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First-principles calculation of the formation energies of ordered
and disordered phases of A1As-GaAs
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The total energy of ordered and disordered phases of AlAs-GaAs systems is expanded in a series
of multiatom interaction energies determined from first-principles linear muffin-tin orbital and
linear augmented-plane-wave calculations of simple superstructures. These interaction energies are
used to discuss the stability of different superlattices and that of the random alloy.

I. INTRODUCTION

Wei and Zunger' have shown that the total excess en-
ergy per cell b,E(n, G) of lattice-matched (AC)„(BC)„
superlattices with layers repeated along the direction 6,
bE [n, G]=E [(AC)„(BC)„;G] nE [AC] —nE [BC],—

pie short-period structures can be used in conjunction
with this energy-expansion method to predict the excess
energies of longer period (A1As)„(GaAs)„superlattices in
different orientations as well as the energy of the random
Alo ~Gao 5As alloy. General conclusions on the relative
thermodynamic stabilities of these systems are drawn.

II. APPLICATION TO AlAs-GaAs SYSTEMS

can be represented with respect to the equilibrium ener-
gies of pure AC and BC as a reasonably rapidly conver-
gent series of k-atom m-neighbor interaction energies

K M
bE [n, G]= y y gk (n, G)~k,

k m

(2)

Here, gk (n, G) are geometric constants representing the
occurrence frequency in the superlattice (relative to its
constituent binary solids) of k-atom "figures" whose A
and B sites are separated by up to the mth nearest neigh-
bor (given in Tables I and II of Ref. 1). The utility of this
analysis' lies in the ability to deduce the set [Jk ) by
performing directly self-consistent total-energy calcula-
tions for X simple periodic structures [sI involving AC
and BC, and using the inverse form

N

Jk, = & Mk(s)] 'b, E(s)
s=1

to find X values of Jk . Provided that convergence of
Eq. (2) can be demonstrated for this set of K values of
Jk, this expansion affords simple calculations of AF for
more complex structures [s'I, through calculation of the
coefficients gk (s'), rather than by the more laborious
direct self-consistent total-energy calculation of bE(s').
This procedure was applied' to (A1As)„(GaAs)„super-
lattices using nine b,E(s) values calculated by the
general potential linear-augmented-plane-wave (LAPW)
method' where it was found that three- and four-body
interactions (k=3 and 4) are negligible for this system.
In this work we show how calculations of b,E(s) for sim-

Recently, one of us calculated, using the linear
muffin-tin orbital (LMTO) method and atomic-sphere
approximation (ASA), the excess energies bE (n, G) of
(A1As)„(GaAs)„superlattices for G=(001), (111), and
(110) up to n ~ 7 and of other ordered A1As-GaAs com-
pounds. These calculations afford the use of Eqs. (2) and
(3) to deduce the interaction energies underlying the
LMTQ method. For superlattices for which both LMTQ
and LAPW calculations exist (Table I) the LMTO
method produces systematically higher values of
b E (n, G), e.g. , b E [1,(001)]= 13.8 meV/cell in the
LAPW calculation (14.9 meV/cell in the pseudopotential
calculation ) and 32.0 meV/cell in the LMTO calcula-
tion, or bE [2,(001)]=11.8 meV/cell in the LAPW cal-
culation and 35.2 meV/cell in the LMTO calculation.
Pseudopotential calculations also give AE values which
are smaller than the LMTQ results, e.g. ,
bE[3,(001)]=1.7 meV/cell [Ref. 6(c)] (compared with
33.3 meV in the LMTO calculation) and
bE [3,(110)]=27. 8 meV/cell [Ref. 6(a)] (compared with
50.4 meV in the LMTO calculation). Nevertheless, the
LMTO method was applied to the widest range of super-
lattices yet, and while it will produce undoubtedly a
different set of interaction energies [JI than the LAPW
method, this set can probably be viewed as internally con-
sistent. Comparison between the predictions of these
methods will establish which aspects of the relative ther-
modynamic stability of various orientations of AlAs-
GaAs superlattices are robust.

We use Eqs. (1)—(3) to obtain ten interaction parame-
ters from the LMTQ calculated energies for ten ordered
structures. These are the following. (i) The two end-
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point zinc-blende compounds A1As and GaAs [for which
AF. =0 by the definition of Eq. (1)]. (ii) For 50%—50%
composition we use four (A1GaAs2) structures: the
"CuAuI" (denoted CA, with space group P4m2), chal-
copyrite (denoted CH, with space group I42d), "CuPt"
(denoted CP, space group R 3m), and the
(A1As)2(GaAs)2 (001) superlattice (denoted Z2). (iii) For
the 25%-75% (A13GaAs4) and 75%-25% (A1Ga3As4)
compositions we use four structures: two "luzonite"
(denoted Ll and L3, for each of the two compositions, re-
spectively; space group P43m) and two famatinite (denot-
ed El and F3, space group I42m). Table I of Ref. 1 gives
the expansion coefficients gk (s) for these structures and
Refs. 7 and 8 give pictures of these crystal structures.
Along with these ten structures, we use ten interaction
energies Jk . These include the following. (i) Four pair
(k =2) interactions between the first, second, third, and
fourth neighbors J. .. J,„J... »d J, 4. , respectively.
(ii) Two three body (-k=3) interactions: J3, (between first

neighbors) and J3 z (where two of the three sites are
second neighbors). (iii) Two four bo-dy (k=4) interac-
tions: J~, (between first neighbors) and J4@ (where one
pair is second neighbor). (iv) The one-site J, , and the
constant term Jo &. The first column of Table I gives the
LMTO-calculated excess energies for these (and other,
see below) structures. Using Eq. (3) with N=10, we ob-
tain the values of the ten interaction energies denoted in
Table II as "set I."

To assess the importance of the k) 2 ("many-body" )

interactions, we have used as "set II" the same ten struc-
tures, but retain only the four pair interactions J2
(1 ~m ~4) in the expansion of Eq. (2), along with Jo,
and Ji, . (In this fit, the excess energies of A13GaAs4 and
A1Ga3As4 are averaged. ) A least-squares fit to these six
interaction energies produces the values denoted in Table
II as "set II." Table I shows the good quality of the fit
[root-mean-square (rms) error of 0.7 meV]. Using these
four pair-interaction energies, we give also in Table I the

TABLE I. Calculated excess energies AE for AlAs-GaAs superstructures. Energies are in meV/(4 atoms), except those for (001),
(110),and (111)superlattices which are in meV per cell (4n atoms). For structures and J's used in diferent sets, see text. The asterisk
denotes those values used in the fit, excluding the reference energy hE =0 for GaAs and AlAs; other values are predicted.

Direct
LMTO

Series expansion to LMTO
Set I Set II Set III

10 struct. 10 struct. 6 struct.
10 J's 6 J's 6 J's

Direct
LAPW

Series expansion to LAPW
Set I Set II Set III

Direct
pseudo-

potential'

(001)
n =1 (CA)
71 =2 (Z2)
n =3
n=5
n =7

32.0
35.2
33.3
30.0
28.7

32.0*
35.2*
35.2
35.2
35.2

33.0*
35.2
3S.2
35.2
35.2

32.0*
35.2*
35.2
35.2
35.2

13.8
11.8

13.8*
11.8*
11.8
11.8
11.8

13.8
11.8*
11~ 8
11.8
11.8

13.8*
11.8*
11.8
11.8
11.8

14.9

1.7

(110)
n =1 (CA)
n =2
n =3
n=4
n=5
n =7

32.0

50.4

43.0
45.5

32.0*
51.5
58.0
58.5
58.5
58.5

33.0*
50.3
52.2
52.1

52.1

52.1

32.0
51.0
52.5
52.7
52.7
52.7

13.8
19.6

13.8*
19.3
18.5
18.3
18.3
18.3

13.8
18.9
17.9
17.7
17.7
17.7

13.8*
19.1
18.2
17.9
17.9
17.9

14.9

27.8

(111)
n =1 (CP)
n =2
n =3

25.6

31.0

25.6*
31.7
31.7

25.6*
26.8
26.8

25.6*
27.2
27.2

9.8
7.0

9 g
Q

8.8
8.8

9 g
Q

8.3
8.3

9.8*
8.6
8.6

11.4

15.4

(201)
n =2 (CH) 32.3 32.3* 32.1* 32.3* 13.5 13.5* 13.5* 13.5*

A3B and AB3
A13Ga (L1)
A1Ga3 (L3)

A13Ga (F1)
Aloa3 (F3)
Alloy, x =0.5

rms of fit
rms of predictions

29.4
22.9

25.1

22.9

29.4*
22.9*

25.1*
22.9*

25.7

0.0
1.7

24.7*
24.7*

24.3*
24.3*

25.1

0.7
1.8

24.0
24.0

24.1

24. 1

25.1

0.0
1.9

10.3
10.6

10.2
10.2

10.3*
10.6*

10.2*
10.2*

9.75

0.0
0.6

10.45
10.45*

10.2*
10.2*

9.61

0.0
0.3

10.3
10.3

10.2
10.2

9.73

0.0
0.4

—80

' Reference 6.
From average —t-matrix correction to the virtual crystal, Ref. 6(d).
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predicted values [from Eq. (2)] of the energies b,E(n, G)
for structures not included in the fit. Comparison with
the directly calculated LMTO values shows a rms error
for predicted structures of 2 meV/(4 atoms). This good
predictive power of the pair-interaction model suggests
the relative unimportance of three- and four-body terms
for this system.

We next examine whether fewer than ten structures
can be used to achieve similarly good predictive ability of
the energy expansion model. To this end, we have used
as "set III" the four 50%-50% structures (CA, CH, CP,
and Z2) and pure A1As and GaAs and the four pair in-
teractions Jz, 1 ~m ~4. Solving Eq. (3) (exactly) pro-
duces the interaction energies denoted in Table II as "set
III." The predictive ability of this set for structures not
included in this "fit" is demonstrated in Table I, giving a
rms error similar to set II [2 meV/(4 atoms)]. We con-
clude that even set III is adequate for this system.

For comparison, Tables I and II give also the results of
sets I, II, and III obtained by using the same procedure,
but replacing the LMTO energies by the more accurate
LAPW energies. ' To assure an efFective cancellation of
errors in Eq. (1), one may calculate the total energies of
the three systems (AC)„(BC)„, ( AC)„( AC)„, and
(BC)„(BC)„in precisely the same crystal structure (i.e.,
that of the superlattice k points). This procedure has
been used in the LMTO study of Ref. 4, with a regular
mesh of (up to 45) k points. The same cancellation of er-
rors may be achieved (more economically) if the total en-
ergies of AC and BC are calculated in the two-atom
zinc-blende unit cell, whereas that of the (AC)„(BC)„su-
perlattice is calculated using the equivalent set of k points
obtained by folding the zinc-blende points into the super-
lattice Brillouin zone. This procedure has been used in
the LAPW study, ' where the two special k points were
used for the zinc-blende structure, with equivalent
k points for the superlattices. It was verified
that E[(AC)„(AC)„]=nE(AC,zinc-blende). Since the
LMTO calculations were performed using a large number
of k points, we have repeated the LAPW calculations re-

ported in Ref. 1 using ten special zinc-blende k points.
The results are given in Table I. The small change' in
energies relative to Ref. 1 does not alter our conclusions.

The series-expansion method' leads to a number of in-
teresting conclusions.

(i) The dominant interaction in this system is due to
first-cation (Ga-Al) nearest neighbors and is repulsiue

(J2, (0). Its value is robust, in the sense that different
fitting schemes produce similar values (Table II). The
remaining pair interactions are much smaller. Although
their values are nonunique (compare different sets in
Table II), they combine to produce very similar predic-
tions for the total energies of structures not used in the fit
(Table I). Our results confiict with the recent conclusions
of Cohen and Schlijper, " who found from simplified
ASW calculations that AE for the CA, L1, and L3 struc-
tures are n ega tiue [—420, —40, and —260 me V/(4
atoms), denoted in Ref. 11 as —25, —25', and 25", re-
spectively]. This produces attvactiue pair interactions, in
conflict with other calculations. ' '

(ii) The significance of the signs of Jz is that they de-
cide, through the generalized face-centered-cubic (fcc) Is-
ing model, ' ' the type of ground states supported by the
system. Use of the LAPW-calculated interaction energies
(set I) as input to such a multispin Ising Hamiltonian and
its solution' through the cluster-variation method'
show a "ferromagnetic" ground state corresponding to
phase separation (into A1As plus GaAs) at T=O with no
stable or metastable ordered compounds. All calcula-
tions shown in Table I indeed exhibit AE )0, indicating
that none of these ordered structures is a thermodynamic
ground state. Similarly, the dominance of repulsive pair
interactions in the LMTO results (Table II) suggests the
same type of phase-separated ground state. Since, how-
ever, an ordered (CuAuI-like) AIGaAsz compound was
observed in molecular-beam-epitaxy (MBE) and metal-
organic chemical-vapor-deposition (MOCVD) growth, '

we must conclude that this is not a consequence of bulk
thermodynamics (surface and kinetic effects have been
suggested' as a likely cause). Our conclusion conflicts

TABLE II. Interaction energies Jk (in meV) extracted from the total energies of Table I.

Set III
6 struct.

6 J's

Set I
10 struct. '

10 J's

LMTO series expansion
Set II

10 struct. '
6 J's

LAPW series expansion
Set I Set II Set III

J2, i

J2, 2

J2, 3

J2,4

JO, l

J4, 1

J4,2

—1.9187
0.0458

—0.1844
—0.0708

12.8250
1.6000
0.2031

—0.2687
—0.2687

0.1437

—1.9400
—0.0713
—0.0613

0.0100
12.5295
0.0

—1.9187
—0.1333
—0.0406
—0.0260

12.5562
0.0

—0.9062
0.0542
0.0156
0.0271
4.8750

—0.1500
—0.0094
—0.0125

0.0188
0.0063

—0.9075
0.0481
0.0213
0.0306
4.8060
0.0

—0.9062
0.0458
0.0219
0.0292
4.8625
0.0

'Ten structures: AC, CH, CA, CP, L1, L3, F1,F3, BC, and Z2.
"Six structures: AC, BC, CH, CA, CP, and Z2.
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with that of Cohen and Schlijper, "who deduced attrac-
tive pair interactions for AlAs-GaAs, hence predicting
stable low-temperature ordering. Their revised calcula-
tions' suggest, however, that J &0, hence that "the or-
dered superlattice is probably thermodynamically unsta-
ble." Note that for lattice-mismatched semiconductor
pairs (e.g. , GaAs-GaSb) metastable long-range ordering is
predicted by our mode as the dominant J's are attrac-
tive. '

(iii) The fact that the most accurate fit ("set I") pro-
duces Jz, & 0 and J2 2 )0 suggests an interesting topolog-
ical property of these structures —they are "spin frustrat-
ed"' ' in the sense that the atomic arrangements are un-
able to satisfy simultaneously these two conditions (3
surrounded by A only in the first-neighbor shell, since
J2 i & 0, but by B only in the next shell, since J2 2 )0 and
the same for 8). If both Jz, and J2 z are negative, there
is no spin frustration and the system corresponds to a
simple ferromagnet.

(iv) Since each (A1As )„(GaAs )„superlat tice has 4n
atoms and two interfaces per unit cell, the total energy
per cell bE (n, G) can be thought of as twice an effective
interface energy I. Our calculation shows that this ener-
gy tends to saturate to the "bulk" interface energy as a
function of the repeat period n past a critical value n, (G):
retaining in Eq. (2) up to (M=4)th-order pair interac-
tions, this saturation occurs at n, =2 for the (001) and
(111) orientations, but at n, =4 for (110) [the small de-
crease in b,E(n, G) past these n, values evident in the
LMTO results of Table I testifies to the possible existence
of correspondingly small interactions beyond M=4].
The saturation of b,E(n, G) implies that the excess energy
per atom b,E (n, G)/4n decreases for such lattice-matched
systems to zero as —1/n for n ~ n, (G), a result also de-
duced from diA'erent considerations by Wood et al. '

This scaling relation, implying that such "repelling" su-
perlattices become more stable per atom as the repeat
period n increases, refiects the finite range of the (net
repulsive) interaction across the interface.

(v) The LMTO interfacial energies [half of bE(n„G)]
are I(001)= 18 meV, I (110)=29 meV, and I (111)= 13
meV, showing the same trends as the LAPW results'
[I=5.9, 9.2, and 4.4 meV for the (001), (110), and (111)
orientations, respectively], i.e., that for this lattice-
matched system, the (111) interface is the stablest while
the (110) is the least stable. This result has been
shown ' to reAect the excess electrostatic energies of
these interfaces. Also, b E [n,(110)]is nonmonotonic with
n in both calculations. Results found by Bylander and
Kleinman in their pseudopotential calculation also imply
this trend. The small increase of b,E[n,(001)] for small n
(relative to n=1) found in LMTO calculations is not ob-
served in other calculations. ' A similar increase in
b,E [n,(110)]is common to all calculations. Note that the
CuPt structure is predicted to be the stablest monolayer
superlattice in this series, as con6rmed by a number of
calculations' ' and discussed by Bernard et al. (For
lattice-mismatched systems, however, the CuPt is the
least stable in this series. ' )

(vi) The pair-interaction energies J2 can be used to

predict the excess energy bE(R) of the 50%-50% ran-
dom (R) alloy, for which g (R) (per two atoms) are' —6,—3, —12, and —6 for m = 1, 2, 3, and 4, respectively (for
disordered but nonrandom alloys, gk need to be calcu-
lated ' ' from the corresponding Ising model). Using
the LMTO interaction energies we find for the random
alloy b,E(R)=25+1 meV/(4 atoms) (Table I), corre-
sponding to an "interaction parameter"
0=4bE(R) =50+2 meV/(2 atoms) = 1.15 kcal/(2 atom)
mol, compared with 0.45 kcal/mol obtained with LAPW
(Ref. 1) and the range 0—1.6 kcal/mol deduced from ex-
periment. The fact that the energy of the random alloy
is far less sensitive to the details of the fit (Table I) than
the energies of certain superlattices is very encouraging.
The finding that b,E(R))0 (i.e. , the random alloy is un-
stable thermodynamically towards decomposition at
T=O to its binary constituents) contradicts the finding of
Shen, Bylander, and Kleinman ' ' that b,E (R ) is negative
[—80 meV/(4 atoms)], implying that the random alloy is
the T=O ground state. The latter result suggests that in-
teractions beyond the range included here are both attrac-
tive and statistically more significant than the shorter-
range (m =4) interactions. This (in our view, unlikely)
situation is certainly not met by any of the superlattice
calculations considered here: the expansion of Eq. (2) us-
ing up to four neighbor terms su%ces to represent the
(positive) excess energies at least up to n=7 superlattices,
and gives a stable fit to the energy of the random alloy.

(vii) The random alloy is predicted by LMTO, pseudo-
potential, and LAPW (Ref. 1) calculations to be stabler
at T=O than any of the monolayer superlattices (Table I).
Since the random alloy is stabilized at Anite T by entropy
more than the ordered superlattices are, we expect' that
the free energy F(R, T) of the random alloy will be lower
than that of monolayer superlattices F(1,G, T) at all tem-
peratures. By conclusion (iv) above, we see that as the re-
peat period n increases, the 1/n scaling of bE(n, G) will
eventually make such longer-period superlattices stabler
at T (T, (n, G) than the random alloy, where T, (n, G) is
defined through F(n, G, T, ) F(R, T, ) =0—. For exam-
ple, using the LAPW data we see that while for the
monolayer superlattices bE(1,G)=13.8, 13.8, and 9.8
meV for the (001), (110), and (111) superlattices, respec-
tively, i.e., higher than the random-alloy value of
bE (R ) =9.75 meV/(4 atoms), for n =2 we have
b,E(2,G) =5.9, 9.2, and 4.4 meV/(4 atoms), respectively,
so that they are now all stabler than the random alloy at
T=O. Once formed, such superlattices have no thermo-
dynamic incentive to disorder at low T. This contradicts
the pseudopotential results, which suggest that the ran-
dom alloy is stabler than any G=(001), (011), or (111)su-
perlattices for all repeat period n and temperatures T.
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