendicular to the
substrate, shift up in energy with respect to the other four (X!°) for alloys on silicon
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substrates and down for germanium substrates. Thus, in order to obtain a direct
band gap when forming a superlattice, the superlattice-induced folding must be such
that the lowest energy strain-split X band folds to T".

The strain will also split the three-fold degeneracy (in the absence of spin-orbit
splitting) of the valence band maximum into a doubly degenerate p*°°, p°!° pair and
a single p°°! state. Again the order of these states depends on the sign of the strain:
for germanium substrates the singlet has the higher energy and forms the valence
band maximum, and for silicon substrates the doublet is on top. The L states are not
split by the strain.

(3) Now consider ordering of the Si, sGe,_s alloy into a Si,Ge, superlattice. The
alloy states fold into the smaller superlattice Brillouin zone. For [001] superlattices,
the [001]A line from I" to X folds » times. Since the alloy X point is doubly
degenerate, the superlattice can potentially have as many as 2n additional states at
I'. To make the superlattice as nearly direct as possible, the substrate lattice constant
should be chosen on the germanium side in order that the folding X! state have
lower energy than the non-folding X1 state (see Fig. 1(d)).

For superlattices grown in the [ 110] direction the [110] X line folds. The bands
along this symmetry line in the first Brillouin zone are all higher energy states.
However, [ 110] superlattices also have an increased repeat period (with respect to
f.c.c.)along the [001] direction, causing the [001] X point to fold to I'. This raises the
possibility'? of a direct-gap [110] superlattice. Since the folding X point now has its
k vector in the plane of the substrate, the effect of strain is reversed compared with
the [001] superlattices, and [110] superlattices should be grown on silicon
substrates to encourage directness. We verify this below.

The L states were not split by the strain, but the orthorhombic unit cell of the
even-n superlattices (space group Pmma) causes the [111] and [111] L points to
become inequivalent. For odd-n superlattices (space group 14m2) they remain
equivalent.

States which after folding have equal symmetry will repel one another. This
effect is small for [001] but noticeable for [110] superlattices. Interestingly, it causes
[111]-oriented (AlAs),(GaAs), superlattices to be direct?>.

(4) Next, we must take into account the fact that the alloy conduction band
minimum occurs not at X but along A at k;, = 0.83ky, 0.19eV below X . For the
superlattices studied here, this minimum remains unfolded, possibly leading to a
residual downward dispersion away from the folded-in I’ minimum. The dispersion
will be modified by Brillouin zone edge effects and by the smaller size of the
superlattice zone, and its magnitude will normally be much smaller than in the alloy.
For [001] even-n Si,Ge, superlattices, k_;, folds provided k,;, = (n—2)/n x ky.
Choosing n = 12 will fold the alloy minimum to T'. A better choice might be to use
odd-n superlattices. Here the X point does not fold and the condition above becomes
kmin = (n—1)/n x kyx, making n = 5 or seven good candidates for a true direct band
gap material.

(5) Our superlattice calculations also predict band offsets for the Si/Ge
interface. All our interfaces have the same strain-averaged valence band offset,
0.5eV, with germanium higher in energy. This is in good agreement with the [001]
offsets, 0.51-0.54 ¢V, calculated by Van de Walle and Martin?* for various substrate
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lattice constants. The conduction band offsets place the X°°! conduction-band
minimum on the silicon sublattice. For [001]-oriented superlattices, a large offset for
the X2°! states causes the lowest superlattice states at T to localized in the silicon
region. For [110] superlattices, the offset is much smaller and the lowest I folding
state is delocalized.

In the following we will label superlattice states with f.c.c. symmetry labels
indicating the alloy origin of each state and adding an overbar to indicate thatitis a
superlattice state.

4.2. [001]Si,Ge, superlattices on silicon substrates

We now turn to our calculated results for actual superlattices. We start with
[001]Si,Ge, superlattices grown on silicon substrates since these were the first to be
studied experimentally!. In the random alloy, the relative position of the folding vs.
the non-folding X states is completely determined by the tetragonal strain. In the
superlattice, quantum confinement effects (i.e. the ability of the superlattice states to
localize in the silicon or germanium regions of the system) will modify the simple
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Fig. 2. Calculated LDA energy levels (in electronvolts) of (a) I" folding and (b) non-folding states of
strained [001] $i,Ge, superlattices grown onsilicon for n = 2,4 and 6 and for the random Si, ;Ge, s alloy
on silicon. Cross-hatched regions indicate the extent of downward dispersion of a band away from the
symmetry point. The zero of energy is taken as the average of the top three valence states at .
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Fig. 3. (001) planar-averaged wave functions for selected states in the [001] Si,Ge, superlattice on a
silicon substrate.

arguments given in the previous section. Detailed calculations are therefore needed
to predict the nature of the band gap confidently. Such results are shown in Figs. 2
and 3. We find that the superlattice conduction band states (Fig. 2) naturally divide
into two categories: the I folding states (Fig. 2(a)), which behave as conventional
quantum-confined states, and the non-folding states at X'°° and L (Fig. 2(b)) which
are delocalized in nature (see Fig, 3).

4.2.1. T folding states for [001]Si,Ge, on silicon

Figure 2(a) shows the energies of states that fold to the center of the superlattice
zone, I'. The valance band maximum is located here and is formed from the alloy

sy P states. They are split into a pair T'}2°, 129 and singlet I'%)! by substrate-

induced strain. The pair is then slightly split because of the orthorhombic symmetry
of the superlattice. These states are delocalized on both sublattices, but with a slight
emphasis on the germanium sublattice (see Fig. 3) reflecting the fact that the valence
band offset places the germanium valence band maximum above silicon®,

The T folding conduction band states behave as conventional quantum-
confined states in two respects. First, except for the n = 2 superlattice, they are
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confined to the silicon sublattice, as can be seen by inspecting the X!2° and X%!

wave function amplitudes in Fig. 3. Secondly, the energy of the I' folding states drops
as the silicon sublayer thickness n increases. The localization on a single sublattice of
these states (reflecting the heavy longitudinal electron mass at X) emphasizes the
possibility of quantum confinement even in atomically thin superlattices. These I’
folding states are seen to occur in pairs, mirroring the original degeneracy at X.

For n = 4 and 6 the additional states along A which fold to T still leave the
conduction band minimum along A unfolded. As discussed above, this leads to a
downward dispersion of the lowest conduction band state away from I in the [001]
direction. The magnitude of this dispersion is indicated in Fig. 2(a) by the boxed
region.

Comparison of the direct transitions in the strained Sij sGe, 5 on silicon alloy
with those of the strained superlattice reveals a dramatic change: whereas the lowest
direct (I, - I',) transitions in the strained alloy appear above 1.9 eV, four new direct
transitions appear in the Si,Ge, superlattice below this energy.

Since the new low energy conduction band states are folded-in states, they
would normally be expected to have small transition matrix elements with the upper
valence band states. (In the absence of superlattice ordering and atomic relaxations,
such pseudodirect transitions carry no oscillator strength.) The transition matrix
elements are, however, enhanced by the Si—Ge potential difference and by the
different interplanar distances in the two sublayers. As the layers become thicker the
matrix elements must decrease and approach their vanishing bulk values. This is
clearly seen in Table I, where the squares on the matrix elements are tabulated.
Notice that in the n = 4 superlattice the symmetry of the lower conduction band is
opposite that of the n = 2 and 6 superlattices and all transitions to the lowest
conduction band state are dipole forbidden.

We see that for parallel polarization, corresponding to the experimental
situation in ref. 1, we expect three groups of transitions for n = 4, denoted A, Band C
in Fig. 2(a). Their LDA energies (Table 1) are 0.63, 1.11 and 1.84, respectively.
Correcting approximately for the LDA error (see Section 2), this gives,

[109 - X% = 1274+0.04eV  (A)
T - A% = 1.75+0.04eV (B)
[109 T =26+03eV ()

We assign transition A to that observed! at 1.25eV (with a line width of 0.24eV).
Transition B, not seen in the original experiment, was later observed®!! at 1.70eV.
We assign the alloy-derived transition C to the one observed! at 2.31 eV (line width
of 0.24 ¢ V). The transition observed! at 0.76 eV is not a direct transition according to
our calculation. It could correspond to the indirect T1%° — A%! transition we
calculate at 0.92 + 0.04 eV after correcting for the LDA error. It is also possible, given
the small thickness of the overall superlattice, that the observed transition is from
the superlattice I, state to the conduction band minimum of the silicon substrate.
Such a transition would be 0.19 eV lower in energy than the ['1°9 — A%%! transition

and therefore closer to the observed value (see Fig. 11 and Section VIin ref. 6.)
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TABLE 1

CALCULATED TRANSITION ENERGIES AE AND DIPOLE MATRIX ELEMENTS, [{i|é- ?| )2 For [001] Si,Ge,
SUPERLATTICES WITH 7 = 2,4 AND 6 ON A SILICON SUBSTRATE. (THE VALUES FOR A GERMANIUM
SUBSTRATE ARE GIVEN IN PARENTHESES FOR n = 4.) {i| 1S A VALENCE STATE AND |f> A CONDUCTION
BAND STATE AS INDICATED; & IS THE DIRECTION OF POLARIZATION. THE NOTATION FOR THE STATES REFER
TO FIG. 2. EACH TRANSITION HAS A NON-ZERO MATRIX ELEMENT FOR A GIVEN POLARIZATION, é, ONLY.
THE MATRIX ELEMENTS HAVE BEEN NORMALIZED SO THAT THE STRONG, I'}5, = I'5 DERIVED TRANSITION
IS UNITY. ENERGY DIFFERENCES ARE IN ELECTRONVOLTS

Gl 1fy T =001) 190 (¢ = 100/010) 1905 = 100/010)
n

[Ké- ¥ 32 AE [Ké- T3 AE Ké- 72 AE

2 X901 021 0.93 1.28 0.65 0.07 0.61

X%t 0 1.11 0 0.83 0 0.79

r, 1 2.30 1 2.02 1 1.98

4 001 0.80 0 0.53 0 0.52

(0.24) (0.43) (0.41)

X201 0,02(008) 091 0.04(0.05) 0.63 ~0(002) 063

(0.34) (0.53) (0.52)

ALl 0.04(0.06) 139 0.12(0.08) 1.1 ~0(=0)  L11

(0.79) 0.97) (0.96)

APt 0 1.58 0 1.30 0 1.30

(0.95) (1.13) (1.12)

T, 1 2.12 1 1.84 1 1.84

(1.39) (1.57) (1.56)

6 X001 001 0.67 0.11 0.37 ~0 0.37

X1 ¢ 0.73 0 043 0 0.43

01 g 1.13 0 0.83 0 0.83

A%t 003 1.24 0.10 0.94 0.01 0.94

A% 004 1.88 0.11 1.59 =0 1.59

A%t g 202 0 1.72 0 172

T, 1 2.05 1 1.75 1 1.75

4.2.2. Non-folding states for [001] Si,Ge, on silicon

Figure 2(b) shows, for a silicon substrate, the variation in the indirect band gap
states with the superlattice period n. The non-folding X1°°, L'* and LT!! states are
extended on both silicon and germanium sublayers (see Fig. 3). The fourfold
degeneracy of the alloy X190 state (twice the f.c.c. value because of zone folding) is
split by the superlattice potential into upper and lower pairs.

The doubly degenerate L point is split at L*** into L!{* and L!}! but remains
degenerate at L%, Figure 2(b) shows that the splitting of the L12! and L1}! states
oscillates with n, exhibiting a large energy difference for n =2 and 6 and near
degeneracy for n = 4. This variation with n has been shown® to be a measure of the
commensurability of the superlattice period with the period of the wavefunctions.
The underlying period of the wavefunctions is four monolayers. Thus the lattice is in
perfect registry with the wavefunction in the n = 2 superlattice and the states are
able to sample fully the difference between the silicon and germanium potentials.
For n = 4 the states are forced to sample both sublattices equally and the splitting is
close to zero. For n = 6 each wavefunction can place two-thirds of its weight on one
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sublattice and one-third on the other, giving one-third of the splitting of the n = 2
superlattice. In general the splitting is zero for n a multiple of four. For other n the
wavefunction has relative amplitude of 2/n and (n—2)/n on the two sublattices,
leading to a splitting 2/n times that for n = 2. Because of their delocalized nature, the
average of the states changes only slightly with n, although for sufficiently thick
layers the states will localize and their energy will drop. This non-monotonic
behavior of the superlattice L'!! and X'°° conduction band energies, coupled with
the small variations with n we find for the corresponding valence band energies,
suggests that the energy of direct X, —» X, and L, — L, transitions should be non-
monotonic as a function of n. Our calculations (corrected for LDA errors) predict X,
—X, splitting 0f4.07,4.37 and 4.28 (+0.04) eV, and L_— L, splitting of 1.95,2.45 and
2.30 (+0.12)eV for n =2, 4 and 6 respectively. Experimental testing of this
prediction is lacking.

4.3. [001]Si,Ge, superlattices on other substrates

In all the superlattices described so far, the indirect states at X:9° are well below
the T folding X%P! states. This makes all of these superlattices indirect band gap
systems. The origin of this (the tetragonal! deformation imposed by the substrate)
was discussed in Section 4.1. If the substrate lattice constant is increased, the
tetragonal strain changes sign, and the order of X%P! and X!?° in Fig. 2 should be
reversed (compare with Figs. 1(b) and 1(d)). To test this hypothesis, we performed
two calculations: one for an n = 4 superlattice with a substrate lattice constant equal
to the average of silicon and germanium (appropriate for a superlattice grown on a
Sig sGey s alloy substrate or for a free-standing superlattice), and the other for an
n = 4 superlattice on germanium. Results for these calculations are shown in Fig. 4.

We observe that as the substrate lattice constant increases, the X:7° and AL9°
states shift up in energy with respect to the I folding states at X2°!. For an alloy
substrate this shift is already sufficient to place the previous minimum at AL1%° above
the lowest direct conduction band at X%?'. The n = 4 superlattices remain indirect,
however, because of the 0.1eV downward dispersion away from [ in the [001]
direction. The magnitude of this dispersion can be reduced by increasing n. For
n = 6itisalready only 0.01 eV (see Fig. 2(a)) and for even-n superlattices with n = 10
or 12 or odd-n superlattices with n = 5 or 7 it should vanish completely as the
minimum of the alloy’s first conduction band folds to I (see Section 4.1). Zachai et
al.'®* have recently observed strong photoluminescence from a SigGe,[001]
superlattice grown on a lattice-matched (“strain-symmetrized™) substrate, suggest-
ing that this is a direct band gap material in agreement with our prediction.

The growth of Si,Ge, on a lattice-matched alloy substrate is facilitated by the
smaller strain in the layers (2%) relative to the situation with a silicon or germanium
substrate (4%). An added advantage is that since the superlattice on the average is
lattice matched, there is no limit on the total thickness of the superlattice and the
growth of optical thicknesses should be possible.

4.4. [110]Si,Ge, superlattices on silicon substrates
As discussed in Section 4.1, for superlattices grown in the [110] direction the
effect of strain on the I folding X°°? states is reversed. To investigate this possibility
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Fig. 4. Calculated LDA energy levels (in electronvolts) of (a) T folding and (b) non-folding states of [001]
Si,Ge, superlattices matched epitaxially to silicon, a Si, sGe, s alloy, and germanium substrates. Cross-
hatched regions indicate the extent of downward dispersion of a band away from the symmetry point. The
zero of energy is taken as the average of the top three valence states at T".

for a direct band gap superlattice on a silicon substrate, we have performed
calculations for Si,Ge,[110] superlattices on silicon for n = 4, 6 and 8. The results
are shown in Figs. 5 and 6. Figure 5 shows calculated band energies at symmetry
points for the superlattices. We also show (as n = o) values appropriate for a Si/Ge
interface, i.e. calculated band offsets. The band energies for each superlattice have
been appropriately aligned so that any band offset can be read off the figure. Figure 6
shows planar-averaged wavefunctions || for the I" folding states in the n = 6
superlattice. We next discuss separately the I folding and the nonfolding states.

4.4.1. IT-folding states for [110] Si,Ge, on silicon

Figure 5(a) shows the energies of states that fold to the center of the superlattice
zone, I'. Again the valence band maximum is located here. The states are now
completely split by the substrate-induced strain as well as by interaction between
folded-in states of the same symmetry. The uppermost valence band state, T',,, is
localized on the germanium sublattice (see Fig. 6(c)) and its energy approaches the
germanium valence band edge as the superlattice thickness increases.

The lowest conduction band at I, X%??, is formed by a folded-in [001] X state.
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Fig. 5. Calculated energy levels (in electronvolts) of (a) I folding and (b) non-folding states for strained
[110] Si,Ge, superlattices grown on silicon for n = 4, 6 and 8 and for the superlattice constituents silicon
and germanium. Cross-hatched regions indicate the extent of downward dispersion of a band away from
the symmetry point. The energy levels for the different superlattices have been aligned using calculated
band offsets and the conduction band energies have been shifted 0.64eV upwards to approximately
correct for LDA errors.
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Fig. 6. (110) planar-averaged wave functions for I folding states in the [110] Si,Ge¢ superlattice on a
silicon substrate.
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TABLE 11

SYMMETRY LABELS FOR [ FOLDING STATES IN [110] Si,Ge,
SUPERLATTICES, POINT GROUP SYMMETRY mmm. THE SYMMETRY
NOTATION IS FROM TINKHAM?®

State Symmetry
n=4 n==6 n=3§

I_“c Blu Blu Blu
Zcz, Ifcz Blu BZg
4. Ke B, By,
X?é)l BZg B]u BZg
Xc(:)l01 B}u Alg B3u
r'vl BSg B3g B3g

v2 Alg AlK lg

v3 BZg BZg 2g

The symmetry of this state (see Table II) changes with n, causing a small shift
upwards for n = 6 as it interacts with the valence band state I',,. This is also seen in
the complementary nature of the wavefunctions (see Figs. 6(b) and 6(d)). There is a
small residual downward dispersion immediately away from T, reflecting the
downward dispersion from X to the conduction band minimum at A in the alloy.
This dispersion is indicated by the shaded area in Fig. 5(a), and amounts to 35, 72
and 50meV for n = 4, 6 and 8 respectively. For comparison, the dispersion of the
folded-in [001] X states in [001]-oriented superlattices is 99, 85 and 12meV for
n = 2,4 and 6 grown on silicon and 114 meV for the n = 4 superlattice grown on
germanium. The folding of states along the superlattice direction X does not lead to
low energy states until n = 6, when a point close to K folds, and n = 8, when the K
point itself folds. For n = 6, the folding state labeled X, interacts strongly with the
original alloy I'; state (both of B, , symmetry), making identification of their origins
in alloy states impossible. The I folding conduction band states are delocalized with
the exception of the X%! state, which is localized on the silicon sublattice, and the
upper of the T, £, pair, which is localized on the germanium sublattice (see Figs.
6(e) and 6(g)).

Table 111 shows calculated dipole matrix elements for the I folding states up to
and including the alloy I” state at about 2eV. Matrix elements for transitions to
states folded from the [001] X point are smaller than those folded from the  or K
points and are much smaller for n = 4 and 8. This can be understood by considering
the orientation dependence of the ordering potential: the difference between the
potentials of the ordered superiattice and of the disordered alloy after planar
averaging in a given direction. Assigning constant potentials ¥, to the silicon layers
and Vg, to the germanium layers, we can approximate the ordering potentials as
follows. In the [110] direction the ordering potential is simply the difference
Vsi— Vse» independent of the repeat period. In the [001] direction, responsible for the
folding of the [001] X point, the ordering potential is 2(Vg;— Vg, )/n for n = 2, 6, 10,
etc., and zero otherwise. This explains the extraordinary small matrix elements for n
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TABLE Il

CALCULATED TRANSITION ENERGIES AE AND DIPOLE MATRIX ELEMENTS |{ilé - Fl 12 1IN [110] Si,Ge,
SUPERLATTICES FOR # = 4,6 AND 8 ON A SILICON SUBSTRATE. EACH TRANSITION HAS A NON-ZERO DIPOLE
MATRIX ELEMENT FOR THE GIVEN POLARIZATION, é, ONLY. THE NOTATION FOR THE STATES REFER TO Fi1G.
5. THE TRANSITION ENERGIES ARE IN ELECTRONVOLTS AND CAN BE APPROXIMATELY CORRECTED FOR LDA
ERRORS BY ADDING 0.64eV

<il 1 | Iy, I
n
AE  [Ké P ¢ AE  [Ké-rF ¢ AE  [Ké-ryF @
4 X%t 024 00 032 72x1075 [110] 050 48x10"% [001]
X0t 061 00 069 00 087 00
I, 160 30x1072 [110] 168 70x1072 [001] 186 O0.12 [110]
6 o1 022 00 037 00 053 00
X001 048 1.5%x1073 [110] 063 10x107% [001] 079 85x1073* [110]
S 139 00 1.54 0.0 170 00
.5, 155 19x1072 [T10] 170 29%x 1072 [001] 1.86 59x 1072 [110]
I..Z., 163 28x10°2 [110] 177 39x1072 [001] 194 70x1072 [110]
8 X201 015 00 033 41x107° [110] 051 L1x1075 [001]
X% 038 00 056 0.0 074 00
K., 094 43x10°3 [T10] L12 85x 1073 [001] 131 1.5x1072 [110]
K., 123 00 141 00 160 00
I, 151 61x1072 [110] 169 70x10°2 [001] 188 0.12 [110]

= 4 and 8, and why they are orders of magnitude larger for n = 6. Unfortunately, the
lowest energy dipole transitions in the n = 6 superlattice are symmetry forbidden.

For the new optically allowed transitions the LDA corrected energies are 0.96
and 1.14eV (for n = 4), 1.12, 1.27 and 1.43 ¢V (for n = 6), and 0.97 and 1.15¢V (for
n = 8). The minimum indirect gaps (to A2%!) are 0.74,0.97 and 0.89 €V respectively.

4.4.2. Non-folding states for [110] Si,Ge, on silicon

Low energy non-folding states are shown in Fig. 5(b). These are derived from
the various alloy A, X and L points and are labeled accordingly. A2? is the
conduction band minimum along [100] and [010] directions and AP and A9 are
states folded from [001]n/a. Comparing Figs. 5(a) and 5(b) we see that the I folding
[001] X! state is indeed below all non-folding X, A and L states. The downward
dispersion immediately away from T still leaves the superlattice indirect, but its
small magnitude (35meV for n = 4) makes this superlattice quasi-direct at room
temperature.

4.5. Spin—orbit coupling

Our calculation does not include spin—orbit coupling, although qualitative
features can be estimated from perturbation theory.?3 Its main effect is to couple the
top three states, I',, 5, at the valence band maximum. This can make dipole
forbidden transitions weakly allowed, and can shift the top valence band state
upwards by at most A, /3, where A, is the spin—orbit splitting at the valence band
maximum for the unstrained solid: 0.04 eV for silicon, 0.30eV for germanium, and
about 0.17eV for the superlattices (the average of the constituents). This shift
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reduces the direct band gap and slightly modifies the valence band offsets. The effect
of spin—orbit on the confinement of the superlattice states is thus expected to be
small.

5. CONCLUSIONS

We have shown that short-period Si—Ge superlattices exhibit new low energy
optical transitions and that they are excellent candidates for direct band gap
materials. Superlattices oriented in the [001] direction show the highest promise to
be direct. Because of the strain splitting of the X valleys, they should be grown on
Si/Ge alloy (with more than 50%, germanium) or germanium substrates. If a silicon
substrate must be used, superlattices grown in the [110] direction exhibit quasi-
direct band gaps, i.e. I' is lower in energy than X, but the superlattice is nevertheless
indirect because of a small downward dispersion (of the order kg T) of the lowest
conduction band away from T
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