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We present a formalism for calculating the temperature-composition phase diagrams of isostruc-
tural solid alloys from a microscopic theory of electronic interactions. First, the internal energy of
the alloy is expanded in a series of volume-dependent multiatom interaction energies. These are
determined from self-consistent total-energy calculations on periodic compounds described within
the local-density formalism. Second, distant-neighbor interactions are renormalized into
composition- and volume-dependent effective near-neighbor multisite interactions. Finally, approx-
imate solutions to the general Ising model (using the tetrahedron cluster variation method) underly-

ing these effective interactions provide the excess enthalpy AH, entropy hS, and hence the phase di-

agram. The method is illustrated for two prototype semiconductor fcc alloys: one with a large size
mismatch (CxaAs„Sb& ) and one with a small size mismatch (Al& Ga As), producing excellent
agreement with the measured miscibility temperature and excess enthalpies. For lattice-
rnismatched systems, we find 0 & hH & AH, where 0 denotes some ordered Landau-Lifshitz (LL)
structures, and D denotes the disordered phase. We hence predict that such alloys will dispropor-
tionate at low-temperature equilibrium into the binary constituents, but if disproportionation is ki-
netically inhibited, some special ordered phases (i.e., chalcopyrite) will be thermodynamically sta-
bler below a critical temperature than the disordered phase of the same composition. For the
lattice-matched systems, we find 0&EH &AH for all LL structures, so that only a phase-
separating behavior is predicted. However, in these systems, longer-period ordered superlattices are
found to be stabler, at low temperatures, than the disordered alloy.

I. INTRODUCTION

A. Modeling isostructural phase diagrams
as a generalized Ising problem

The existence of finite interactions between atoms A
and B on a lattice leads to either phase separation or or-
dering of the solid A„B, alloy at low temperatures.
As the temperature is raised, ordered or phase-separated
forms could transform into a homogeneous disordered
structure. The great diversity of such configurational ar-
rangements underlying the crystalline solid state, evi-
denced by the voluminous catalogs of phase phenome-
na, ' has naturally led to many attempts to systernetize
these effects in terms of microscopic quantities.
Whereas the competition between various possible or-
dered phases at T=0 has been partially rationalized in
terms of either elemental structural diagrams�" or
quantum-mechanical total-energy calculations for crys-
tals, ' these approaches have generally not described the
additional, temperature-mediated competition with disor-
dered phases, partially ordered structures, or multiple-
phase coexistences occurring at finite temperatures.

The composition-temperature (x, T) phase dia-
grams' ' of isovalent octet compounds A B,:C
(4 & A, & 7) have received special attention due to the abil-
ity to tune their technologically significant electronic
properties through adjustments of the compositions x.
Alkali halides ( A. =7 ) alloys exhibit' in their phase dia-

gram miscibility gaps, partial solubility, and even insolu-
bility accompanied by compound formation (CsLiFz,
RbLiF2). Until recently, thermodynamic studies'
suggested that both II-VI pseudobinary alloys (A, =6) and
III-V pseudobinary alloys (A, =5) exhibit mostly "solid
solubility above a miscibility gap,

"as well as limited solu-
bility, but no compound formation. However, recent pre-
dictions and subsequent experiments have ob-
served at low temperatures the formation of inter semi-
conductor isovalent compounds A„B4 „C4 for n =1,
2, and 3. Similarly, despite the very limited solid solubili-

ty of the nonisovalent octet compounds
(2'"8 ) (C' ) or (3"C ') (8'"D ) long-
range-ordered compounds have been reported. 34

Whereas simple phenornenological models involving
the size and electronegativity mismatch between the al-
loyed atoms and A and B have traditionally been used to
systematize the propensity of the components to form
solid solutions, ""' theoretical descriptions of the full

temperature-composition phase diagrams have been
sought through lattice models. There, one consid-
ers the 2 possible arrangements ("configuration, " or
"microstates") of atoms A and B on a fixed lattice of N
points, characterizing each configuration o. by its excess
internal energy (at a given external volume V) with
respect to equivalent amounts of the solid constituents A

and B at their equilibrium volumes,

EE(cr, V)=E(o, V) — E„—
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where X„and Xz are the number of A and B atoms, re-
spectively. Each lattice site i can be occupied either by a
8 atom (in which case the spin variable is denoted S;= 1)
or by an A atom (where S;= —1). One then seeks to find

for each (x, T) the density matrix p(o. , V) and from it the
ensemble average (over configurations) of the internal en-

ergy (bE(y, V)) and entropy, for all phases y (disor-
dered, ordered, phase coexistence, etc.). The solutions
which are energy minimizing both with respect to volume
and probability distributions define the excess enthalpy
and entropy

dered structures is a subgroup of that of the disordered
phase. In this case we will have more figures and smaller

Df 's.
In a coherent binary ( A„B, ) or pseudobinary

( A 8, C) systein, the substituting species ( A and 8)
are restricted to reside on the ideal lattice site, in which
case a single external volume V defines uniquely the size
and shape of each figure f. Hence, J&( V) is independent
on the space group of the system (or on the equivalence
or inequivalence of the figure f). In this case, one can
define the "average in lattice product"

bH(y, T)=H(y, T) xH&(—T)—(1 x)H&(—T),
bS(y, T)=S(y, T)—xS„(T)—(1—x)S~(T)

(1.2) IIf (o ) Qllf (lf o )
f 1f

(1.5)

for each phase y. Using the conventional common
tangent construction (seeking x and T where the free
energies. of two phases equilibrate) one then constructs
the phase diagram.

Even neglecting excess vibrational energies and limit-
ing the discussion to phase interconversions on the same
type of lattice at all compositions, this is still a formidable
task, involving 2 calculations of bE(o, V) at each V and
performing a statistical ensemble average on such sys-
tems (indeed, no exact calculation of the partition func-
tion exists for three-dimensional infinite systems). Hence,
the standard lattice theory approach proceeds by
making two central approximations.

First, instead of attempting a direct evaluation of the
total energy b.E(cr, V) of the 2 possible arrangements of
atoms A and 8 on N sites, one expands bE(cr, V) in a
series of "figures" f consisting of k vertices and up to m
neighbors. Denoting by J&( V) the simultaneous interac-
tion energy of a figure f =(k, m) and by II&(1&,cr) the
product of the spin variables S at the vertices of the figure

f located at 1, one has

b,E( o, V) =g+Jt ( V) IIJ ( 1f cr )

f l~

(1.3)

+1=NDg,
l~

(1.4a)

Note that in Eq. (1.3) l& denotes the lattice site 1 and the
equivalent figures f at that site. The following sum rules
are observed:

where the figures f (and their equivalent partners) are
defined with respect to the full space group of the disor-
dered alloy. Equation (1.3) then reads

bE(o, V)=NQDfIIf(O )Jf(V) .
f

(1.6)

In contrast, in the case of incoherence (e.g., when lattice
relaxation displaces the A, B atoms off their ideal sites),
the volume alone does not suSce to define the size and
shape of each figure and the degeneracy of the Jf's could
split. In this case, one can still use Eq. (1.6) and the
definitions surrounding it, as long as an appropriate aver-
age over those figures which are equivalent in the disor-
dered alloy is taken to equate (1.3) to Eq. (1.6).

The utility of the expansion (1.3) or (1.6) in actual cal-
culations rests in the truncation of the size of the largest
figure F to a computationally tractable small value. This
implies that a correspondingly small set of interaction en-
ergies [J&( V) ) can capture through a linear superposition
construct the essential energetics of any configuration o.

of (Nz, N~ ) atoms on the N=N„+N~ sites. The reader
will recognize Eq. (1.3) to be the generalized three-
dimensional Ising model with up to F spin interactions.

To calculate thermodynamic quantities, one needs to
take the configurational averages of b E(o, V) for particu-
lar phases y (ordered or disordered). The ensemble aver-
age of a function P(o ) is

HAND~
=2

f
(1.4b)

(y( )) =yp ( )y( ), (1.7)

where D& is the average number of figures of type f per
site. The definition of a figure depends on the space
group associated with the structure. Two figures (f, l)
and (f ', 1') are equivalent if there is a space-group opera-
tion transforming (f, 1) into (f', 1'). For example, in an
fcc lattice of N sites with the full space group (i.e., that
of pure A, pure 8, or the disordered alloy) there are 6N
nearest-neighbor pairs, SX nearest-neighbor triangles,
and 2N nearest-neighbor tetrahedra (i.e., D&=6,8,2 re-
spectively). In this case all figures belonging to a given
type (nearest-neighbor pairs, triangles, tetrahedra, etc. )

are equivalent. However, this equivalency is generally
lifted in ordered structures, since the space group of or-

where pr(o ) is the density matrix for phase y. The en-
semble average of II&(l&,o ) of Eq. (1.3) is the "multisite
correlation function"

'

(rl&) =gp (o')Ilf(lf o), (1.8)

which does not depend on 1 since p (o ) has the space-
group symmetry of y, (defining among others the figures
and their inequivalence). The density matrix can be ob-
tained by using the "orthogonality condition" ' given
by Sanchez et al. as
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ps(n) =g'p(tr ),

where the primed sum over o denotes a multiple sum
over all configurations o. containing n at the vertices of
subfigure g at l. The simplification is achieved by decorn-
posing the subfigure g into a hierarchy of its subfigures h,
hence, like Eq. (1.9), Eq. (1.11) can be written as a sum
over the subfigures h (contained in g, and therefore in F):

ps(n)= „g (II„)II&(l',n),
(h, l') c (g, 1)

(1.12)

where k is the number of vertices of figure g. This ap-
proximation of the density matrix affords a hierarchial
calculation of the multisite correlation functions ( IIs ) of
Eq. (1.8). Using Eq. (1.10), this then gives the ensemble
average of the internal energy (b,E( V) ). The analogous
result for the excess entropy is similarly expressed in
terms of the reduced density matrix as

hS= k+N g aggpg(—n) input(n),
gCF n

(1.13)

where a are geometrical constants obtained by the pro-
cedure of Barker.

The two central approximation —(i) the superposition
ansatz of Eq. (1.3) for the interaction energies J~(V)
(truncated at an interaction distance d;„, ), and (ii) the ap-
proximation of the configurational sum in Eq. (1.8) (trun-
cated at a statistical counting distance d„„)—enable a
calculation of the thermodynamic functions of Eq. (1.2)

p(o }= gg& rl~ &nf(lf tr)
1 (1.9)

2 f
for any one of the 2 configurations. The sum in Eq. (1.9)
is taken over all topologically different figures f located
anywhere in the lattice (including the "empty" figure
f =0, with no sites, for which II&=1). Combining Eqs.
(1.3) and (1.8) we obtain

(bE( V) ) =NgD~J~( V}(II~) . (1.10)
f

Equation (1.10) provides a practical form for calculating
ensemble average energies in terms of a limited number
of figures, provided that the sum over 2 terms involved
in the calculation of the correlation functions (II~) can
be made tractable. This leads to the second class of key
approximation. While many different strategies exist, we
briefiy discuss the cluster variation method ' (CVM)
which we use to this end. Here one selects the largest
figure F (and all of its subfigures g) to be used in approxi-
mating the statistical sum of Eq. (1.9) (the multisite corre-
lation function ( II& } for figures larger than F will be ex-
pressed in Sec. II in terms of those of figures contained in
F). This choice, implying a distance d„„beyond which
statistical correlations are neglected, is distinct from the,
choice of the maximum interaction distance d;„„within
which the interaction energies J& are retained. Denoting
by n the configuration of spins at the vertices of a
subfigure g at l, one then defines the reduced density ma-
trix

and hence the phase diagram. Much of the effort in this
field has focused on (i) developing approximate methods
for evaluation of ( II }of Eq. (1.8) and (ii) characterizing
the type of ground states given a fixed (and usually small)
set of interaction energies ( J&J. It is clear, however, that
the understanding of actual phase diagrams requires, in
addition, ' (i) a microscopic formulation of the interac-
tion energies j J&( V) j in terms of the properties of A and
B, and (ii) an understanding of the physical content of the
length scales (e.g., d;„„d„„)of the problem, combined
with tractable formulations for incorporating contribu-
tions to the free energy within these lengths. We turn
next to the latter issue.

B. Length scales of the problem

Three distinct length scales appear in formulating a
first-principles theory of phase diagrams. First, the calcu-
lation of the interaction energies J& by integrating the
electronic (elec) degrees of freedom often involves matrix
elements between atomic orbitals separated by a max-
imum distance d,&„. Tight-binding models, for exam-
ple, often truncate d,&„at first- or second-neighbor hop-
ping integrals. Second, the expansion of the Born-
Oppenheimer energy of Eq. (1.3) in terms of multiatom
interactions J& involves a distance d;„, beyond which
atoms are assumed to have a negligible interaction (int).
d;„, involves both the order k of simultaneous many-atom
interactions retained (k =1,2, 3,4 corresponding to
simultaneous one-, two-, three-, and four-body interac-
tions, respectively) and the maximum interatomic separa-
tion within which interactions are calculated
(m =1,2, 3,4 corresponding to first-, second-, third-, and
fourth-neighbor interactions, respectively). The simplest
Ising model (see review in Ref. 36) involves pair interac-
tions within first neighbors (k ~ 2, m = 1). Third, the sta-
tistical calculation of the correlation functions (II& } of
Eq. (1.8) for a given set [J&j involves a statistical (stat)
counting range d„„,i.e., the size of the largest topologi-
cal "figures" whose contributions to the entropy [Eqs.
(1.11)—(1.13)] are counted. The sites-only statistical
range corresponds to the Bragg-Williams approxima-
tion; the sites plus pairs statistical range corresponds to
the Bethe approximation, etc.

Many of the currently used lattice models of phase dia-
grams can be' characterized by the values of the three
length scales used. For example, the tight-binding CPA-
GPM (coherent-potential approximation —generalized
perturbation method) generally uses first neighbors for
d,&„and few-neighbors pair interactions for d;„,. The su-
perposition model of Wei et al. involves essentially an
infinite range for d,&„, and a first-neighbor and up to
four-body interaction (m,„=l, k,„=4) for d;„, and
four-site nearest-neighbor range for d„„.

Experience from calculation of band structure of
solids shows that limiting d,&„ to first neighbors rarely
su%ces to capture many of the physically significant de-
tails of the cohesive and structural energies, simply be-
cause the dimensions of the outer atomic orbitals in
broad band solids often exceed the nearest-neighbor in-
teratomic separations. Limiting the calculation to an iso-
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lated subband" ' ' (e.g. , narrow d bands in transition
metals) or empirical parametrization of the near-neighbor
Hamiltonian matrix elements ' ' are often used to par-
tially avoid this problem. The advances in modern
electronic-structure computational techniques, ' ' how-
ever, make it now unnecessary to limit d,&„ to a small
value.

Statistical solutions to an Ising Hamiltonian with d;„,
fixed at the first nearest neighbor and varying d„„have
shown that most aspects of the phase diagram are accu-
rately captured when d„„ includes four-body counting
figures. For example, the reduced transition temperature
kz T, /12J2 for a nearest-neighbor pair-interaction fcc Is-
ing ferromagnet is 1.0, 0.9142, 0.8354, 0.840 45,
0.833 94, and 0.829 81 if d„„includes sites, pairs, tetrahe-
dra, double tetrahedra, the tetrahedron-octahedron, and
the double tetrahedron-octahedron, respectively, com-
pared with the numerically accurate value of 0.816 27 ob-
tained in high-temperature expansions. Hence, relative
to the latter value, the errors in k&T, /12J 2are 22.5%,
12%, and 2.3% for sites, pairs, and tetrahedra, respec-
tively. For many applications, an error of 2—5% can be
tolerated. Note, however, that we do not know the efFect
on T, of increasing d„„when the interaction range d;„,
itself is long (e.g. , d„„=—d;„, is equal to a few neighbor
distances). This important question remains open at the
present time.

The minimum range d;„, of multiatom interactions
needed to capture the essential physical characteristics of
phase diagrams is more difticult to assess on a general
basis. Past experience for fcc systems (using volume-
independent interactions) has shown that three-body in-
teractions (or composition-dependent eff'ect pair
interactions) ' ' are needed to explain the often observed
asymmetry of the phase diagram about x =0.5, that the
general hierarchy of interactions for (fcc) systems is
~J, ~

&&~J &2~, and that certain ordered phases (e.g. ,
chalcopyrite and famatinite) can become ground-state
structures only if J ~2 is included.

This discussion suggests to us that for fcc alloys, d,&„
should be extended to large values, d„„could be kept at
four-body terms with little loss, and that d;„, should in-
clude at least terms up to a few neighbor interactions.
This realization leads us to our first (of two) develop-
ments: keep d„„at fixed value (e.g. , including up to
four-body terms) and find a way to renormalize for the
disordered phase the Jf's for d;„,)d„„ into the J's for
d,„,~ d„„,by making a physically motivated approxima-
tion on the statistical correlations beyond d„„. (For or
dered phases we retain the full set of Jf's so that chal-
copyrite has a difFerent energy than CuAu-I, and famatin-
ite has a different energy than luzonite, etc. ) We find that
(see Sec. II B) if we assume that spin variables of a figure
with sites separated by more than d„„are statistically
uncorrelated, we can renormalize analytically the efFect
of the J's beyond d„„ into those for d ~ d„„. This con-
trasts with the conventional lattice theory approach to
phase diagram calculations. ' ' There, the maximum
figure I' is used both for the definition of the range of Jf
in the energy expansion [Eq. (1.3)] and for the statistical

calculation of the entropy [Eq. (1.13)]. When d;„, & d„„,
one increases the size of the maximum figure used in the
calculation of the entropy (to capture d„„~d;„,), lead-
ing to a substantial complication and loss of transparen-
cy.

Our second development rests on the recent realiza-
tion " ' that in alloys of size-mismatched constituents
(i.e., when the molar volumes Vz and Vii are unequal),
there is no reason to believe that the interaction energies

JI of Eq. (1.3) are fixed, volume-independent constants as
has been assumed in virtually all Ising model approaches
to phase diagrams. ' '" " Since the energy E(V)
of either ordered or disordered alloys depends, in general,
on V, surely the J&'s of Eq. (1.9) do too. The introduction
of a volume dependence into J&( V) indeed changes
significantly the phase diagram.

We therefore describe in Secs. II—IV (i) the way in
which the volume-dependent functions {JI( V) ] can be
extracted from first-principles total-energy calculations
on prototype ordered phases and (ii) the manner in which
a large set of such J&(V)'s can be renormalized into a
smaller set of effective J&(x, V) under our statistical ap-
proximation. Applications of these e6'ective interaction
energies to the calculation of phase diagrams of III-V
semiconductor alloys are described in Secs. V—VIII.

II. THE BASIC IDEAS

A. Obtaining J&( V) from the total energy
of periodic structures

We start this section with two observations: ' ' (i)
for certain high-symmetry states of order s (e.g. , simple
periodic crystals), the correlation functions II/(s) of Eq.
(1.6) are geometrical constants which can be obtained
directly by inspection, and (ii) the total excess energy
b,E (s, V) for these special structures {s I can be calculat-
ed with high precision as a function of volume directly
from self-consistent first-principles local-density
methods, ' incorporating a long range of d,&„,. These
observations imply that one can specialize Eq. (1.6) to a
few (say, M) ordered periodic structures {s I of
stoichiometry A„B~

b.E(s, V) =NQDf Jf ( V)III(s),
f

(2.1)

We can now use the set of M linearly independent
structures, and invert Eq. (2.1) to yield M interaction en-
ergy functions J&( V):

Jf ( V) = +[II/(s)] 'bE (s, V)
f s

(2.3)

We will assume below that the interaction energies
I J/( V) I extracted from a set of prototype ordered
periodic structures are transferrable to other phases y of

where the excess total energy of crystal s with respect to
equivalent amounts of its constituent solids A and B at
equilibrium is

b,E(s, V)=E(s, V) —nE„[V„]—(N n)E~[V~] . (2—.2)
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the same system, provided that those phases differ from
the set of ordered structures only by substitutional order.
This is our first (of two) key approximations.

Connolly and Williams have implemented this ap-
proach using five fcc ordered structures for Is j, i.e., lim-
iting d;„, to first fcc nearest neighbors. This selection is
unconstrained in that (i} it does not provide information
on the magnitude and importance of the interactions
neglected or on the completeness of this set of interac-
tions, and (ii) in selecting this value of d;„„ the method
leads to a degeneracy of the energies of those ordered
structures which are distinguished by interactions beyond
d;„, (e.g. , L12 versus D022). We avoid both problems by
developing below (Sec. V E) a simple method of associat-
ing a set of M structures [s j with a set of M interaction
energies I J& j, retaining in J& interactions beyond the first
fcc nearest neighbors. We will investigate in detail how
the transferability can be affected by making the interac-
tion energies volume dependent, by including a
sufficiently large interaction range d;„„and by selecting
an appropriate set of prototype structures Is j.

bE(o, V) =gg„(cr )bE(n, V), (2.7a)

where

g„(cr)= g [II (n)] 'II (o)
gCU

(2.7b)

for the 2 periodic structures n. In this case, the weights
g„(o ) in Eq. (2.7b) have a simple interpretation as fol-
lows. First observe that, for a periodic structure n obey-
ing the superposition assumption above,

Hs(n)=Hs(l, n) . (2.8)

Second, analogously to the orthogonality relation,
one has

2, corresponding to the different ways of selecting k
sites. If (i) the figures are defined with this reduced space
group, and (ii) if the ordered periodic structures Is j can
be described as a superposition of cells n (a particular ar-
rangement of atoms A and 8 at the vertices of U), we
may rewrite (2.4) as

B. Expressing the configuration-averaged energies ( b E ( V) )
in terms of energies of periodic structures

gH (l, n)H .(l, n) =2"5

thus

(2.9)

Since I J&(V) j is linearly related through Eq. (2.3) to
the excess energy of periodic structures IbE(s, V) j, one
can alternatively express b,E(o, V) of Eq. (1.6) as a su-
perposition of bE(s, V)

[Hs(n)] '=2 "Hs(l, n) .

By Eq. (2.7b)

g„(o )=2 g II (l, n)II (o ) .
gCU

(2.10)

(2.1 1)

b,E(o., V) =gg, (cr )b.E(s, V),

where the weights are

g, (cT ) =g[Hg(s)] 'H~(o. ) .
f

In this case, the alloy excess energy becomes

(2.4a)

(2.4b)

The thermal average P„=( g„) can be written as

P„=2 "g (Hs)Hs(l, n)=pU(n),
gCU

(2.12)

coinciding with the reduced density inatrix of Eq. (1.12).
Then the volume-dependent ensemble average energy of
Eq. (1.10) becomes

(b,E(V)) =yQ, b,E(s, V), (2.5) (bE( V) ) =QP„bE(n, V), (2.13)

where

Q, =(g, (cr)) =g[Hg(s)] '(HI) .
f

(2.6}

Observe that in Eq. (2.6) the figures are defined with
respect to the full space group, while the ensemble aver-
ages are taken with the space groups that are reduced in
the case of the ordered phases. In the latter case, the in-
dependent variables used to minimize the free energy are
not ( H~ ) but rather ( H& ) because the latter, not the
former, define through Eqs. (1.12) and (1.13) the entropy.

In the general case, the weights Q, of Eq. (2.5) cannot
be interpreted as probabilities because they are not posi-
tive definite. However, in a special case we can interpret
Q, as probabilities. Consider the case where the max-
imum figure F is defined as a translational repeat unit U.
This figure has k vertices which are labeled 1 to k; all lat-
tice sites are labeled accordingly. The space group of the
labeled lattice is reduced with respect to that of the origi-
nal unlabeled lattice. The number of subfigures of U is

where the density-matrix elements P„are positive and
add up to 1. Thus the ensemble average of the alloy ener
gy can be interpreted as a statistical average of energies of
these representative ordered periodi structures. This is a
powerful relationship since, as will be seen below, the
thermodynamics of alloys could be expressed in terms of
readily calculated equations of state b E (n, V) of ordered
compounds. ' ' ' The remaining problem is to
establish a set of structures used in Eq. (2.5) which pro-
duces rapid convergence of Eq. (2.13). We next describe
a practical method for folding distant-neighbor interac-
tions into a smaller set of interaction parameters, con-
tained in U, enabling the construction of a rapidly con-
vergent series.

C. Renormalization of distant-neighbor interactions
into effective near-neighbor interactions

in the disordered phase

Since there is no reason to beheve that the interaction
energies I J&( V) j are negligible beyond first-nearest neigh-
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bors, we will "fold" distant-neighbor interactions into
effective volume- and composition-dependent interac-
tions I Jf(x, V)] within the figure U. In the present il-

lustration U is taken as the fcc tetrahedron of nearest
neighbors. This folding is performed under a statistical
assumption —our second key approximation —stating
that if a figure has two spin variables separated by a dis-
tance larger than d„„they will be assumed to be statisti
cally uncorrelated in the following sense. Consider a
figure P consisting of sites a, 13, . . . , co. By the definition
surrounding Eq. (1.3) its spin product is

Jf(x, V)=Jf(V)+ g C~(2x —1) ~ Jp(V) .Dp k —k

~K. f'
(2.21)

( IIf ) QIIf(n)P (2.22)

Use of the orthogonality relation (2.9) and Eq. (2.12) to
write the correlation functions (IIf ) in terms of the
probabilities P„gives

H~=S Sp. . S (2.14)

where S are the spin variables (taking up values of +1).
If the figure P is not contained in U, we assume no corre-
lation and set

Using this result in Eq. (2.20) we arrive at

(bE( V) ) =QP„bE(n, x, V),

where

(2.23)

((S —
q )(Sti —q~). . . (S —

q )) =0, (2.15) bE(n, x, V)=N g DfIIf(n)Jf(x, V) .
fcU

(2.24)

where

q=&S& (2.16)

(with a similar definition for spins on other sites}. In the
case of the disordered phase,

Our method [Eq. (2.15)] of calculating the correlation
functions ( II&) of figures not contained in the unit cell U
difFers from the proposal of Morita. Only in the case of
second-neighbor pair interaction do they give the same
result, i.e.,

q =q&= =q„=q =2x —1, (2.17) &S.S,&=&S.&(S,& . (2.25)

where x is the concentration of 8 atoms. Equation (2.15)
results from the natural assumption that the average
product of Eq. (2.15) should be zero either if there are
many spins participating (i.e., if P is a large figure) or if
the spins are far removed from each other. It allows us
to write the correlation function (II&) as a combination
of correlation functions of subfigures of P times homo-
geneous polynomial functions of the sublattice concentra-
tions. If, any subfigures of P is not yet contained in U, the
process is repeated. In the case of the disordered phase,
the result of this reduction is

For ordered phases (which have lower-symmetry space
groups than the parent disordered phase), we retain the
full set of interactions I Jf I so that structures which differ

by interactions beyond first neighbors have distinct ener-
gies.

D. Effective equation of state and equilibrium condition

In our final step we use the expression (2.23) for the en-
ergy, the CVM expression for the entropy [Eq. (1.13)] and
(i) minimize the ensemble average of the energy with
respect to the volume

& II~ &
= g C~(2x —1) ~ ( IIf ),

fcU
(2.18) a(bE&

BV
(2.26)

where k& and kf are the number of vertices in the figures

P and f, respectively, and Cf& are coefficients derived
below from the expansion of the left-hand side of Eq.
(2.15). Equation (2.18) will be used to evaluate the ex-
pression for the density matrix [Eq. (1.9)] and the alloy
internal energy [Eq. (1.10)]. The latter becomes for the
disordered phase

( b E( V) ) =N g DfJf ( V) ( IIf ) +N g D ~Jt, ( V) ( II~ ) .
fcU

(2.19)

[giving the equilibrium volume V, (x)] and (ii) the free
energy with respect to P„(or ( IIf ). This produces the
thermodynamic functions of Eq. (1.2).

Instead of minimizing the free energy-with respect to
the correlation functions (IIf ), we prefer the minimi-
zation with respect to the reduced density-matrix ele-
ments P„, as originally proposed by Kikuchi. ' Using P„
as the independent variables allows a powerful method of
solution for the coupled transcendental equations (the
natural iterations method). " This requires rewriting Eq.
(2.23) as

Analogy with Eq. (1.10) permits the definition of
effective interactions Jf satisfying (bE) =yP„e,„(P,V), (2.27)

( b E ( V) ) =N g DfJf(x, V) ( IIf ) .
fcU

where e„(P,V} are the effective equations of state which
depend on the probabilities P =

I P, ], such that
The effective interactions Jf(x, V) contained in the unit
cell U are hence given as a simple superposition of all in-
teractions both inside and outside U with known
coe%cients: and

gP„E„(P,V) =QP„bE(n, x, V) (2.28)
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gP„
BE„(P,V)

BP;
(2.29)

Equation (2.29), for any i, is required because, in the Ki-
kuchi minimization of the free energy, the energy pa-
rameters c„are taken to be independent of the probabili-
ties I P; j while ours depend on it through the relationship
between the concentration x of atoms 8 in the alloy and
the concentration X„ofatom B in the ordered structure
n:

x =gP„X„. (2.30)

A solution to Eqs. (2.28) and (2.29) is

E„(P,V') =DE(n, x, V)+ QP,
E fl

f„(P,V) =bE(n, x, V)+(X„x)QP—; x

(2.32)

In summary, our method consists of the following
steps.

(i) Calculate (e.g. , from the self-consistent local-density
approach) the total-excess-energy functions AE(s, V) for
M periodic prototype structures [s j, and extract from
these through Eq. (2.3) M values of the interaction ener-
gies Jf( V). The selection of the ordered structures and
typical values for bE(s, V) and Jf(V) are discussed in
Secs. IV and V C, respectively.

(ii) Verify that this set I Jf(V) j extending up to d;„,
predicts, through Eq. (2.4a) to within a prescribed max-
imum error, the directly calculated total energies of a set
of structures Is'jA Is j. This procedure for examining
the completeness of the sets Is j and I Jf( V) j (i.e., also
the needed value of d;„, ) is described in Sec. V E.

(iii) Compute the expansion coefficients Cf& of Eqs.
(2.18) and (2.21) giving m ejfectiue interaction energies
Jf(x, V) in terms of a larger number (M) of conventional
interaction energies I Jf(V) j. The expansion coefficient
of Jf(x, V) in terms of Jf ( V) are given in Sec; VI A.

(iv} Expand the set of m efFective equation of states Z„
of Eq. (2.32) in terms of Jf(x, V).

(v) Compute the enthalpy b,H = ( bE( V,q ) ) from Eqs.
(2.26), (2.27), and (2.32) and the entropy from Eq. (1.13).
From these, construct the complete temperature-
composition phase diagrams.

Equations (2.18)—(2.20) describe the renormalization
method for the disordered phase, having the full space-
group symmetry. For ordered structures similar pro-
cedures can be used by noticing that for fixed d„„ the
number of figures will increase (consistent with the lower
space group). In this case ( IIf ) of Eq. (1.10) are used as
independent variables to calculate the enthalpy and en-

—X;, (2.31)

In the special case where b,E depends on IP, jonly.
through Eq. (2.30), Eq. (2.31) reduces to

tropy within d;„, and d„„, respectively, using standard
CVM. For longer-range correlations, we again assume
spin independence [Eq. (2.15), where q is now site
dependent], consistent with the treatment of the disor-
dered phase.

III. ADVANTAGES AND LIMITATIONS

A. Advantages

The use of first-principles total-energy method to ob-
tain thE(s, V) j allows us to avoid many of the approxi-
mations used previously.

(i) Nature of electronic Hamiltonian Si.nce only
ground-state properties are sought, the powerful local-
density formalism ' can be used to integrate the elec-
tronic degrees of freedom in obtaining b.E(s, V), instead
of either phenomenological or highly simplified
independent-particle Hamiltonians. Density-dependent
electron correlations, Coulomb interactions, and ex-
change, spin-polarization, and relativistic terms are most
naturally included. &4'24 z6, 48, 52, 53,58 —ei The total ener-
gy' ' b,E(s, V) includes not only the sum of effective
single-particle energies (the only term used in many alloy
calculations, e.g. , Ref. 44), but also explicit electron-
electron, electron-ion, ion-ion terms.

(ii) Nature of solutions to the electronic Hamiltonian.
The periodicity of the structures [s j affords the use of
powerful band-theory techniques ' to evaluate
EE (s, V) for any given Bloch Hamiltonian. In particular,
the use of self-consistent pseudopotential or all-electron
methods avoids the use of minimal basis set tight bind-
ing or spherical potential representations [Korringa-
Kohn-Sham (KKR)], s the neglect of part or all of the
multiatom and multiorbital s-p-d hybridization, the trun-
cation or the neglect of true (i.e., position-dependent)
charge self-consistency, shape approximations (e.g.,
muffin tin) on the crystal density and potential, or sim-
plifying assumptions on the energy dependence of the
density of states. The method is applicable to metals,
semiconductors and insulators alike as it does not assume
any particular form of the wave functions, bandwidth,
degree of charge transfer, screening, or the subband
structure of the density of states. Arbitrarily strong
scattering potentials (difference between the potentials of
the end-point constituents) can be treated. Artificial
idealizations of the true atomic arrangements (e.g. , Bethe
lattices ) are avoided.

(iii) Relaxation of structural degrees of freedom. Re-
cent advances in formulating rapidly convergent forms
for the total energy, * forces on atoms and stresses '
a6ord rapid and accurate relaxations of the structural de-
grees of freedom in calculating EE(s, V}. Hence, not
only is Jf( V} obtained as a function of the cell volume V,
but for each volume, both the cell-internal bond length
and bond angle coordinates ' and the cell-external
structural parameters (characterizing the mixed A-B sub-
lattice) are allowed to relax to equilibrium. As was re-
cently demonstrated, ' ' ' the dependence of Jf on
volume and atomic relaxations had dramatic e6'ects on
the phase diagram coen if Vegard's rule is approximate-
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ly satisfied: even constant-Uolunze bond relaxations great-
ly affect the values of bE (s, V), and hence Jf ( V).

(iv) Nature of the ground sta-te structures T.he nature
of the T =0 ground-state ordered structures can be found
in conventional methods ' only if a small number of J's
are retained in Eq. (2.1). Having calculated the left-hand
side of Eq. (2.1), the prediction of the lowest-energy or-
dered phases at T=0 among the set ts I is available at
the outset, independently of any truncation of the sum of
Eq. (2.1) to a few J's.

(U) Statistical correlations. The inclusion of many-spin
statistical correlations within a range d„„tra'nscends the
limited statistical correlations used in simpler models.
The method developed here permits therefore the con-
sideration of rather general forms of "chemical disorder"
(through inclusion of variational, nonrandom correlation
functions) as well as "positional disorder" (through relax-
ation of atomic position vectors in minimizing the total
energy ).

(Ui) Control ouer types of interactions included Inter. ac-
tion parameters Jf are included in a hierarchia1 manner,
based on their established magnitudes, not in an ad hoc
fashion. For a sufficiently large set of interactions, the re-
sulting phase diagram is unique.

B. Limitations

There are two main limitations to our method
(i) The choice of I Jf(V)I. Many calculations of alloy

phase diagrams are based on the assertion that in-
teractions corresponding to a "small" number of bodies k
and a "few" neighbors m are sufficient to obtain a con-
verged representation of the internal energy. These asser-
tions are often based on the success of fitting certain
features of the phase diagrams (e.g., order-disorder tem-
peratures for Cu, „Au„) using just nearest-neighbor in-
teractions. However, first-principles calculations of
Jf( V) reveal (e.g. , see Fig. 2 below) that one may have to
keep many Jf( V)'s in the expansion of Eq. (1.10). Furth-
ermore, to treat an incoherent system (e.g. , a lattice-
mismatched superlattice), one may have to include even
more Jf's because of the removal of the degeneracy of the

Jf s. In fact, the only method that is reasonably safe here
is to attempt di6'erent choices of interaction range and
observe numerically the convergence of the result (see
below), a rather laborious procedure. Note, however,
that in our formulation Jf( V) is expressed as total ener
gies, not interaction potentials, hence the convergence of
the energy expansion is rather fast.

(ii) Number and choice of special structures. The num-
ber of Jf ( V)'s determined by the range m, „ofneighbor-
ing interactions decides the number of structures needed,
For instance, inclusion of all interactions up to km„=4
requires for m „=1 (nearest neighbors) 3m,„+2 =5
structures, for nz, „=2 it requires 8 structures, and for
m „=3it requires 11 structures. Hence, calculation of
b.E(s, V) for a sizable number (4—10) of supercells (see
Sec. V) is needed for systems exhibiting a slow rate of de-
cay of Jf( V). Note, however, that the definition of the
special structures Is J is rather general and could include
periodic supercells within which the atomic positions are

rather "disordered. "
Throughout the present work we apply our method to

purely fcc systems, neglecting the excess vibrational en-
tropy. Incoherent systems exhibiting mixed lattices (e.g.,
fcc and bcc) would require corrections due to vibrational
entropy.

IV. CHOICE OF STRUCTURES
AND INTERACTION PARAMETERS

The association of a set of M ordered structures with a
set of M interaction energies [Eq. (2.3)] is performed in
two steps. First, select a "large" set of structures, obtain
a correspondingly "large" set of interaction energies
through Eq. (2.3), and establish from this which interac-
tions need to be retained to assure that the error in
bE(s, V) does not exceed a prescribed tolerance. Second,
to establish a smaller set of structures for future, compu-
tationally less expensive calculations, find combinations
of structures I s I and interactions I Jf ( V) I which repro-
duce, through the series expansion of Eq. (2.1), the direct-
ly calculated (via the self-consistent local-density ap-
proach) total energies of structures [s'IA Is I to within a
prescribed tolerance. This is discussed in Sec. V E.

To select the "large" set of structures, one needs to in-
clude, at the very least, the end-point structures 3 and B.
Since we study here phase transformations which do not
alter the Bravais lattice ("coherent" phase diagrams), all
members of Is] must be subgroups of the space group of
3 or B. Since we wish to study both ordered and disor-
dered phases, the set Is I must include structures exhibit-
ing the most important local geometries which are possi-
ble in the disordered phase. For example, studying alloys
of fourfold-coordinated (tetrahedrally bonded) semicon-
ductors AC and BC, one selects structures [s I exhibiting
around C at least all the local configurations (C)A~,
(C)A3B, (C)AzB2, (C)AB3, and (C)B&. Having estab-
lished in exploratory calculations the relative equilibrium
total energies b,E(s, V, ) of some of these small-cell
Landau-Lifshitz or Kanamori structures, one is sure
to include in the set Is I the lowest energy structur-es. Fi-
nal1y, we include in the set structures exhibiting ordering
along a range of the principal directions, [e.g., (0,0, 1),
—,'(2, 0, 1), and —,'(1, 1, 1)], and a range of stoichiometries
(X„=n j4 in A„B4 „C&,covering 0, 4, —,', —,', and 1).

This preliminary screening resulted in a set of ten ten-
tative structures for fcc symmetry in fourfold coordina-
tion, depicted in Table I. Table II gives the lattice aver-
age expansion coefficients IIk (s) for these structures.
These ten structures can be arranged in groups according
to the basic ordering vectors: —,'(0, 0, 1) —,'(2, 0, 1) and
—,'(1, 1, 1).

For (0,0, 1) structures, we have at 50%-50% composi-
tion (ABC2) the layered tetragonal structure (CuAu-I-
like, or CA), and at 25%-75% composition ( AB3C4) and
75%-25% composition ( A 3BC4, ) the "luzonite" struc-
tures (denoted L1 and L3, respectively). In the absence
of the common sublattice C, these are the L 10 (for CA)
and L 12 (for L 1, L3) structures familiar from metallur-
gy. ' Note that the CA structure is actually an alternate
monolayer superlattice ( AC)&(BC)& oriented along (001).
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We include in this group also the two-layer (AC)z(BC)2
superlattice, also along (001) (denoted Z2).

For (2,0, 1) structures, we have at 50%%uo-50% composi-
tion ( ABC2 ) the chalcopyrite (CH) structure, whereas at
compositions of 25%-75% and 75%-25% we have the
famatinite structures (Fl and F3, respectively). In the
absence of the common sublattice C, these are the tI8 (for
chalcopyrite) and DOE& (for famatinite) structures familiar
in metallurgy. ' Note from Table II that the (0,0, 1)
structures differ from the (2,0, 1) structures by interac-
tions beyond first neighbors.

Finally, for the (1,1,1) structures, we have at 50%-50%
composition the layered trigonal, CuPt-like (CP) struc-
ture (L 1&, in the absence of sublattice C), while for com-
positions of 25%%uo-75%%uo and 75%-25% we have the Xl
and X3 structures, respectively. Table II also gives the
correlation functions for the perfectly random (R)
A 8& C alloy, showing the useful identity

EEa ( x =
—,
' )=Jo ) [V (x =—,

'
) ]

=—g[ilo, (s)] 'bE[s, V(x =—,')] .1

S

Regarding the selection of a set of interaction parame-
ters, one notes that in zinc-blende-based structures
ternary-based structures the pair interactions between
atoms A and 8 in the mixed sublattice are mediated by
the common C atom. This suggests a natural cutofF in
the interaction range. Starting from an atom ( A or B) at
the origin, this can be illustrated as follows.

(i) First-neighbor interactions (Jz, —=J2) pass through
only one C atom [e.g. , that at ( —,', —,', —,

'
) then to A or B at

( —,', —,',0)]. This interaction is usually the most important.
(ii) Second-to fourth-neighbor interactions (J22=Kz,

J2 2 =Lz, and Jz ~ =M2 ) pass through two C atoms. For
example, the E2 interaction between an atom at (0,0,0)

TABLE I. Ternary Landau-Lifshitz fcc structures discussed in this work. Along with the crystal structure we give the space
group in the International Tables, ShoenAies, Struckturbericht, and the Pearson symbol. Atomic position vectors are given in the no-
tation of the International Tables. The table also gives analogous information for the binary A„84 „structures.

Ordering
Vectors (o,o,o) (ogog&) (mgos&)

Name
(ternary)

Formula'

Zincblende
{Sphalerite) TetragOnal

n = 04;AC
JL BL

n = 2;ASC2

"Luxonite" Chalcopyrite Famatinite

n = 1,3; AISCg n = 2;ABC2
4E 4Lr~% 1$

n = 1,3;A38Cg

Example:
(ternary)

0
Zn

Zn8-type

Bravaie Lattice: Face centered cubic Simple tetragonal Simple cubic Body centered
tetragonal

Body centered
tetragonal

0 o 0 0 ~ o 0
In Ga As As Cu S Cu Fe S Sb Cu S

IneaAsg-type Cu3ASS4 &ype Cuf eSg-&ype Cu3SbS4-type

Layered
Trigonal

n = 2;ABC2

CrCuSg-type
(Na V S~)
Rhombohedral

n = 1,3;A3BC+

Orth orhombic

Space Group
lnt. Tables:

Schoenf lies:

Number.

Struckturbericht

Pearson symbol:

F43m
2

T
216

B3
CFS

P4m2
5
2d

115

P43m
1

Tz
215

H24

CPS

l42d
12

02
122

E11

tl16

l42m
11

02d
121

H2a

tl16

R3m
5

C3
160

hR4

Atomic
positions:
(ternary)

S 4 c
Zn: 4 a 45m 14:

43m 1B: 1 c
2C: 2 g

42m
42m

3Cu: 3
1 As: 1
4 S 4

c 42m
43m

e 3m

2Cu: 4
2Fe: 4
4S- 8

1 Cu:
2Cu:
1 Sb
4S:

2 b 42m
4 d 4
2 a 42m
8 i m 1C:

a 4 1A
b 4 1B:
d 2 1C:

1 a 3m
1 a 3m
1 a 3m

a 3m

Ecguivalent
Iuperlattlce:

' Space group
and type (binary)

Int. Tables
Schoenf lies:

Number

Struckturbericht

Pearson symbol

Examples
(binary)

Fm3m
o'

A1

CF4

Cu+g+u

(1,1) ln
(00 1]
direction

P4/mmm
1

123

Llo

tp4

CuAajf

Pm3m

1
221

LI2
Cp4

Cu3 Au
Au3 Cu

(2,2}in

[20 1]
direction

l4 /amd
1g~»

141

tl8

{1,3) in
(201]
direction

l4/mmm
17~e

139

OO 22
tls

Al 3Ti,
Ni 3V

(1,1) in
(1 1 1]
direction

R3m
5

Dsa

L1 1
hR32

Cu Pt,
SlGe

Cmmm
1$

~a
65
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TABLE II. Lattice average spin products IIk (s} [Eq. (1.5)] for the ordered structures of Table I and the Z2 structure. For the
random structure q =2x —1.

IIk,gs)

0 1 2 3 4 5 5 7 8 9 10 11

interaction
A,m

L1 CUAU L3
Figure 0~m AC A38 AB AB3

Chal. CuPt F1 F3 Z2 X1 X3
BC ABC' ABC' A38 AB3 ABC' A38 AB3 Bagel

1 1 1 1 1

0 -1/2 1/2 0 -1/2 1/2 q

0 -1/3 0 -1/3 0 0 1/3 1/6 1/6 q~

8 -1 1/2 -1/2 0 1/2 -1/2 0 0 0 qs

4 J4=J4 ~

5 K2~22

2

6 M2&2, 4 =-- —= 6

1 1 1/3

1 0 0 q4

2/3 2/3 1/3 0 0 q2

1/3 1/3 -1/3 1 1 q2

7 K3%3,2

8 K4&4,2

9 L2=J2,3

12 1 0

12 1 0

12 -1 -1i2

-1/3

-1/3

0 1 1/3

0 1 1/3

0 -1/6 1/6 0 1/6 -1/6 q

-1/3 -1/3 -1/3 -1/6 -1/6 q4

0
,

1/3 1/3 -1/3 1/6 1/6 q

10 Ls&s,s ~ 24 -1 1/2 0 -1/2 1/6 -1/6, - 0 0 0 q3

and one at (1,0,0) passes through the C atom at ( —,', —,', —,')
to A (or B) at ( —,', —,',0) then to C at ( —,', —,', —

4 ). The 1-2 in-

teraction between an atom at (0,0,0) and one at (1,—,', —,')
passes through C at ( —,', ~i, —,

'
) to A (or B) at ( —,', —,', 0) to C at

( —,', —34, ~i). The Mz interaction between an atom at (0,0,0)
and one at (1,1,0) passes through C at ( —,', —,', —,

'
) to A (or B)

at ( —,', —,', 0) then to C at ( —,', —„', —,'). All of these three in-

teractions are similarly important and will be treated on
the same footing.

(iii) Any longer-range interactions pass through more
than two C atoms and, hence, are likely to be weaker.

Before describing the interaction energies obtained
from these structures, we review the method used to cal-
culate b,E(s, V).

V. ENERGIES h,E(s, V) OF ORDERED STRUCTURES

A. Method of ca1culation

We have previously used two first-principles, self-
consistent approaches ' to the local-density formalism
to calculate the excess energies b,E(s, V) of ordered,
periodic structures: the plane-wave nonlocal pseudopo-
tential ' ' ' ' and the general-potential linear
augmented-plane-wave ' ' (LAPW) methods. When
applied to the same system (e.g., Ref. 59) both produce
numerically similar results. The LAPW approach con-
verges faster for systems containing active d bands (e.g.,

noble and transition metals, or II-VI compound semi-
conductors ).

In this study we have applied the general-potential
LAPW method to ordered phases A4 „B„C4formed be-
tween the binary constituents A C =GaAs and BC
=GaSb (using the Ceperly-Alder exchange-correla-
tion functional as parametrized by Perdew and Zunger )
or AC=GaAs and BC=A1As (using the Hedin-
Lundqvist 7 exchange-correlation functional). These sys-
tems were selected because they exhibit the lowest and
one of the highest mixing enthalpies and lattice-
parameter mismatches known among the III-V com-
pound semiconductors, and because they are experimen-
tally among the best studied semiconductor alloys. For
GaAs we find that the two exchange-correlation function-
als give very similar results (to within 0.01 eV in band en-
ergies and 0.05 eV in cohesive energies). Scalar relativis-
tic effects are included in the calculation. All (core and
valence) states are calculated self-consistently. The core
states at energies equal and lower than the inner d orbit-
als are calculated using a spherically averaged potential,
whereas all other states are calculated retaining the full
potential. The muffin-tin (MT) radii we used were
RMT(Ga)=2. 3548 a.u. , RMT(As)=2. 178 a.u. , and
R Mr ( Sb ) =2.532 a.u. for the Ga(As, Sb) system and
RM&=2. 265 a.u. for the As(A1, Ga) system. The basic
consideration in choosing the MT-sphere radii is to in-
crease the convergence but avoid overlapping MT
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TABLE III. Calculated formation enthalpies 50'"' of ordered phases Ga4As„Sb4 „and Ga„A14 „As4, equilibrium lattice con-
stants a,',"' and volumes V,',"', bulk moduli B(„)and their pressure derivatives B(„).The ordered structures are depicted in Table I.

Structure

Zinc-blende
(n =0)
Luzonite
(L1; n =1)
CuAu-I
(CA; n =2)
Luzonite
(L3; n =3)
Zinc-blende
(n =4)
Cupt
{CP; n =2)
Chalcopyrite
(CH; n =2)
Famatinite
(F1; n =1)
Famatinite
(F3; n =3)
Superlatt.
(Z2; n =2)

Formula

Ga4Sb4

Ga4AsSb3

Ga4AszSbz

Ga4As3Sb

Ga4As4

Ga4AszSbz

Ga4AszSbz

Ga4AsSb3

Ga4As3Sb

Ga4AszSbz

aH'")
[meV/(4 atoms}]

0.0

88

115

0.0

132

52

60

97

&(n)~eq
0

(A)

6.1068

6.0071

5.8927

5.7852

5.6816

5.8974

5.8922

6.0046

5.7823

5.8983

y(n) 1 3
eq

(A')

56.935

54.192

51.154

48.406

45.851

51.277

51.141

54.124

48.333

51.300

B„
{GPa)

51.8

54.0

61.0

65.2

74.6

59.6

59.2

53.1

65.8

59.1

B„'

4.43

4.37

5.05

6.71

6.67

5.29

5.21

4.47

5.82

5.13

Formula

A14As4

A13GaAs4

AlzGazAs4

A1Ga3As4

Ga4As4

AlzGazAs4

AlzGazAs4

A13GaAs4

A1Ga3As4

AlzGazAs4

aa'")
[meV/(4 atoms}]

0.0

8.7

11.5

8.4

0.0

7.5

9.8

7.3

2.85

B,V
b,E(s, V)=

S

r

(V, /V) '
+1 +const,

8,' —1

spheres. The final result is insensitive to the choice of
MT radii. The small amount of Ga 3d electrons outside
the MT spheres is treated exactly without further
approximation. ' ' A rapid convergence in the interac-
tion process is achieved by using Broyden's method.

The numerically calculated excess energy functions
b,E (s, V) have been fitted for convenience of use to
Murnaghan's equation of state

where 8, and 8,' are the bulk modulus and its pressure
derivative at the equilibrium volume V, . The fitting pro-
cedure is similar to that given in Ref. 48. To find the
equilibrium structural parameters we have minimized the
total energy with respect to all cell-internal structural de-
grees of freedom. Finding that symmetry-allowed tetrag-
onal or trigonal distortions of the unit-cell vector are
small for these systems ( ( l%%uo ) we neglected them.

Table III gives the calculated parameters of Eq. (5.1)
for 6aAs-GaSb and for GaAs-A1As; Fig. 1 shows
b,E(s, V) for the five Ga4As„Sb4 „structures correspond-
ing to (0,0,0) and (0,0, 1) ordering vectors. Table IV gives

TABLE IV. Calculated lattice constants, cell-internal relaxation parameters, and Ga—As and Ga-
Sb bond lengths for the Ga(As, Sb) system. See Table I and III for the definition of the ordered struc-
tures. The numbers in parentheses are the numbers of inequivalent bonds in the tetrahedron. The
atomic position in the unit cell determined by cell-internal parameter {u j can be found in Ref. 61.

Formula and structure
Qeq

(A) {u.q I

R(Ga—Sb)
(A)

R(Ga—As)
(A)

Ga4Sb4
Ga4AsSb3
Ga4AszSbz
Ga4As3Sb
Ga4As4
Ga4AszSbz

Ga4As, Sb,
Ga4AsSb3

Ga4As3Sb

.{ZB)
(L1)
(CA)
(L3)
(ZB)
(CP)

(CH)
(F1)

(F3)

6.1068
6.0071
5.8927
5.7852
5.6816
5.8974

5.8922
6.0046

5.7823

0.25
0.2417
0.2336
0.2579
0.25

u 1 =0.2410
u 2=0.2590

0.2294
Q =0.2404

2v =0.2423
Q =0.2604

2v =0.2584

2.6443
2.6313
2.6085
2.5844

2.5857( X 3)
2.6456( x 1)
2.6233
2.6413( x 1)
2.6283{X2)

2.6013

2.5146
2.4971
2.4797
2.4602
2.4617( x 1)
2.5245{X 3)
2.4833

2.5068
2.4640{x 1)
2.4776( X 2)
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FIG. 1. Total excess energy of ordered Ga4As„Sb4 „struc-
tures belonging to the (0,0,1) ordering vector (n = 1,2,3) and for
the end-point compounds (n=0,4).

B. Energy scales and precision

Equations (2.3), (2.4), and (2.27) show that the scale of
the internal energy of the alloy is determined by AE(s, V).
There are three characteristic energies: (i) the formation
enthalpy of the perfectly ordered structure s is given by

the values of the cell-internal structural parameters of
GaAs-GaSb at equilibrium. Since GaAs and A1As have
nearly the same lattice parameter, the small volume
dependence of their b,E(s) was neglected.

and (iii) the mixing enthalpy of the disordered phase
b,H (x, T) [i.e., Eq. (2.27), evaluated for the disordered
system at V, (x)]. Table III shows that (i) formation
enthalpies of ordered inter semiconductor compounds are
around 10 ' —10 eV per four atoms, and (ii) structural
preference energies (e.g. , CuAu versus chalcopyrite, or
luzonite versus famatinite) are around —10 e&. (iii)
Our results below (Sec. VII E) or the experimental
data' show that semiconductor alloy mixing entha1-
pies are typically of the order of 10 ' —10 eV for
lattice-mismatched semiconductors at x =0.5.

Since the pertinent energy scale involved is ~ 10
eV/atom, energy di8'erences must be calculated with
equal or higher precision. In our formulation of the
problem neither the energies of the free atoms nor the
cohesive energy of solid phases enter, as we focus the
study on relative free energies with respect to the phase-
separated solid system A C +BC. This can be achieved
by calculating in Eq. (2.2) the energy E (s, V) of
A4 „B„C4,the energy Ez of A4 „A„C4 and the energy
Ez of B4 „B„C4in precisely the same k-point sampling
basis sets and integration grid points, assuring best can-
cellation of numerical errors. Cancellation between large
constant terms, common to A 4 „B„C4 and
—,'(4 —n) A4 „A„C4+,'nB~ „B—„C4 (core energies,
Madelung energies, etc.) are hence afFected algebraically.
In this work we have used two special k-points for the ZB
structure and their equivalent k-points for the ternary
structures. By comparing results with an equivalent ten
k-points we find that the convergence error of the excess
energy due to the two-k-point sampling is about 5
mev/per four atoms (0.06 kcal/mol).

KH(s) =AE (s, V, ), (5.2)
C. Properties of the interaction energies Jf ( V)

in prototype semiconductor alloys

where V, is the volume which minimizes b,Z(s, V) of Eq.
(2.2), where all other, cell-internal degrees of freedom are
also at equilibrium; (ii) the structural preference ene-rgy,
i.e., the difference between the formation enthalpies of
two di6'erent structures of the same compositions

5bH(s, s')=EE(s, V, ) EF.(s', V, );— (5.3)

Figure 2 shows, as a function of volume, the interac-
tion energies Jk ( V) obtained for GaAs-GaSb using the
large set of ten ordered structures A, B, CA, CH, CP,
Z2, L 1, I.3, F1, and F3, and Eq. (2.3). We give for com-
parison the results for the five ordered structures A, B
CA, L1, and L3 used previously. ' '" Table V gives the

TABLE V. Interaction energies (in rneV) obtained using Eq. (2.3) from ten structures (Table II) of
Ga4As„Sb4 „and Ga„A14 „As4. Vis the average of the GaAs and GaSb ce11 vo1umes.

Interaction

Jo
Ji
J2
J3
J4
Ep
Lp
M2
K3
K4

at
~GaAs

176.02
—256.13

7.98
—0.36
—0.64

1 ~ 33
0.65
4.78

—0.31
—0.03

GaAs-GaSb
at
V

44.34
—3.75

5.97
—0.28

0.09
0.62
0.14
3.95

—0.25
0.03

at
~GaSb

139.98
194.38

4.58
—0.33

0.14
0.04

—0.09
3.40

—0.38
0.00

GaAs-AlAs
volume-

independent

3.30
—0.15
—0.79

0.01
0.01
0.09
0.03
0.12
0.01
0.01
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FIG. 2. Volume-dependent interaction energies Jk ( V) for GaAs-GaSb extracted from two di6'erent structure sets.

value of Jf ( V) for these two systems at a few volumes.
These results show that (i) these systems are dominated

by pair interactions J2, K2, 1.2, and Mz between first,
second, third, and fourth fcc neighbors, respectively, but
(ii) the magnitude of these energies does not decrease
monotonically with the corresponding interaction range,
e.g., Mq&L2, and (iii) when the size mismatch between
the constituents is non-negligible (GaAs-GaSb), so is the
volume dependence of Jk ( V). (iv) For A1As-GaAs we
find that Jz &0 but E2 )0; hence the system is spin frus-
trated. GaAs-GaSb shows J2,K2 & 0. This leads also to
spin frustration (since in this case an A atom prefers to
have all of its first-shell and second-shall atoms to be of
type B, yet some of the second-shell atoms are first neigh-
bors to first-shell atoms). (v) The calculated interaction
energies and the correlation functions of Table II make
possible the assessment of the contribution of a certain
type of interaction to the total energy. For example, the
largest correlation function Df IIf (s) associated with J4 is
2; hence, omitting this interaction leads to errors of the
order of only 0.2 rneV for GaAs-GaSb and -0.02 meV
for GaAs-AlAs.

D. Properties of the excess energy EE(s, V)
in prototype semiconductor alloys

Our results for the formation enthalpies
hH, =EE(s, V, ) of the ordered inter semiconductor com-
pounds (Table III) show some general features.

(i) The b,H, of all ordered inter semiconductor struc-
tures of GaAs-GaSb and GaAs-A1As considered here are
positive, hence these systems are less stable than
equivalent amounts of the (phase-separated) binary con-
stituents at equilibrium. At T =0 equilibrium these sys-
tems would yield a phase-separated ground state (analo-
gous to ferromagnetism).

gous to ferromagnetism).
(ii) For the lattice-matched system A1As-GaAs the se-

quence of energies of the diFerent ordered modifications
atx =0.5 is

bH(CA) & hH(CH) & bH(CP), (5.4a)

and

AH(L) & AH(F) . (5.4b)

(iii) For the lattice-mismatched system GaAs-GaSb the
sequence is

bH(CP) & bH(CA) & bH(CH), (5.5)

and

hH(L) & b,H(F) . (5.6)

~EVD(n V) 4(4 ~)I EAC( V) EAC( VAc )1

+ $+ (EBC( V) EBC( +Bc )1 (5.7)

Second, bring together AC and BC, both at the volume V,

Recent valence force field (VFF) calculations by Bernard
et al. for 18 III-Vand 18 II-VI alloys have shown that
Eqs. (5.5) and (5.6) hold in all cases.

For our method of selecting interaction parameters to
have a general validity for other semiconductor systems,
we need to examine whether the behavior outlined in Eqs.
(5.4) —(5.6) is accidental or not. To do so, we follow
Srivastava et al. and decompose the excess energy
b,E(s, V) of a structure s into three physically recogniz-
able contributions. First, compress and dilate, respective-
ly, AC and BC from their equilibrium volumes Vzc and
V~c to the intermediate volume V, investing thereby the

"volume deformation" (VD) energy
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—E~, „a„c,(» V I&oI) (5.9)

The total excess energy b,E(s, V) of Eq. (2.2) is the sum of
the three terms of Eqs. (5.7) —(5.9), i.e.,

EE(s, n, V) =EEvD(n, V)+bEcE(s, n, V)+DER(s, n, V)

=E~ ~ c (» V, [u,q I )

—
—.'(4 —&)E~c( V~c) .'nEac( Vac—)—

(5.10)

The formation enthalpy KH(s, n) of ordered phase n is
the value of i5E(s, n, V) at the equilibrium volume V„
which minimizes b,E(n, V).

Figure 3 depicts the three functions bEvD(n, V),
i5EcE(s, n, V), and DER(s, n, V) for a few structures s of
Ga~As„Sb~ „. Their sum [Eq. (5.10)] is shown in Fig. 1,
whereas Table III gives their values at equilibrium. This
analysis demonstrates the following points.

(i) Since b,EvD(n, V) is common to all structures of a
fixed stoichiometry X„(e.g. , for s =CA, CH, and CP at
X„=—,

' ), structural preference energies in lattice-

to form A4 „B„C4,also at the volume V. The "charge
exchange (CE) energy involved is

bEcE(s, n, V)=Ex, „a„c,(s, V, [uo1)

,'—(4—n—)E„c(V) —,'nE~—c(V) . (5.8)

In this step we do not relax the cell-internal degrees of
freedom (denoted as Iu I ). Third, allow the cell-internal
structural freedom to relax from IuoI to Iu, I. The
structural (S) energy involved is

bEs(s, n, V)=E„~ c (» V, Iu,qI)

mismatched systems are decided by bE&(s, n)
+bEcE(»n). Since bEvD=DEs=0 in lattice-matched
systems, the structural preference energies are deter-
mined by EEcE(s,n) alone.

(ii) All such ternary semiconductor phases are structur
ally frustrated in the sense that it is impossible to have, at
the same time, "ideal" (tetrahedral) bond angles and
"ideal" (i.e., zinc-blende) bond lengths. Binary AB
tetrahedral compounds (e.g., zinc-blende or L lz) can be
strain free in this sense. This is the principal reason
why binary intersemiconductor isovalent compounds can
have b,H(s, n) (0 when b.EcE is sufficiently negative
(e.g. , zinc-blende SiC), whereas for most such ternary
compounds b,H(s, n) )0.

(iii) bEcE(»n) is positive to these ternary semiconduct-
ing alloys [although, in general, it could be negative, e.g. ,
in ferromagnetic CdTe-MnTe (Ref. 81)) and about an or-
der of magnitude smaller than bE&(n) or b,EvD(n) of the
lattice-mismatched systems. Hence, in the lattice-
matched GaAs-AlAs system the formation enthalpies are
about an order of magnitude smaller than those in
lattice-mismatched systems since only b EcE(s, n ) is at
play in the former case.

(iv) The chemical energy bEcE(s, n) is nearly volume
independent. It is smaller in mixed-cation systems (e.g.,
7.5 meV in the CuPt structures of GaA1As2) relative to
mixed anion -systems (e.g., 19 meV in the same CuPt
structure of Ga2AsAb). This refiects the fact that the
valence-band wave functions of covalent semiconductors
are mostly anion-derived, hence mixed-anion systems
strongly perturb the occupied valence band, whereas
mixed-cation systems do so to far lesser extent (they per-
turb greatly, instead, the empty conduction bands).

(v) The order of bH(»n) in lattice-matched systems is
consistent with that obtained by retaining bEcE(s, n)

1100—
Evo (n, V)

Volume deformation 30- cE(n, v)
Charge exchange -350-

AEa(n, v)
Structural energy

co 1000

800
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FIG. 3. Decomposition of the formation enthalpy of ordered Cxa&As„Sb4 „structures into volume deformation [Eq. (5.7)],
charge-exchange [Eq. (5.8)], and structural relaxation [Eq. (5.9)] contributions.
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alone and modeling it by the excess electrostatic
Madelung energy AEM, d,I„„ofthe ordered structures
with respect to equivalent amounts of zinc-blende
AC+BC. A simple electrostatic model gives the excess
Madelung energy (per four-atom cell)

= 1
bEM, d,i„„(s,2)= (azar', q —P, b,g ) (5.11)

where d is the bond length, b,q =qz( AC) —qs(BC) is the
difference in charge between the binary compounds, and
bg=g&(ABCz) —Qs(ABC&) is the corresponding
difference in the ternary ordered phase, and where

+ZB= 1.6381

Pc~=0. 1220,

pcH =0. 1253,

Pc@=0.1868

(5.12)

are geometrical constants. Clearly, only if the charge
exchange b, Q in the ternary phase exceeds that in the
binary structures by more than a critical value
(b,g/bq)„;, can the ternary phase have bEM, &,&„„&0.
We find

1.83, CuAu —I
(b,g/Qq )„;„= 1.81, chalcopyrite

1.48, CuPt .
(5.13)

In GaAs-GaSb and GaAs-A1As, b,g/hq does not exceed
these critical values, hence AEM,„,&„„g&0. The order of
stability of Eq. (5.4) obtained in our total-energy calcula-
tions (Table III} is consistent with the values of P, given
in Eq. (5.12). This suggest that other contributions to
b,ECE(s, n) (e.g., on-site Coulomb energy) are less im-

portant.
(vi} The order of stabilities in lattice-mismatched sys-

tems [Eq. (5.5)j is decided primarily by bE, (n) of Fig. 3
[since bEcE(s, n) is relatively small and nearly constant
in these systems]. This rejects the fact that for a fixed
internal displacement of atom C the chalcopyrite struc-
ture has a smaller bond-angle distortion, hence, it can
better accommodate dissimilar bond lengths R~ c and
Rz c than, say, the CuAu-I structure. This is seen in
Table IV, showing smaller bond distortions R~c —R zc
in chalcopyrite relative to that in the CuAu-I structure.
We will see below that the chalcopyrite structure emerges
indeed as a metastable ordered phase in the phase dia-
gram of lattice-mismatched isovalent semiconductor al-
loys. The CuPt structure has larger strain because it
must accommodate in the same lattice two clusters,
A3B (C) and AB3(C), with different sizes. We have
found that the calculated EE(s,n, V) has a larger magni-
tude at V=V(GaAs) than at V=V(GaSb) (Fig. 3), in
contrast with the result obtained by VFF. This re6ects
the fact that the VFF is essentially a harmonic theory
while our calculation includes anharmonic effects.

We conclude that the relative stability of the lattice-
matched ordered isovalent semiconductor phase is decid-
ed primarily by ihe small charge-exchange energies AECE

reflecting largely the relative electrostatic energies of
different lattices, whereas the relative stabilities of
lattice-mismatched isovalent semiconductor phases is de-
cided by the structural energies AEz rejecting the
different abilities of the various structures to minimize
the strain energies by accommodating spatially different
bond lengths. These conclusions are supported by recent
total-energy calculations for the inter semiconductor sys-
tems, CdTe-Hg Te, CdTe-Zn Te, Hg Te-Zn Te, GaP-
InP, and In As-GaAs, yielding excess energies [in
meV/(4 atoms)] of 12.3, 54.2, 42.3, 91.0, and 66.7 in the
CA structure; 11.3 19.2, 11.4, 19.0, and 16.5 in the CH
structure, and 9.8, 103.5, 155.4, and 108.4 in the CP
structure, respectively. These LAPW calculated values
exhibit the anticipated trends of Eq. (5.4) for lattice-
matched systems (AlAs-GaAs and CdTe-Hg Te) and that
of Eq. (5.5) for all lattice-mismatched systems.

K. Optimal choices of minimal sets of ordered structures:
Test of completeness and linear indeyendence

Our foregoing discussion suggests that the order of en-
ergies of various phases [e.g. , Eqs. (5.4}—(5.6)] is likely to
hold, quite generally, for reasons discussed in Sec. VD,
for a wide range of isovalent zinc-blende semiconductor
systems. This suggests that a choice of a set of structures
(hence, also interaction parameters) for the prototype
zinc-blende semiconductors treated in this work might be
useful for other zinc-blende semiconductor alloys as well.
We hence discuss next how such sets can be selected.

Having calculated self-consistently the total excess en-
ergies of a "large" set of ordered GaAs-GaSb compounds
as well as that of the random alloy [Eq. (4.1)], we can now
seek smaller sets of structures, examining the extent to
which the interaction energies extracted from them
reproduce the directly calculated energies of structures
outside these "small" sets. Since the systems under con-
sideration here are dominated by pair interactions, we
discuss these first.

Define as the bare minimum set the interactions Jo, J&,
and J2, and the end-point structures AC and BC. Now
add to this set of structures one of the remaining struc-
tures, so that the 3 X 3 problem can be inverted through
Eq. (2.3) to find the values of the interaction energies.
The first four lines of Table VI show the four combina-
tions of (a total of M =3) structures possible and
identifies the structures outside each of these small sets.
We now predict the energies of the structures outside
each of these small sets using the interaction energies ex-
tracted from the small set and Eq. (2.1). Table VII shows
the ratio between the predicted energy [using series ex-
pansion of Eq. (2.1}j and the directly calculated energy
(using the LAPW method). This procedure can be ex-
tended to a total of M =4 structures (giving 18 sets),
M =5 structures (12 sets), etc. The results for the
predicted-to-calculated energy ratios are given in Table
VII for al1 sets.

Inspection of these results reveals the (i) to get correct-
ly the energy of the random structure, it is essential in all
cases to include the fourth-neighbor pair interaction Mz,
(ii) the smallest set guaranteeing a maximum error of
-6% for all structures is M =4, and (iii) the canonical
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Connolly-Williams set (3, B, CA, L 1, and L3) used pre-
viously in a number of phase diagrams calculations is not
optimal, leading to errors as large as 58%, 30%, 121%,
and 71% for R, F, CH, and Z2, respectively.

Table VIII gives for each M) 4 the best set of struc-
tures and interaction parameters as well as the previously
used set (A, B,CA) for M=3. In Sec. VIII we will
present detailed phase diagrams for these sets (including
also interactions beyond pairs), demonstrating conver-
gence of the properties of the disordered alloy. For ran-
dom (R) alloys, however, it is possible to examine, analyt-
ically the rate of convergence of the excess energy
hE(R, V) by noting that at x =0.5 [Eq. (4.1)] this is given
by Jo[ V(x =0.5)], and that the latter quantity is a super-
position of energies b,E[s, V(x =0.5)] of ordered
structures. Table IX gives the expansion coefticients
go(s, M) =[IIo I(s)] ' of Eq. (2.3) for
Jo[V(x)= —,')]=DE(R,x= —,') for some sets of M struc-
tures indicated in Table VIII, as well as for those ob-
tained by adding I. 1 and I.3 to each set. The caption to
Table IX gives the LAPW calculated values of b,E(s, V)
at V= V, (CA). Using these, one can calculate the energy
of the random alloy at V

from Table IX that the major e6'ect of including more in-
teractions M is to gradually reduce the values of go(s, M)
for the high-energy structures s =CA, I, 1, and L, 3, and to
increase go(s, M) for the stabler, low-energy structures
CH, Z2, F1, and F3.

While this test identi6es the rate of convergence with
M, it does not address the issue of the sensitivity of the ex-
pansion of Eq. (2.1) to certain bE(s, V) values: when a
large number of structures is included, one may expect in
general that eventually some linear dependence will de-
velop. We can de6ne a "quality parameter" K reAecting
this eff'ect for a full composition range. Using Eqs. (2.5)
and (2.6), one can write Eq. (5.14) for any V(x) as

b,E[R, V(x),M]= g Q, (x,M)EE(s, V), (5.15)

where

Q, (x,M) = g [III(s)]M'II~(R, x) . (5.16)
f

For the expansion (5.15) to be stable, we wish to exclude
structures s which are nearly linearly dependent, so that
the convergence of (5.15) with M will be regular. Since
db, E/dbE(s, V)=Q, and IIO(s)=1, we have the sum rule

bE(R, V, M) = g rID(s, M)bE(s, V)
S

(5.14) g Q, (x) = g (2x —1) ~[II~(s)] 'IIo(s)
s,f

as a function of the number of structures M included.
This is shown in the last column of Table IX. The results
exhibit a rapid convergence of hE(R, V) with M and re-
veal that the converged result is rather unique, in that
different combinations of structures result (past M =5) in
virtually identical alloy energies. It is interesting to note

k~=g (2x —1) ~5~0=1,
f

(5.17)

k
where (Table III) II&(R)=(2x —1) . This sum rule can
be verified for x =

—,
' from Table IX by summing the en-

tries in a given row. This suggests that a good criteria for

TABLE VI. Sets of structures and their association with interaction parameters. Here we indicate
the "structures added" to the two end-point structures of AC and BC, and the interaction energies (J)
added to Jo, J&, and Jz. In each case we indicate as energies to be predicted those structures not includ-
ed in a given set. Their predicted relative energies are given in Table VII. F and L denote the averages
of F1 +F3 and L1+L3, respectively. R denotes the random alloys.

3 (4 sets)

Structures
added

CA
CH
CP
Z2

J's
added

Structures whose energies
are to be predicted

R, CH, CP, Z2, F, L
R, CA, CP, Z2, F, L
R, CA, CH, Z2, F, L
R, CA, CH, CP, F, L

4 (18 sets) CA, CH
CA, CP
CA, Z2
CH, CP
CH, Z2
CP, Z2

Kz /Lz /Mz
Kz /Lz /Mz
Kz /Lz /Mz
Kz /Lz /Mz
Kz /Lz /Mz
Kz /Lz /Mz

R, CP, Z2, F, L
R, CH, Z2, F, L
R, CH, CP, F, L
R, CA, Z2, F, L
R, CA, CP, F, L
R, CA, CH, F, L

5 (12 sets) CA, CH, CP
CA, CH, Z2
CA, CP, Z2
CH, CP, Z2

MzKz /MzLz /KzLz
M2K2 /M2L2 /K2L2
MzKz /MzLz /KzLz
M2K2 /Mz 2 /K2L2

R, Z2, F, L
R, CP, F, L
R, CH, F, L
R, CA, F, L

6 (1 set) CA, CH, CP, Z2 Kz, Lz, Mz R, F, L
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TABLE VII. This table gives, for each set of GaAs-GaSb structures and its corresponding set of interaction parameters (listed in

Table VI), the ratio between the predicted energy [using the series expansion of Eq. (2.1)] and the directly calculated (via LAPW) en-

ergy, both at the 50%-50%%uo volume. The symbols identifying the structures are given in the first column of Table III. A entry "S"in-

dicates that Eq. (2.3) is singular, hence, not invertable. The energy of the random alloy at x = —(R) is calculated within the LAPW
method from Eq. (4.1).

Structures
added Jo J] »2

Predicted energy ratios

CA
CH
CP
Z2

1.58 1.30
1.05 0.86
1.49 1.22
0.42 0.35

1.00
0.66
0.94
0.27

CH =2.21
CA =0.45
CA =0.90

CA = —0.19

Z2= 1.71
Z2= 1.38
Z2 = 1.65

CH = —0.42

CP = 1.06
CP =0.70
CH =2.0
CP =0.28

M=4

Structures
added

Jo»] »2 &2
F L ABC2

Predicted energy ratios

Jo J]»2 L2
F L ABC2

Jo,Ji,J2,M2
F L ABC2

CA, CH

CA, CP

CA, Z2

CH, CP

CH, Z2

CP, Z2

0.51 1.01 1.00

1.53 1.28 1.00

0.42 0.98 1.00

1.20 0.82 0.57

0.42 1.03 1.06

0.42 —0.23 —0.41

CP = —0.37
Z2 = 1.06

CH =2.16
Z2 = 1.68

CH =0.69
CP = —0.49

CA =0.30
Z2 = 1.47

CA= 1.1
CP = —0.56
CA = —1.29
CH = —1.63

1.58

1.58

1.49

0.84

1.49

1.01 1.00

S S

1.62 1.00

0.98 0.94

0.80 0.53

1.51 0.94

CP = 1.06 1.05
Z2= 1.77

S S

1.01 1.00

S S

CH =3.53
CP = 1.06
CA =0.90
Z2= 2.19

CA =0.24
CP =0.56
CA =0.90
CH =3.21

1.00 0.98 1.00

1.05 0.98 0.94

1.05 1.03 1.06

0.965 0.93 0.94

CP = 1.06
Z2 = 1.06

S

CH =0.89
CP = 1.06
CA =0.90
Z2= 1.11

CA = 1.10
CP = 1.12
CA =0.90
CH =0.79

Structures
added

Jo ~Jj & J2 ~ M2 ~
E'

2

F L ABC2

Predicted energy ratios

Jo,»i, »2, M2, L2
F L ABC2

Jo,Ji,»z, K2,L
.F L ABC2

CA, CH, CP
CA, CH, Z2
CA, CP, Z2
CH, CP, Z2

1.03
S

0.98
1.00

1.01
S
0.98
1.03

1.00
S
1.00
1.06

Z2 = 1.06
S

CH =0.89
CA = 1.09

S
1.03
S

1.00

S S
1.01 1.00
S S

0.98 0.94

S 1.53
CP = 1.06 0.47

S 1.53
CA =0.90 1.00

1.01 1.00
1.01 1.00
1.94 1.00
0.87 0.33

Z2 =2.30
Z2 = —0.43

CH =3.42
CA = —0.10

Structures
added

Jo ~ »1 ~ »2 ~ M2~ +2 ~ L2
F L

Predicted energy ratios

CA, CH
CP, Z2 1.00 1.00 1.00

TABLE VIII. Sets associating a group of ordered structures with a group of interaction parameters,
and the quality parameter K [Eq. (5.19)] for some of the best sets. The stabler sets have smaller K
values.

Structures Interaction parameters

K K K
(M+2L (M +2F (M +2L +2F

K +J3 J4) +J3 J4) +J3 J4 K3 K4)

A, B, CA
A, B, CA, CH
A, B, CA, CH, CP
A, B, CA, CH, CP, Z2

Jo, Ji,
Jo Ji
Jo Ji
Jo Ji

J2
J2, M2
J2, E2, M2
J2, L2, M2, K2

0.62
0.62
0.65
0.45

0.41
0.75
0.72
0.48

0.41
0.48
0.55
0.40

0.94
1.08
1.18
0.90
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TABLE IX. Expansion coe%cients {X 16) of Jo( V) in terms of the energies bE(s, V) of different or-
dered structures s, see Eq. (4.1). The different sets of structures follow those used in Fig. 8. In the last
column, we give the value of 2JO (in meV) computed for GaAso 5Sbo 5 at a 50%-50% volume V. This is
obtained using Eq. (5.14) and the LAPW energies [iu meV/(4 atoms), at V] 198, 234, 135, 115, 144, 52,
132, 97, 105, and 110 for A, 8, L1, CA, L3, CH, CP, Z2, F1, and F3, respectively. Note the fast conver-
gence of Jo.

8 L1 CA L3 CH CP Z2 F1 F3 2JO( V)

Set 3
Set 3+2L
Set 4
Set 4+2L
Set 5

Set 5+2L
Set 6
Set 6+2F
Set 6+2L
Set 10

1

2
1

2
1

2

2

2
j
2

12
6
0

—6
—3
—6

0
—1

—3

0
4
0
4
0
2
0
0
2

2

0
0

12
12
12

12
6
4
6
6

0
0
0
0

4
4

140.25
139.88
93.00
92.63
90.94
90.75
88.88
88.56
88.69
88.69

the stability of the expansion (5.15) is that
M

K(M)=g J Q, (x,M)dx =minimum .
0

This gives

I(. (M) = y y[11f(s)]-'[11f(s)]-'
ff' s

1) f f'
X

2(kf+ki +1)
=mlnlmum

(5.18)

(5.1&)

Table VIII gives the values of the quality parameter E,
also including results obtained by adding the 1:3 and 3:1
structures (L and R along with the many-body terms
J3,J4,K~, IC4. This demonstrates that (i) the set M =6 is
indeed the stablest pair interaction set (J =0.45); (ii) the
set M =6+2F is the stablest set which includes many-
body effects (IC =0.40), although the set M =6+2L is
similar in quality; and (iii) inclusion of 2L+2F along
with J3,K3,J4,K4 causes some approximate linear depen-
dence (K increases), hence such combinations should be
avoided. (iv) Using ~, = g, ~[II,(s)] '~ as a "quality pa-
rameter" which measures the stability of a set M in
describing the asymmetry of the phase diagram (dictated
by Jf i), we find that tr, =5. 5 for all M +2L +2F sets
(i.e., a very large sensitivity), whereas a., =1.5 for all
M+2L or M+2F sets, and K& 1.0 for all sets which do
not include either the structures L and F. This also sug-
gests that sets including both Ll, L, 3 and F1,F3 should
be avoided.

The demonstrated transferability of the set of interac-
tions obtained from a given set of small unit-cell struc-
tures to the prediction of the energies of other structures
can be applied to the interesting case of lattice-matched
superlattices. Recently, Wei et al. "have generalized
this procedure to longer-period (A1As) /(GaAs) super-
lattices in various orientations, finding that the interest-
ing parameters extracted from short period (p —1 —2) or--
dered structures (Table VIII) accurately described direct-
ly calculated superlattice energies for longer-period
structures.

VI. FOLDING HIGHER-ORDER INTERACTIONS
INTO LOWER ORDERS: DISORDERED fcc ALLOYS

In this section we apply the formalism developed in
Sec. II together with the interaction parameters described
in Sec. V to "pseudobinary" fcc GaAs Sb, „and
Al, „Ga„As alloys. To illustrate our method we fix the
statistical counting range d,«, to include first neighbors
(m =1), up to four-body interactions (k =4), or, in other
words, the first five clusters of Table II, comprising a
tetrahedral figure U. We use eight successively increas-
ing ranges for d;„, corresponding to M =3, 4, 5, and 6 of
Table VIII (pair interactions only) and M =3+2L,
4+2L, 5+2L, and 6+2L resulting from adding to these
the two (L 1,L3) luzonite structures and the interaction
parameters J3 and J4.

1. Pair interact~ons Kq =Jg 2,Lg =—Jg 3 and Mg —=Jg ~

The reduction follows Eq. (2.25). In general, we have
for the mth pair interaction

(112 ) =q =(2x —1)

For E2, we have

C2 2 =1, others null .

For L2, we have

C2 3 1, others null ~

(6.1)

(6.2)

(6.3)

A. The determination of Cf

To determine the effective equations of state [Eq.
(2.32)] we first reduce the figures not contained in the
range d„„(i.e., not contained in U) according to Eq.
(2.18), finding the coefficients Cf& of Eq. (2.18) to be used
later' in Eq. (2.21) to determine the effective interactions.
The method of reduction is given by Eq. (2.15), which is
used whenever the figure made of the sites is not a
subfigure of U. We consider only the disordered phase.
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Finally, for M2 we have

Cz'4 =1, others null .
2. Three-body-interaction K3 =J3 z

(6.4)

Using Eq. (6.1) we obtain

& 11„&=Zq & Il, , &
—q', (6.6)

Let a and p denote the sites that are second neighbors
(Table II), and y the nearest neighbor to a and p. Fol-
lowing Eq. (2.15),

&II„&=(s.s,s, & =q(s,s, &+q(s.s, &+q&s.s, &

—q'&s &
—q'&s &

—q'&s, &+q'

=2q& II, , &+q& II„&—2q, (6.5)

C2 &=2,
3,2

C1, 1

l

3. I'our-body interaction K& =J& z

a and P are second neighbors. Thus

(6.7)

(6.8)

(S S&S S ) =q(SttS S )+q(S S S )+q(s S&S )+q(S SttS )
—q'&s.s, &

—q'&s.k, &
—q'&s.s, &

—q'&s,s, &
—q'(s, s, &

—q'&s, s, &

+q'& s.&+q'& S,&+q'(s, &+q'& s, ) q' . — (6.9)

&ll„,&=2q&ll, , &
—q'&ll, , & .

Then

(6.10)

Using Eq. (6.6) for the third and fourth terms, and Eq.
(6.1) for the fifth, we obtain

same. Therefore, there are just five independent probabil-
ities P„, equations of state e„(P,V), and energies
bE(n, x, V):

bE(0, x, V)=J0(x, V) —J, (x, V)+6Jz(x, V)

C'' =21, 1

4, 2

C4'2 = —1

(6.11)

(6.12)

—SJ3(x, V)+274, (x, V), (6.14a)

bE( l, x, V) =Jo(x, V) ——,
' J, (x, V)+4J3(x, V) —2J~(x, V),

B. KS'ective muitiatom interactions Jf (x, V)
and energies b,E( n, x, V)

Using these Cf& and the values of Df —=Dk of Table
II, Eq. (2.21) gives the resummed (effective) interaction
energies

bE(2, x, V) =Jo(x, V) —2J2(x, V)+2J4(x, V),

(6.14b)

(6.14c)

bE(3,x, V) =Jo(x, V)+ —,
' J, (x, V) —4J3(x, V) —2J4(x, V),

(6.14d)

bE(4, x, V)=Jo(x, V)+J, (x, V)+6J2(x, V)

Jo(x, V) =Jo ( V),

J, (x, V)=J, ( V)+3(2x —1)Ez( V)

(6.13a) +SJ3(x, V)+2J4(x, V) .

C. The effective equations of state X„(P,V)

(6.14e)

+ 12(2x —1)L2( V)+6(2x —1)Mz( V)

—12(2x —1) E3( V),

J2(x, V) =J, ( V)+4(2x —1)&3(V)

—2(2x —1) K~( V),

J3(x, V) =J3 ( V) +3(2x —1)Kz( V),

J4(x, V)=J4( V) .

(6.13b)

(6.13c)

(6.13d)

(6.13e)

In the next step, we combine the effective interactions
Jk(x, V) to obtain the energies b,E(n, x, V) of Eq. (2.24).
For the 2 =16 ordered configurations of a lattice with a
tetrahedral unit cell, the probabilities P„are the symbols
8'JkI of Kikuchi, where i,j,k, l may be either zero or
one, hence our effective equations of state e„(P,V) corre-
spond to the c,~kI. For the disordered phase, the energies
and probabilities are equal whenever i +j +k + I are the

In the last step one uses Eq. (2.32) to calculate the
effective equations of state.

e p'( V) =JO ( V) ——,
' J, ( V) +4J3 ( V) —2 J4( V),

'E
2 '( V) =JO( V) —2 J2 ( V) +2Jq( V),

(6.15a)

(6.15b)

(6.15c)

1. Nearest-neighbor (tetrahedron) interaction

When considering just nearest-neighbor interac-
tion ' ' (assuming all the other interactions to be zero),
the effective equations of state (denoted as M =5) do not
depend on the probabilities IP„I and coincide with the
excess energies of the ordered structures 0—4 of Fig. 2,
namely

E (') '( V) =JO( V) —J, ( V) + 6J2 ( V) —8 J3 ( V) + 2 J4( V),
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—(5)( V) —J ( V)+ ) J ( V') —4J3( V) —2J4( V)

E (5)( V) —J ( V)+J ( V)+6J~( V)+8J3( V)+2J4( V)E4

2. Addition of other pair interactions

(6.15d)

(6.15e)

14

8-

(6.16a)

(6.16b)

(6.16c)

(6.16d)

(6.16e)

where

F~( V) =3K~( V)+12L~( V)+6M2( V) . (6.16f)

3. Additional three and fou-r body intera-ctions

Finally, when we also include the interactions K3 and
K4, the effective equations of state (denoted as M =10)
depend on IP„) explicitly, and Eq. (2.32) needs to be
solved self-consistently for given temperature T, volume
V, and concentration x. While we numerically calculate
these self-consistently using the actual, finite temperature
CVM probabilities, we give here the simpler expressions
at T= ~, when the probabilities are those of random al-
loy,

E" '(x V Oc )=E' '(x V)+12(2x +1)(2x —1)K3(V)

Next, we add the pair interactions K2 I.2, and M2 of
Table II. In this case, the effective equations of state
(denoted as M =8) depend on I P„ I only through x. They
are given by

E o '(x, V)=E ()
'( V)+(2x +1)(1—2x)F2( V),

E', '(x, V)=E', '(V)+2x(1 —2x)F~(V),

E (s)(x V) e (25)( V) + (2x —1 )( 1 —2x )F2( V),

E'"(x V) = E ',"(V)+(2x —2)(1—2x)Fp( V),

E4 '(x, V)=E4 '( V)+(2x —3)(1—2x)F2( V),

14

10-

O
E
co 14
C):12

gc
10-

Sb4

As4.

As4.

—12(2x + 1 )(2x —1 )K4( V),
e')' '(x, V, ~ )=E'( '(x, V)+6(2x —1) K3(V)

+ 12(2x —1 )K~ ( V),

e 2 '(x, V, ~ ) = e ~ '(x, V) —8(2x —1 )K3( V)

+4(2x —1) Kq( V),

e " '(x V ac )=e ' '(x V) —6(2x —1)~K3( V)

—12(2x —1)K~( V),

(6.17a)

(6.17b)

(6.17c)

(6.17d)

A

, Sb4

10-
S t 6+2L

S4

E " '(x V oo ) =e 4 '(x, V) —12(2x —3 )(2x —1 )K3 ( V)

—12(2x —3)(2x —1)K4( V) . (6.17e)
Equations (6.17) can be trivially generalized to include
more interactions. These are powerful expressions,
aFording the use of just five functions e „(x,V, T) in stan-
dard nearest-neighbor Ising model calculations, yet pro-
viding results which approximate well distant-neighbor
effects. Combined with different choices of structures,
one can test the trends and convergence of calculated
thermodynamic quantities.

D. The equilibrium condition

Letting V = V, (x, T) be the equilibrium volume of the
alloy at x and T, the functions e „[x,V,q(x, T), 7] may be

—20
GaSb

0.750.25 0.50
Relative volume Veq (x)

As4.

1.0
GaAs

FIG. 4. Effective equation of states for GaAs-GaSb [Eqs.
(6.15)-(6.17)].
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used, instead of s „(P,V) to calculate the thermodynamic
equilibrium. For instance, the equilibrium volume is
given by the equation

dc,„[X(V, T), V, T] ax aE„ ~n
dv & "av a

+& "av

markable x dependence in the energies. In this case, the
energy maxima occur at the stoichiometric compositions
x =X„,as one readily verifies by equating the derivatives
of Eqs. (6.16) to zero. In Sec. VIII C, we will further dis-
cuss the effective energies c, of Figs. 4 and 5.

=0 (6.18)
E. Calculated thermodynamic quantities

because the first term is zero due to Eqs. (2.29) and (2.30),
and the second due to Eq. (2.26). Therefore we can work
with Y,„[x( V, T), V, TJ or Z„[x,V,q(x, T), T] as a
temperature-dependent, but state-of-order —independent
effective equation of state.

Figure 4 depicts the effective equation of state
E„[x(V,T), V, T] for GaAs„Sb& „, and Fig. 5 depicts
Z„(x, T) for Al& Ga„As. No lattice mismatch was per-
mitted in the latter case, so that no volume variation can
be considered. In both cases, the temperature depen-
dence is so weak that it cannot be seen in the scale of the
figures. This implies that (when phonon contributions
are neglected) V, (x, T) is also nearly temperature in-
dependent. One observes in Figs. 4 and 5 that, by in-
creasing the number of ordered structures the energies at
the minima (enthalpies of formation) decrease, and the
curvatures (or the effective bulk moduli) also decrease. In
the case of Fig. 5, the new configurations introduce a re-

QH(x, T)=bH(x, T)/x (1 —x) . (6.19)

The formation enthalpy bH(x) of ordered compounds is
the equilibrium value b,E(s, V, ) of Eq. (2.2). The free en

ergy is

F(x, T)=bH(x, T) TS ' ' —TES(x,—T) (6.20)

(where S is the ideal mixing entropy), the excess free en
ergy is

The folded interaction energies I Jk(x, V) I of Eq. (6.13)
[or the effective equations of state in Eq. (6.23)] can now
be used in the context of the generalized Ising problem to
solve for the correlation functions ( IIf }or the probabili-
ties P„and the equilibrium volumes [Eq. (2.27)]. Evaluat-
ing (bE( V) } for the various phases enables the calcula-
tion of the basic thermodynamic properties of these
phases. We next define the main thermodynamic quanti-
ties calculated and discussed in Sec. VIII. These include
the disordered alloy excess mixing enthalpy bH(x, T) of
Eq. (1.2) and its "interaction parameter"

O. i5

. AlsGa (n=1}

-(a)

0.05-

At4 (n=O)0-

s(M) (x,T)
Set 3+2L

A/Gas (n=3)

Gag (n=4)

At2Ga2 (n=2)

b,F(x, T) =b.H(x, T) TES(x, T—),
and its "interaction parameter"

QF(x, T) =bF(x, t) Ix—(1—x) .

(6.21)

(6.22)

The amount by which the cluster probability P„of Eq.
(2.12) deviates from the (temperature-independent) ran
dom (R) probability is defined as degree of nonrandomness

b,P„(x,T) =P„(x,T)—P„' '(x) . (6.23)

0

5
.(b)

I 'j

AE2Ga2 (n=2)

If bP„(x, T) (0 for the pure A or pure 8 clusters
(n =0,4), the system is said to exhibit "clustering, "
whereas if b,P„(x,T) )0 for the n =0,4 clusters, the sys-
tem is said to exhibit "anticlustering. "

VII. USEFUL NUMERICAL SIMPLIFICATIONS

0.05-
AESGa

. (n=1)
0-—

Set 5+2L ASGa3
(n=3}

—0.05-
. Al4

—0. 100
A/As

0.25 0.50 0.75
Ga4

1.0
GaAs

Concentration x (Veq}

FIG. 5. Effective equation of states for GaAs-A1As [Eqs.
(6.15)—(6.17)].

The input to the calculation of the phase diagrams con-
sists of the excess energies b,E(s, V) for the ordered struc-
tures tsj over the volume range from V = V„c to
V = Vzc. The results are normally fitted to a convenient
analytic form in terms of the bulk modulus B„,its pres-
sure derivative B„', the equilibrium volume V„, and the
formation enthalpy b,H„[e.g. , Eq. (5.1) and Table III].
Since self-consistent calculations of bE(s, V) over a full
volume range are rather time consuming, it is useful to
explore approximations which simplify this procedure.
One can easily calculate I8,8', VI just for the end-point
compounds AC and BC using calculated total energies
near their respective equilibrium volume, and interpolate
the values for ordered compounds. The simplest interpo-
lation is the generalized Vegard rule, i.e.,
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Set 3+2L:
A, B, CA, L1, L3

1700 - "0~ "i~ "2~ "3s "4

V„=(1—X„)V„c+X„V~c,
B„=(1—X„)B„c+X„B~c,
B„'=(1—X„)B„'c+X~B~c,

(7.1)
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where X„ is the fraction of atom B in compound n. Obvi-
ously, AH„cannot be linearized and are kept with their
full n and s dependence. Figures 6 and 7 depict the calcu-
lated phase diagram of GaAs-GaSb using as input the
directly calculated equation of states of Table II [part (a)
of these figures] and the linearized version of Eq. (7.1)
[part (b) of these figures], where B~c and Bzc are ob-
tained using 6ve calculated data points near their respec-
tive equilibrium positions (see Table X). In Fig. 6, we
give the comparison for a case where no folding is in-
volved, whereas Fig. 7 gives results for seven structures,
where folding of higher-order interactions is involved. In
all cases, we use the formation enthalpies b H ( n ) of the
ordered phases obtained in direct calculation (Table III),

FIG. 6. Phase diagrams of GaAs Sb&, illustrating the
linear approximation of Eq. (7.1). The dashed line running close
to the solid line (binodal) is the spinodal line. This figure also
shows the regions of existence of the metastable ordered phases
bounded by the spinodal d F/dx =0. To obtain results for
CuAu-I we use the structures 3, S, CA, L1, and L3. Ordering
temperatures for chalcopyrite are found by using the set A, 8,
CH, F1, and F3.

600 l I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
GaSb Atomic Fraction x GaAs

FIG. 7. Phase diagrams of GaAs Sb, „, illustrating the ap-
proximations to the e6'ective energies Z„discussed in Sec. VII.
The dashed line is the spinodal. Data taken from Table X.
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TABLE X. Comparison of the input parameters V„,B„,B„',and b,H„[Eq. (5.1)] of the LAPW calcu-
lated EE(s, V) excess energies [using Eq. (7.1)] with the efFective values obtained by fitting the effective
energies Z„( V) of "set 5+2L" to the same equation, (5.1). A =Sb, B =As.

Struct.
V„(cm /mol)

Input Effec.
B„(GPa)

Input Effec. Input Effec.
AH„(kcal/mol)

Input Effec.

A4C4
A3BC4
A2BqC4
AB3 C4
B4C4

34.29
32.62
30.95
29.28
27.62

34.29
32.60
30.92
29.25
27.62

51.8
57.5
63.2
68.9
74.6

36.6
42.8
48.9
54.8
60.6

6.78
6.5
6.3
6.1

5.82

9.8
8.8
7.9
7.2
6.5

0.0
(a)
(b)
(c)
0.0

0.00
0.57
0.72
0.68
0.00

'1.02 for L 1, 0.69 for I 1.
1.33, 0.60, 1.52, and 1.12 for CA, CH, CP, and Z2.

'1.15 for L3, 0.79 for F3.

with no linearization. The results are compared with the
recently measured phase diagram. This shows that the
linearization of the parameters B„,B„', and V„change
the miscibility-gap temperature by only -5%, leaving
the mixing enthalpy essentially unchanged. Since the ex-
traction of the values of B„and B„' for intermediate or-
dered compounds from the numerically calculated energy
b.E(s, V) involves larger uncertainties then those underly-
ing Eq. (7.1), we judge approximation (7.1) to be both ap-
propriate and sufticiently accurate for these systems.
This reduces dramatically the computational effort re-
quired, as the total energy of the inter semiconductor
compounds needs to be calculated only at few volumes
near their equilibrium (to find b,H„), rather than for
many more volumes over the full range.

As a further time-saving simplification, we note from
Fig. 4 that the effective equations of state s„(x,V, T) de-
pend but very weakly on T (changing by less than O. l%%uo

near their respective minimum or less than 2%%uo in the
whole range for T =800—40000 K), and that the equilib
rium volume satisfying Eq. (6.18) is nearly Vegard-like
(i.e., linear with x). Hence, we (i) compute E„only at a
single, fixed temperature, and (ii) replace V,q(x) by its
concentration-weighted average V. This gives Z„(x, V, T)
in a simplified form 'E„( V), which can be readily fitted to
an analytic form [Eq. (5.1)] for ease of use. Figure 7 con-
trasts the phase diagram of GaAs-GaSb obtained with
Z„(x, V, T) [Fig. 7(b)] with that obtained with the
simplified Z„(V) and fitting to Murnaghan's equation of
state ' [Fig. 7(c)], showing little loss of accuracy. In
what follows, we will present results using this form of
g( V) as well as the linearized parameters of Eq. (7.1) (see
Table X).

VIII. RESULTS

A. Convergence of the phase diagram with respect
to the range of interaction

Figure 8 depicts the calculated phase diagram of
GaAs-GaSb using the sets of interaction parameters
(Table VIII) within M =3, 4, 5, and 6 structures [Figs.
8(a)—8(d)], as well as the results obtained by adding the
three- and four-body terms J3 and J4, respectively along
with the I. 1 and 1.3 structures [shown in Figs. 8(e)—8(h)].

The recent experimental data of Ref. 86 is also given. In
each case, we also depict the "interaction parameter"
QH(x, T) of Eq. (6.19) at T =1000 K and the three com-
positions x =0, 0.5, and 1.0.

Our results show (i) the commonly used set of five (001)
structures [Fig. 8(e)] overestimates the maximum
miscibility-gap temperature and the mixing enthalpies by
as much as —60%; (ii) the convergence rate of the phase
diagram with respect to the interactions included is rath-
er fast, e.g., the maximum miscibility temperature is
1703, 1206, 1126, and 1080 K for M =3, 4, 5, and 6, re-
spectively (the experimentally interpolated value' is
—1100+100 K), and the enthalpy "interaction parame-
ter" at x =0.5 is 6.59, 4.41, 4.18, and 4.01 kcal/mol, re-
spectively (the experimentally interpolated value
is'9 20 s@' 4.2+0.3 kcal/mol. Our converged 0 value is
expected to underestimate 0 by 5 —10 % since we un-
derestimate lattice mismatch between GaAs and GaSb
(calculated to be 0.425 A compared to experimental data
of 0.444 A). The rapid convergence, implying that even
4—6 well-chosen ordered structures sufBce to describe the
system over a full temperature and composition range,
and the close agreement with experiment of this fully
ab initio theory are very encouraging. (iii) Inclusion of
three- and four-body terms have but a small effect on the
maximum miscibility-gap temperature TMG, but change
significantly the asymmetry of the binodal and spinodal
lines about x =0.5. For M =3, 4, 5, and 6, the value of x
at TMG without and with the many-body terms are
(0.587,0.637), (0.612,0.690), (0.588,0.680), and
(0.545,0.595), respectively. Note that due to the volume
dependence of J&( V), calculations with pair interactions
alone already produce an asymmetric phase diagram.
Very recent careful measurements of the GaAs-GaSb
phase diagram * 8" have confirmed the pronounced
asymmetry predicted here, which is, however, absent
from simplified models.

B. Role of sublattice relaxation

As indicated in Sec. V A and shown in Table I,
A„B] C alloys and A„B4 „C4 ordered structures have
both cell-internal structural degrees of freedom [i.e., re-
laxation of the common sublattice C leading to unequal
A —C and B—C bond lengths evident in extended x-
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ray-absorption fine-structure (EXAFS) measurements ],
as well as cell-external degrees of freedom (relaxation of
the mixed, 3-8 lattice leading to unequal A-A, A-B, and
8-8 distances, also seen in EXAFS measurements ). We

have previously shown ' that relaxation of the cell-
internal coordinates [i.e., minimizing the total energy
b,E(s, V) at each V with respect to the coordinates of Cj
lowers enormously the mixing enthalpy and the miscibili-
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FIG. 9. Phase diagrams of GaAs„Sb& „ illustrating the effects of relaxing the mixed (As-Sb) sublattices.

ty temperature. Here we focus on the more subtle effect
of relaxation of the mixed sublattice A-8.

To study this relaxation effect, we have included the
Z2 structure (exhibiting a mixture of A4, B~, and A2Bz
tetrahedra), showing sizeable mixed sublattice relaxation
in the A4,84 tetrahedra. A11 the other structures we
have studied have negligible mixed sublattice relaxation.
Figure 9 shows the calculated phase diagram of
GaAs Sbi „using two different sets of structures (both
including the "Z2" superlattice) where the mixed sublat-
tice in Z2 is unrelaxed [Figs. 9(b) and 9(d)] or relaxed
[Figs. 9(a) and 9(c)]. In both cases, the common sublat-
tice C is fully relaxed. Our results show that relaxation
of the mixed sublattice is important in reducing the mix-
ing enthalpy and maximum miscibility temperature, and
bringing it into close agreement with experiment.

C. How do the eft'ective energies Z„( V)
dift'er from the real energies h,E(,n, V)

It is interesting to observe how the renormalization of
a "large" set of energies Ib,E(n, V)I into five simple
efFective energy functions Z„(V), O~n ~4, alters the
latter. Table X gives for set "5+2L" (Table VIII) the pa-
rameters V„, 8„,8„', and AH„obtained by fitting the nu-
merically calculated effective equation of state c,„(V) into
the same analytic form [Eq. (5.1)] used to represent the
ordinary excess energy EE(n, V). We have used in this

calculation the numerical simplifications outlined in Sec.
VII. For comparison, we give the real equilibrium
volume V„, bulk modulus 8„and its pressure derivative
8„', and formation enthalpy b H„obtained by similarly
fitting the LAPW calculated excess energies EE(n, V).
We see that renormalization of distant-neighbor interac-
tions into five effective energies significantly lowers 8„
and AH„.

In a previous work, "' ' ' we have used the five canoni-
cal structures A, L 1, CA, L 3, and B (set 3+2L"), observ-
ing ' ' that the effects of cell-internal and cell-external
relaxation could be mimicked by permitting the equilibri-
um volume V„of cluster n to depend on the composition
x in which it is embedded. To first order in a Taylor
series

V (x)= V (X )+K [V(x)—V (X )]+ ' ' (g 1)

where V„(X„)=V„ is the actual equilibrium volume of
cluster n in isolation and K„ is a relaxation parameter. If
K„=O, the system is unrelaxed and V„(x)=V„(X„)for
all x's. Full relaxation corresponds to K„=1 where all
clusters experience the same equilibrium volume V(x) as
the medium. Since for small volume changes the alloy
energy scales as [V(x) —V„(x)] Eq. (8.1) shows that the
effective energy of a cluster embedded in an alloy of
volume V= V(x) is
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KE(n V)=AH +— (1—K ) (V —V ) + .
2 V n n

n

(8.2)

This is equivalent to scaling the B„/V„ratio of ordered
structures by (1 IC„)—:

B„ B„= (1 E„—) (8.3)

In our previous work, * ' we absorbed all relaxation into
changes of B„/V„, using K as an adjustable parameter,
but assumed the formation enthalpies

bH„=(1—y„) bH„ (8.4)

D. Relative stability of ordered and disordered phases

Figure 10 depicts the calculated excess enthalpies
b,H(x, T) of both ordered and disordered Al, Ga„As
and GaAs„Sb& „structures at x =0.5 with respect to
the equilibrium, phase-separated constituents AC+BC.
These results are best discussed by considering separately
systems with a large size mismatch between the constitu-
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are unaltered (y„=0). Our present calculation permits
reAection on our previous approach. From Table IX and
Eq. (8.3) we find that the actual relaxation constants are
K„=0.16, 0.14, 0.12, 0.11, and 0.10 for n =0, 1, 2, 3, and
4, respectively (and indeed, having but a weak n depen-
dence), but that the enthalpy relaxes too (relative to L 1,
CA, and L3), with y„=0.25, 0.26, and 0.23, for n =1, 2,
and 3, respectively. While we could fit ' the results for
semiconductor alloys using K =0.3 and y=0, our present
approach supercedes the previous one in that rigorous
effective equations of states Z„( V), incorporating directly
relaxation effects, are now readily calculable.

&H(x, T)= Q P„(x,T)s„+G(x) . (8.6)

Using Eqs. (5.7)—(5.10),

ents (e.g. , GaAs-GaSb, showing a 7.6% relative difference
in their lattice parameters) and the system showing a very
small size mismatch (GaAs-AlAs, with relative difference
of only 0.1%).

When a small size mismatch exists [Fig. 10(a)], we find
that the disordered phase as a lower enthalpy than all
short-period ordered phases considered. We hence ex-
pect at low temperatures a competition between phase
separation (the ground state) and the disordered phase,
but no ordering of simple structures. The observation of
partial CuAu-I-like ordering in Ga All As alloys ' is
hence not explainable in our calculation as a bulk effect,
and is likely to be induced during growth by a surface-
related effect.

When a large size mismatch exists [Fig. 10(b)], we find
that at low temperatures the chalcopyrite (CH) structure
has a lower enthalpy then the disordered phase of the
same composition. Hence, while both the ordered and
the disordered phases have AH&0 and would phase
separate at the T =0 equilibrium, if such a phase separa-
tion were to be kinetically hindered at low temperatures
(where atomic mobilities are small), we expect to find
metastable ordering, as observed experimentally. Using
the 6+2L set, we find an order-disorder transition (for
the chalcopyrite structure) of 285 K. Our subsequent
work (see Sec. V D) on other lattice-mismatch alloys has
shown that CH always has a lower enthalpy than the
disordered phase, and is hence likely to be a universal
metastable ordered phase in isovalent semiconductor al-
loys. The CuPt structure does not have this property
(Fig. 10).

The convergence of our energy expansion of Eq. (2.2)
for the lattice-matched system means that as we increase
the repeat period of the ordered structure [e.g., from
(AC)i(BC)& to (AC) (BC), p) 1], their energy
per atom would decrease. Hence, for sufficiently long-
period superlattices, the energy of the random alloy must
be above that of the superlattice. We next discuss the
physical factors underlying the different behavior of
short-period ordered structures in lattice-matched and
-mismatched semiconductor alloys.

Recall that our description of the excess enthalpy
EH(x, T) [Eq. (1.2)] centers on its expansion [Eq. (2.13)]
in terms of the energies b,E ( n, V) of ordered structures n:

hH(x, T)= QP„(x,T)bE[n, V,q(x)], (8.5)
n

where V, (x) minimizes (AE(cr, V)) with respect to V,

and that the decomposition of b,E( n, V) of Eqs.
(5.7)—(5.10) leads to the form

0 AIAs + GaAs 0- GaAs + GaSb &„=b EcE(n, V„)+b Es(n, V„)
(8.7)

FIG. 10, Calculated excess enthalpies at T= 1000 K for (a)
A1CiaAs2 and (b) Ra2AsSb. Observe in (a) that the disordered
phase (at x =0.5) is lower in energy than all ordered LL phases,
where as in (b) the chalcopyrite structure has a lower energy
than the disordered phase.

G(x)= QP„(x, T)EEvD[n, V, (x)] .
n

When the equilibrium volume at a fixed composition x
does not depend on the state of order (generally, an excel-
lent approximation for many metal and semiconductor
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40000 K (40000 K represents numerically the near-random limit). The diamond-shaped symbols give the ( T =0) values for ordered
compounds.

alloys ), Ref. 26 showed that s„depends only on the
configuration n (but not on V or x), whereas G (x) ("elas-
tic energy") depends on x, but not on n. For an ordered
compound with stoichiometry X„,Eq. (8.6) gives

hH„= s„+G (X„), (8.8)

where G(X„) is the value of G(x) at x =X„. Equations
(8.6) and (8.8) show that while the magnitude of the ex-
cess enthalpies depends both on the "chemical" energy c„
and on the "strain" energy G (x), order-disorder transfor-
mations at a fixed composition depend on c.„alone as
G(x) is common to both ordered and disordered phases
at a fixed x =X„.

Many approaches used in metallurgy to construct
phase diagrams in terms of an Ising mod-
el ' ' ' ' " ' ' ' assumes fixed interaction energies
s„neglecting G(x). While such models are able to fit the
observed order-disorder transition temperatures by ad-
justing c„,calculating enthalpies with these c.„'s grossly
misrepresents bH„and b,H(x, T) (as G &0 is neglect-
ed). In their simple form, retaining just pair interactions
in c.„, these models predict either a phase-separating be-
havior when s„&0 (an Ising ferromagnet), or an ordering
behavior when c.„&0 (an Ising antiferromagnet); the
phase diagram is symmetric with respect to x =

—,'. Our
results (Figs. 6—8) show that retention of both chemical
and elastic energies leads to correct transition tempera-
tures, enthalpies, asymmetry, and can exhibit phase sepa-
ration and ordering in the same phase diagram.

The standard approach used in semiconductor physics
to construct phase diagrams' retains the elastic ener-
gies G (x) (assumed proportional to Ba ha ), but neglects
the chemical energies s„. Since G (x) & 0, these ap-
proaches must universally predict a phase-separating be-
havior and fail to distinguish ordered from disordered
phases.

Our analysis shows that while the mixing enthalpy
bH(x, T) of disordered semiconductor alloys and the for-
mation enthalpy EH„of ordered intersemiconductor
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FIG. 12. Temperature dependence of the mixing enthalpy (at
x =0.5) of GaAsz 5S10 5 for different sets M of structures (Table
VIII). Also given are the formation enthalpies of ordered struc-
tures at x =0.5 and T=O.

compounds are both positive, this is consistent with hav-
ing either attractive (s„&0, CiaSb, „As„) or repulsive
(s„&0, Al& „Ga„As) "chemical" energies (Fig. 3). In
lattice mismatched systems, the sublattice relaxation en-
ergy [EEz(n, V) of Eq. (5.9)] makes s„negative, whereas
in lattice-matched systems, b,Ez ( n, V) =0 and
b.ECE(n, V) &0 make s„slightly positive. Valence force
field calculations for 18 III-V alloys and 18 II-VI alloys
as well as simple electrostatic energy calculations show
that this is a general result for such isovalent ternary
semiconductors. This has a significant implication for
the relative magnitude of the energies of ordered versus
disordered phases: for systems dominated by pair interac-
tions, if s„&0 then s2&Q„P„c,„, hence the ordered
phase cari have a lower enthalpy than the disordered
phase at the same composition, while if c„)0, the oppo-
site is true. These cases are illustrated by Fig. 10.
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For E„(0 (GaAs Sb, ,), Fig. 11 demonstrates that
there are some short-period ordered phases with lower
enthalpies than the disordered phase. Figure 12 shows
these enthalpies at x =0.5 as a function of temperature,
demonstrating that the above conclusion holds for a cer-
tain temperature range. This implies that while due to
AH )0, the thermodynamic ground state corresponds to
phase separation, the inequality bH„(b,H(X„,T) will
give at stoichiometric compositions X, long-range-
ordered phases which are stabler below a critical temper-
ature than a disordered alloy of the same composition.
This is seen in the calculated phase diagram GaAs Sb,
depicted in Fig. 6.

For E„)0 (Al& Ga„As), Fig. 13 shows that the disor-
dered phase has a lower enthalpy than all ordered struc-
tures. Since the configurational entropy term —TAS fur-
ther stabilizes the disordered phase, we do not expect to
find long-range ordering of simple, short-period struc-
tures (Table I) at any temperature. Figure 14 shows the
phase diagram for Al, Ga As, confirming this expecta-
tion. (We find TMo =84 K using the parameter sets
3+2L and TM~ =70+10 K for the larger sets, hence we
show only a single phase diagram for this system. ) Ironi-
cally, the standard semiconductor model, ' predicting
universally a phase-separating behavior such as that seen
in Fig. 14, applies only to such lattice-matched systems

(A1& Ga„As and Cd, „Hg Te).
For GaAs Sb, , our calculated maximum

miscibility-gap temperature is —1100J (Fig. 8). The ex-
perimental TMG value is difficult to assess in this system
since the alloy melts peritectically (solid horizontal line in
Fig. 8) below TM&. Extrapolation of the observed misci-
bility line ' suggest TMG ——1100+100K. In his empiri-
cal model, Stringfellow finds a symmetric phase dia-
gram (xMo=0. 5) with TMo=1023 K.

For GaAs-AlAs, we find TMz =70+10 K. The experi-
mental value ' of TM& for Al& „Ga„As is uncertain,
since TMG is smaller than the growth temperature
characteristic of any of the semiconductor growth tech-
niques. Neglecting chemical effects, Stringfellow' esti-
mates TMG=3 K from strain effects alone, wheras Bal-
zarotti et ah. calculated from their semiempirical quasi-
chemical model TMG =360 K. We do not find any meta-
stable ordered phases in the Al& Ga As phase diagram
consistent with the results of Fig. 10.

E. Equilibrium lattice parameters

Figure 15 depicts the calculated excess equilibrium lat-
tice parameter ' ha(x, T) of GaAs Sb, „alloys,

Aa(x, T)=a (x, T) xao,~, ——(1—x)ao,sb, (8.9)

AE„„;„aB~c( q a~c) +BBc(a q
—abc) (8.10)

where B; are the bulk moduli. Minimization of bE„„;„
gives

neglecting phonon (hence, thermal expansion) effects.
The solid horizontal line at ha =0 corresponds to the
prediction of Vegard's rule. In calculating Aa(x, T), we
have not used the linearization of Eq. (7.1) (which would
bias the small effect seen in Fig. 15) but rather the un-
manipulated data of Table III. We find that (i) deviations
from Vegard's rule (maximum of -0.004 A) are very
small. The deviation is larger and positive on the GaSb
side and smaller (negative) on the GaAs side. These devi-
ations reAect mostly anharmonic effects. In the pure har-
monic theory the strain energy at x =

—,
' is proportional to
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FICx. 14. Calculated phase diagrams for Al, „Ga„As. The
dashed line is the spinodal.

Flax. 15. Deviations calx, T) from Vegard's rule [Eq. 18.9)]
for CsaAs Sb& „calculated from the M=6+2L set (Table
VIII) and the data of Table III.
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5a tteq

where

hB ha
4B a

(8.1 1)

and

~ =—(~c+ac)
B = ,'(B~c-+B~c»

« =(&ac —&~c»
(8.12)

F. Mixing enthalpies and free energies

In contrast with the predictions of contemporary semi-
conductor alloy models, ' we find (Figs. 11 and 13)
that Q~ is composition dependent. Its values at the lim-
iting concentrations x ~0 and x ~1 provide the "limit-
ing partial heats of solution, " showing that it is consider-
ably more difficult to dissolve the larger atom (Sb) in
GaAs [Q(GaAs:Sb)=-4. 5 kcal/mol] than to dissolve
the smaller As atom in GaSb [Q (GaSb:As) = —3.8
kcal/mol]. The dependence on x is considerably weaker
in the lattice-mismatched Al& „Ga As system (Fig. 13;
note the finer scale relative to Fig. 11).

No direct experimental measurements of Q~ or QH ex-
ists for semiconductor alloys. The currently available
values' are 6t to the data of the liquidus and solidus
lines (hence, are appropriate to high temperatures), as-
suming simple thermodynamic models in the fit pro-
cedures. In cases where different 6t methods were at-
tempted for the same system, ' ' QH of 4—4.5
kcal/mol are obtained for GaAs„Sb& „. This is in very
good agreement with our calculated value (Fig. 11) of

AB (Bgc B c)
Since hB and Aa have opposite signs for semiconduc-
tors, ' 5a is always negative in the harmonic theory. In
reality, however, the pressure derivative B' of bulk
modulus is positive. The bulk modulus of the compound
with large lattice constant will have a sharp increase
when it is compressed and the one with smaller lattice
constant will have a decreasing B when it is expanded.
This indicates that the deviation 5a should be smaller
than what harmonic theory would predict (i.e., a,q

is
closer to Vegard's rule) and could be positive as found in
our study for Ga(As, Sb).

-4.0 kcal/mol at x =0.5 and a temperature T= 1000 K
(the average of the melting temperatures of the constitu-
ents). Various authors have used empirical models to es-
timate QH(x =0.5) for GaAs-GaSb. These include the
recent model of Sher et al. ' (QH=3. 67 kcal/mol), the
elastic model of Martins and Zunger (QH =4.58
kcal/mol), the phenomenological delta lattice parameter
(DLP) model of Stringfellow' (QIr =3.35 kcal/mol), and
the empirically adjusted model of Fedders and Muller
(Q~ =2.76 kcal/mol).

For Al, Ga As our calculated value is
QH(0. 5, T)=0.3 kcal/mol at T =1000 K, compared with
experimental estimates ' ' of 0—1.6 kcal/mol. Calculat-
ed values range from QH of —0.07 kcal/mol by Sher
et al. ' to 0.11 kcal/mol by Van Vechten. Balzarotti
et al. estimate bE(n)=n(4 —n)JY from diffused x-ray
scattering, yielding in this pair-interaction model
Q(0. 5)= 43bE(2) =3&=1.6 kcal/mol.

The enthalpy and free-energy interaction parameters of
Figs. 11—13 and 16 show a marked temperature depen-
dence. This dependence is neglected in regular and
quasiregular solution models and represented phenome-
nologically as Q(0. 5, T)=a bT in o—ther models. The
nonideal entropy hS of Eq. (6.20) is always negative (as
the actual system is more ordered than the random sys-
tem), contributing a positive —TAS term to the free en-
ergy. Interestingly, the excess enthalpy b,H(x, T) be-
comes less positive as the temperature is lowered (Figs. 11
and 12). To understand the mechanism by which the sys-
tem reduces the positive ("destabilizing") effect of hH as
T decreases, we consider next the excess probabilities of
Eq. (6.23).

G. Excess cluster probabilities

Figure 17 depicts the excess cluster probabilities
bP„(x, T) of Eq. (6.23) for GaAs Sb, „,whereas Fig. 18
shows analogous information for Al& Ga„As.

In the case of GaAs Sb& (c„(0)we see in Fig. 17
clustering of the mixed species, i.e., a deficiency of the As~
and Sb4 clusters and an excess of clusters AsS13, As2Sbz,
and As3Sb at X„=—,', —,', and —,', respectively. Since in this
system c,„&0, the energy c„of a single cluster is lower
than the energy of a phase exhibiting a few clusters. As
the temperature is lowered, hence the entropy term
—TbS becomes less important, the system acts to enrich
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E
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FIG. 16. Free-energy interaction parameter [Eq. (6.22)] for GaAs„Sb&
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FIG. 17. Excess cluster probabilities [Eq. (6.23)] for GaAs„Sb,

the concentrations of single mixed species (around their
corresponding compositions X„), hence reducing
hH(x, T), as seen in Fig. 11. Since in the absence of clus-
tering the enthalpy of the disordered phase is higher (see
the high-temperature curves in Fig. 11, corresponding to
random disorder), we might say that in this case the
disordered alloy stabilizies itself (hence, delays phase sep-
aration) by performing a natural selection of the fittest'*
clusters.

In the case of Al, „Ga„As (s„&0) we see in Fig. 18
anticlustering of the mixed species, i.e., the clusters
GaA13, Ga2A12, and Ga3A1 are deficient relative to what,
random statistics would grant near X„, whereas the Al&
and Ga4 clusters are in excess. Since in this system
c„)0, the energy associated with a single pure cluster is
higher than the energy of a collection of clusters, hence,
when the temperature is lowered, the system acts to
suppress the mixed clusters, enriching itself by the lower-
energy A14 and Ga4 clusters. This reduces the mixing
enthalpy relative to that characteristic of the random
phase.

H. Nearest-neighbor lengths

In analogy with the calculation of hE for a random al-
loy [Eq. (5.15)], we may write the average bond length
R „z(x) of the disordered phase as

R„z(x)= g Q, (x)co„z(s)R„&[s,V,q(x)], (8.13)
W x

where the weights Q, (x) are given by Eq. (5.16), co„c(s) is
the average number of AC bonds in structure s [for the
five canonical structures (0—4) in Table II
W„c(n) =4—n], R „c[s,V,q(x)] are the AC bond lengths
calculated at V,q(x), and

IV(x) = g Q, (x)co„c(s) (8.14)

is the normalization factor. Similar expressions pertain
to R~c(x).

Figure 19 depicts the calculated nearest-neighbor bond
lengths Ro, sb(x) and Ro, ~,(x) as a function of concen-
tration x and interaction range M. We have simplified
the calculation by calculation Ro, sb(x) and Ro, ~, (x) at
x =

—,
' and assuming that these bond lengths are linear

with x. The bond lengths for the ordered structures at
equilibrium are given in Table IV and are reproduced in
Fig. 19 for (001) (solid square) and (201) structures (open
square). We find from Fig. 19 the following.

(l) Ro, A, (x) arid Ro, sb(x) in both ordered aild disor-
dered a11oys are closer to their ideal bond lengths
R o, ~, ( I ) and R &, sb(0) than to the linear averaged
value (&3/4) a (x) even though Vegard's rule for a (x) is
obeyed well. The bimodal distribution in the alloy is con-
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FIG. 18. Excess cluster probabilities [Eq. (6.23)] for Ga„AI, „As.
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R' (Ga-Sb) Q=QO[1+ A (x —0.5)] B—T[1+C(x—0.5)], (9 1)

2.60—

cy I
'Q

gg 2.50

R (Ga-As)

2.40 1 I I
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FICk. 19. Alloy-averaged bond lengths [Eq. (8.13)] f()r
GaAs„Sb& „using three different structure sets: 3+2L, 5+2L,
and 6+2L+2F, denoted as M=5, 7, and 10, respectively.
Solid squares, (001) ordered compounds; open squares, (201) or-
dered compounds.

sistent with the observed EXAFS measurements for vari-
ous semiconductor alloys.

(ii) For M =3+2L of Table VIII, the deviations
R(x)—R are relatively large, refiecting the large strain
energy associated with these (001) structures. R(x) is
also closer to Vegard's line than are the ordered ternary
compounds since in this moel the nearest-neighbor bond
lengths for pure A4C and 84C clusters coincide with
Vegard's rule.

(iii) Considerable bond relaxation is observed in going
from M =3+2I. to M =5+2I. and M =6
+2L+2F: for M =5+2L R(x) is closer to R . This
larger relaxation is mainly caused by the more effective
cell-internal relaxation associated with the (201) struc-
tures (chalcopyrite and famatinite). In going from
M =5+2L to M =6+2L +2F R(x) gets even closer to

due to further relaxation of the mixed sublattice.
(iv) Our calculated results do not agree with the avail-

able experimental EXAFS data for GaAs Sb&, which
show essentially R (x)=R, i.e., complete relaxation.
Our results, however, are consistent with the calculation
of Qteish et al. for the same system. Our previous cal-
culations for some II-VI alloys show reasonable agree-
ment with experimental data. As pointed out in Ref. 96,
the EXAFS data on GaAs Sb& „ taken in the transmis-
sion mode for dilute system may have considerable error.

IX. COMPARISON WITH PREVIOUS APPROACHES
TO SEMICONDUCTOR SOLID SOLUTIONS

Many of the previous approaches to semiconductor
solid solutions failed to distinguish ordered from disor-
dred phases, focusing only on the latter. This can be
traced back to the failure to recognize explicit
configuration-dependent'terms [e.g., e„ to Eq. (6.8)] in
the interaction energy. Most previous attempts at the
problem can be classified as (i) macroscopic phenomenol-
ogy, (ii) microscopic phenomenology, and (iii) microscop-
ic theories of alloy bonding.

Models based on macroscopic phenomenology have
parametrized the interaction parameter of Eq. (6.19) as

and attempted to fit it to various data. The limit
Qo=A =8 =C =0 corresponds to the ideal solution
model, deemed early on as inappropriate for semicon-
ductors. The limit A =8 =C =0 corresponds to the reg-
ular solution model used by Panish and Ilegems, where
Qo was treated as an adjustable parameter fit to liquidus
and solidus data. The limit A =C =0 corresponds to the
quasiregular solution model where Q =Qo+BT; Bre-
brick used this model, again fitting Qo and 8 to experi-
ment (finding B )0 for GaAs„Sbi as found in Fig. 12).
The use of the full expression (9.1) is denoted as the
"subregular solution model" discussed by Brebrick.

Attempts to calculate 0 from microscopic phenomenol
ogy (e.g. , continuum elastic models) were made by
Fedders and Muller who considered the elastic energy
associated with compression and dilation of AC and BC
into the average lattice constant a, finding0=—9BV(ha) /a (a result which is -4 times larger
than the experimental value, for reasons discused by Fer-
reira et al. ). Stringfellow' calculated Q in his (DLP)
model by assuming a universal scaling of the elastic ener-
gy of the solids A, B or AB of the type —K/a; when
used in Eqs. (1.2) and (6.19) this gives
0=4.375K(ba) /a ', where K is a constant. Least-
squares fit to the data produces a robust value for K for a
large range of alloys; this value was explained later in a
microscopic approach by Ferreira et al. Bublick and
Leikin have parametrized 0 as W+xE„&+(1 x)E+c, —
where W is a "chemical" energy extracted from diffused
x-ray scattering and E is the elastic energy associated
with volume deformations of a = AC,BC, calculated from
elastic constants. For GaAs, „Sb, they find W=0 and
0=0.6x +3.6 kcal/mol, hence Q(0) =3.6, 0(0.5)=3.9,
and 0(1)=4.2, in good agreement with our ab initio re-
sults (Fig. 8) of 3.8, 4.0, and 4.5 kcal/mol, respectively.
For Ali „Ga„As, they find 0=W=1.6 kcal/mol, a
surprisingly large chemical energy for a mixed-cation iso-
valent alloy with small difference in atomic electronega-
tivity and radii (our result is 0.3 kcal/mol).

The common theme in all of the phenomenological
models of semiconductor alloys is that Q) 0 is a state-
ment of absence of ordering; the known instability of the
disordered phase (0)0) is taken to imply that its constit-
uent clusters A„B4 „are unstable [b,E(n))0] too (for
the same reason, namely strain), hence the system is
driven to show a deficiency of Az „B„(n=1, 2, and 3)
clusters and eventually to phase separation at low tern-
perature. It appears that this point of view has
discouraged, until recently, experimental searches
for ordering in semiconductor alloys. Our work showed
that the strain resulting from an attempt to accommodate
dissimilar A —C and 8—C bond lengths leads to AH )0,
yet also to a preference for ordering of some structures
over disorder at the same (x, T). This is so because a
coherently ordered arrangement of a single type of local
bonding environment A„84 „around C can better
reduce the strain energy than a disordered arrangement
of a few [A„B~ „j clusters. In this case, e„ is negative.
At T & TMG when a single phase exists, the sytem is
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driven to short-range clustering (i.e., in excess) of the
mixed clusters A3B, A2B2, and AB3, and a deficiency of
A4+B4 clusters. At low temperatures, in the rarely
achieved situation of perfect thermodynamic equilibrium,
the system will fully phase separate into AC-rich and
BC-rich regions, otherwise it will tend to order below T,
into A„B4 „C4 compounds. Both (incoherent) phase
separation and long-range ordering reduce the strain en-
ergy, hence the two phenomena are not mutually ex-
clusive as earlier thought. Indeed, recent experiments
have now observed metastable long-range (2,0, 1) ordering
in size-mismatched semiconductor alloys ' (note that
CuPt ordering is not predicted here to be a bulk effect
and is likely to represent growth-induced ordering).

A number of alloy models based on a microscopic
theory of bonding have been advanced. In a series of pa-
pers, Ito used a pseudopotential perturbation theory
(with local Heine-Abarenkov potentials adjusted to fit the
properties of compound semiconductors), calculating 0
within the virtual-crystal approximation "(VCA). The
resulting Q was 2 —3 times larger than the observed
values, prompting Ito to add to 0 a correction —aa
with e&0 fit to experiment. In another work, ' ' ' 'he
used Eq. (2.13) with M =3+2L ordered structures, cal-
culating their energies within the pseudopotential pertur-
bation expansion. He finds that ordered compounds have
smaller lattice parameters than disordered alloys and
b,H„(b,H (x, T), as found here (Fig. 13). However, in
contrast with our results (Fig. 19 and Table IV) he finds
that the alloy bond lengths are closer to their
concentration-weighted average than to their ("ideal" )

values in the end-point compounds. In agreement with
our work (Fig. 11), he finds "that the disordered alloy
energy (modeled by the VCA) is far higher than that of
ordered chalcopyrite.

Equation (2.13) with M =3+2L ordered structures
and various empirical parametrizations of b,E(n, V) has
been used also in a series of papers by Ichimura and
Sasaki and Balzarotti et al. Ichimura and Sasaki
represented b.E(n, V) by the empirical valence force field
where Balzarotti et a/. have added also a constant
chemical energy 8' taken from Bublick and Leikin.
Both groups contain the probabilities P„(x,T) and the en-
tropy using a simple quasichemical approximation. The
calculated A for lattice- mismatched systems was consid-
erably larger than the experimental value, as expected
from the M =3+2L set [compare Fig. 8(b) to Fig. 8(h)].
Both groups find clustering of A 3B, A 2B2, and AB3 for
all lattice-mismatched alloys, as seen in Fig. 17 and bimo-
dal bond-length distribution (like in Fig. 19). Czyzyk
et al. "find a five-branched spinodal curve for lattice-
mismatched alloys which is absent from all of our first-
principles calculations. Sher et a/. ' have used a similar
approach except that b.E (n, V) for 0 ~ n & 4 is calculated
by combining VFF for the elastic energy with a chemical
term calculated within Harrison s empirical tight-binding
model. Two to three shells of bonds surrounding the cen-
tral atom are included. All authors using the superposi-
tion approach of Eq. (2.13) failed to find any metastable
long-range ordering.

Qteish et al. have also used Eq. (2.13) with

M=3+2L, ordered structures and calculated the energies
EE(n, V) within the first-principles pseudopotential for-
malism; the probabilities P„were found within the quasi-
chemical approximation. When this model was applied
to Ga As& „Sb, it yielded 0=6 kcal/mol and a very
high miscibility-gap temperature in accord with our re-
sults of Fig. 8(e) and in conflict with experiment. (Their
probabilities calculated for this model are, however, qual-
itatively different from ours; we suspect that they are in
error). To improve agreement with experiment, Qteish
et al. adopted a relaxation model similar to that we
have previously developed [Eqs. (8.1) and (8.2)], retain-
ing the relaxation parameter from a Monte Carlo simula-
tion with an empirical potential. This improves consider-
ably the agreement with experiment (e.g. , 0=4.75
kcal/mol). The basic differences with respect to our ear-
lier approach and the present one are (i) instead of re-
laxing the value of the equilibrium volume V„(x), they
have relaxed the external volume V(x). Working with
lattice parameters instead of volumes, they assume that at
a given composition x, the physical dimension a (x, n) of
each cluster n changes from the value a (x) (the equilibri-
um alloy lattice parameter) to

a(x, n)=a(x) —k[a(x) —a„(X„)]. (9.2)

The equilibrium lattice parameter a„(X„)of each cluster
is assumed unchanged. This incorrectly yields an elasti-
cally soft alloy bulk modulus, (1—k) times the actual
value. (Finding k =0.3, their predicted bulk modulus is
about half the actual value. ) This is to be contrasted with
Eq. (8.1) where relaxation is taken to leave the physical
dimension of each cluster unchanged (hence, the bulk
modulus is unchanged), altering only the equilibrium
value of cluster n. (ii) We include distant-neighbor in-
teractions and sublattice relaxation on equal footing —by
adding lower energy structures to the M =3+2I. set and
increasing the number of J's—whereas Qteish et al. treat
the nearest-neighbor interactions (included in the set
M =3+2L) like we do, yet distant-neighbor relaxations
are treated separately in a calculation involving an empir-
ical valence force field. Their model does not distinguish
CA from CH, or L 1 from Fl, etc. (iii) The results of the
model of Qteish et al. depend on the choice of the five
units used to calculate bE(n, V) (e.g., CA or CH),
whereas the present approach produces a unique solu-
tion. (iv) The model of Qteish et a/. produces anticluster-
ing (preference for A4 and B4) whereas the present model
predicts clustering (preference for mixed clusters). This
reflects the fact that the reduction of AH(x, T) by relaxa-
tion is achieved in their model by reducing all cluster en-
ergies bE(m, V„) for mWn, keeping, however, EE(n, V„)
unchanged. This is an artifact of this model when ap-
plied to pseudobinary A B

&
C systems. Direct in-

clusion of distant-neighbor relaxation in our description
reduces b,E(n, V) nearly uniformly for all clusters (as
seen in Table X), hence the tendency for clustering is not
reversed relative to the unrelaxed model.

X. SUMMARY

We have presented a first-principles method for calcu-
lating the temperature-composition phase diagrams for
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fcc-based phase-separating alloys. The method requires
calculation of the excess total-energy functions b,E (s, V)
for an optimal set of ordered structures Is} (e.g., from
the local-density formalism). These energies are used in
Eq. (2.3) to find the interaction parameters Jf( V) (using
the inverse of the matrix given in Table II). These in-
teraction parameters are then inserted in Eq. (6.17) to
find five efFective equations of state c.„(V). Finally, these
effective equations of state are used as input to any stan-
dard method for solving the nearest-neighbor (tetrahed-
ron) Ising model (e.g., the CVM). The method is simple
and enables a controlled and converged calculation of the

phase diagram and all thermodynamic properties directly
from an ab initio electronic Hamiltonian.
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