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Thermodynamic Stability of (AlAs) (GaAs) „Superlattices and the Random Aln 5Gao &As Alloy

S.-H. Wei and Alex Zunger
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(Received 23 June 1988)

We calculate the total energy of random Alo&Ga05As alloys and ordered (A1As)„(GaAs)„superlat-
tices through a series expansion in multi-atom interaction energies obtained from the local-density for-
malism. We find that the alloy is more stable than the monolayer (n =1) superlattice at all tempera-
tures, but it could order into longer-period (n ~ 2) superlattices below a critical temperature T(n, G)
calculated for various growth orientations G.

PACS numbers: 64.70.Kb, 64.60.My, 68.55.Rt

Large atomic diffusion activation barriers make uncer-
tain' whether artificially grown (AC)„(BC)„semicon-
ductor superlattices owe their apparent room-tempera-
ture stability to kinetic barriers inhibiting disordering
into an Ao sBo,sc alloy, or to a genuine thermodynamic
preference for order over disorder at room temperature.
We present calculations of the total energy of ordered
(A1As), (GaAs)„superlattices and free energies of the
random Alo 5Gao sAs alloy using series expansions in

terms of multi-atom interaction energies calculated
within the local-density formalism. We find that (i)
whereas both the random alloy and the superlattices
have a higher energy than the phase-separated AC+BC
system [Fig. 1(a)l, in the lattice-matched A1As-GaAs
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FIG. l. (a) Internal energies of superlattices (as functions
of n, in three orientations) and the x =0.5 random alloy, both
given with respect to the phase-separated AC+BC system. (b)
Regions of stability and the relative order of free energies F for
the random (R) x =0.5 alloy, the phase-separated (PS) sys-
tem, and ordered superlattices (SL). If phase separation is ki-
netically inhibited, the next most stable phase below T(n, G)
(filled circles) is an ordered superlattice, rather than the ran-
dom alloy.

system the random alloy has a lower free energy at all
temperatures than the monolayer (n =1) superlattice in

any of the principal orientations G=[001], [110], and
[111]. However, (ii) longer-period superlattices (n ~ 2)
have, below a critical temperature T(n, G), a lower free
energy then the random alloy of the same composition
[Fig. 1(b)]. Hence, if complete phase separation is ki-
netically inhibited, ordering of the random alloy is ther-
modynamically possible below T(n, G). (iii) For the
lattice-matched A1As-GaAs system, these ordering tem-
peratures are lower than either room or growth tempera-
tures. In contrast, in lattice-mismatched systems (e.g. ,
GaAs-GaSb, GaAs-InAs), T(n, G) is considerably high-
er (finite even for n 1), consistent with recent observa-
tions of spontaneous ordering of these alloys.

In order to calculate the excess free energy hF=~—TS of ordered and disordered A„B~—„C alloys,
we first obtain the excess internal energy ~(o,V) for
atomic arrangements cr. Measured with respect to
equivalent amounts of the end-point constituents AC and
BC at their equilibrium volumes, this is

AE(cr, V) E(A„B)—„C;V)
—xE(AC) —(1 x)E(BC). —(1)

We assume that ~(o,V) can be written as a series of
many-atom (not just pair) interaction energies J,

Zk Zm™gk, (&)Jk, (2)

where gk (cr) is the occurrence frequency of k-atom
"figures" whose fcc sites are separated by up to the mth
nearest-neighbor distance and Jk (V) is the corre-
sponding interaction energy (e.g. , J3 2 is the energy due
to simultaneous interaction between three cation s

comprising of one second-neighbor and two first-near-
est-neighbor bonds. J42 is the simultaneous interaction
between four cations on a tetrahedron with one second-
neighbor bond and five nearest-neighbor bonds). The
central observations enabling calculation of the J's are
that (i) while the set [gk (cr)] is generally unknown for
arbitrary configurations cr, it reduces to a simple set of
geometrical constants for ordered, periodic Landau-
Lifshitz structures [s] (e.g. , A„B4 „C4, see Table I for.
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TABLE I. Coefficients [(k, (s)l of the expansion of the total energy (per 4 atoms) of ordered structures [s] in terms of k-body,
m-neighbor interaction energies J [Eq. (2)]. Here CuAu, Chalc. , CuPt, Luz, and Fam refer to layered tetragonal, chalcopyrite, lay-
ered trigonal, Luzonite, and Famatinite, respectively (see Ref. 4d for pictures). Corresponding ensemble-averaged (k (R) for the
random alloy at x =0.5 are also given.

Structure
Space
group Formula

Two-body

(2, 1 (2,2 (2, 3 (2,4

Three-body

(3, 1 (3,2 (3,3

Four-body

(4, I (4,2

m(s)
[me V/(4 atoms) l

LAP W Fit

CuAu
Ch ale.
CuPt
Luz
Luz
Fam
Fam

Random

P4m2
I42d
R3m
P43m
P43m
142m
I42m
F43m

ABC2
ABC2
ABC2
A3BC4
AB3C4
A 3BC4
AB3C4

A o.sBo.s C

16 0 —32 0
16 —4 —16 —16
12 —12 —24 0
12 0 —24 0
12 0 —24 0
12 —2 —16 —8
12 —2 —16 —8
12 —6 —24 —12

0 0 0
0 0 0
0 0 0

16 0 48
—16 0 —48

16 8 32
—16 —8 —32

0 0 0

0 —32
0 —16

—8 —24
—8 —24
—8 —24
—8 —32
—8 —32
—4 —24

1 1.5
9.8
7.5
8.4
8.7
7.3
7.7

11.4
9.7
7.5
8.6
8.6
7.7
7.7
7.0

the expansion coefficients); and (ii) at the same time,
~(s, V) can be independently calculated accurately for
periodic structures with use of first-principles band-
theory approaches. Specializing Eq. (2) to the set
cr = [s] and inverting this relation gives

jv

Jt, (V) = g [&k (s)] '~(s, V),
s ]

(3)

from which we obtain N interaction energies from calcu-
lations of the total energy functions of N structurally in-

dependent periodic systems. The set of N structures [s}
is selected so that (i) they exhibit at least all nearest-
neighbor local arrangements around a common atom C
expected to occur in the alloy [e.g. , A4 and 84 in the
zinc-blende structures, 2282 in the layered tetragonal
and chalcopyrite structures, 838 and 883 in the layered
trigonal, Luzonite, and Famatinite structures (see Table
I)]; (ii) they include the lowest-energy structures; (iii)
they exhibit ordering in all principal orientations: [001]
and [110] for the layered tetragonal, [ill] for the lay-
ered trigonal, [201] for chalcopyrite and Famatinite; (iv)
the set js] is converged in the sense that the [Jk ]'s cal-
culated from it can reproduce through Eq. (2) the in-

dependently calculated total energy ~(s', V) of struc-
tures s' not included in the original set. The Landau-
Lifshitz structures " ' of Table I satisfy the first three
requirements; we will show below by way of numerical
calculation that they also satisfy the fourth requirement.

We have calculated ~(tr=s) of Eq. (1) for nine or-
dered AI„Ga4-„As4 structures (n =0,4 plus the seven
structures indicated in Table I), using the local-density
approach, as implemented by the general-potential,
linear augmented plane-wave (LAPW) method. To as-
sure an effective cancellation of random errors, we calcu-
late all three terms of Eq. (1) using precisely equivalent
basis sets, muffin-tin radii, and sampling k points. Since
the equilibrium lattice constants aAip„and ao,A, (calcu-
lated, 5.661 and 5.690 A; low-temperature experimental

J2 )
= —0.713; J2 p =0.088;

J2 3 0.000; J2 4 =0.085.
(4)

The last two columns of Table I demonstrate the good
quality of the fit. To verify that this set of interaction
energies is transferable to other substitutional AlAs-
GaAs structures, we calculated ~(s') for a structure s'
not included in the fit: An LAPW calculation for the

values, 5.659 and 5.652 A) are similar, we fixed the lat-
tice constant at 5.6569 A so that the Jk become
volume-independent numbers. The next-to-last column
of Table I gives the LAPW-calculated ~(s) values.
For the two alternating monolayer superlattices for
which independent calculations exist, we find good agree-
ment [14.9 and 11.4 meV/(4 atoms) calculated by By-
lander and Kleinman for the layered tetragonal
G [001] and layered trigonal G=[111]structures, re-
spectively]. Our method transcends many of the simpli-

fying approximations used in contemporary models of
phase diagrams, e.g. , use of a restricted tight-binding
basis set, neglect of explicit Coulomb and exchange in-

terelectronic terms, restricted (site-only) charge self-
consistency, shape approximations on the potential and
charge density, or truncation of E and M in Eq. (2) to
small values.

Using the calculated ~(s) for nine Landau-Lifshitz
structures and the expansion coefficients of Table I, we
obtain from Eq. (3) nine interaction energies (the Juti,
Ji i, and all but J33 and J23 of Table I). We find that
the three- and four-body interaction energies are small
(in meV): J3 i 0.01; J3 2

—0.005; J4, =0.01;
J42=0.01. The largest contribution from these many-
body terms to ~(s) is 32J4 2 (Table I), i.e., only -0.3
meV/(4 atoms) or 3% of ~. We, hence, neglect these
small terms in the following discussions. Retaining only
the four largest pair interactions J2, m ~ 4, in Eq. (2),
a least-squares fit gives (in meV)
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[001]-oriented (A[As)2(GaAs)2 superlattice gives
=2.85 meV/(4 atoms), whereas using Eq. (2) with the
data (4) gives 3.6 meV/(4 atoms) (see below). [Adding
this superlattice to the nine structures and refitting gives
similar values: Jq] = —0.758, J22=0.089, J23=0.022,
and J24=0.112. This fit produces ~(s) values which
agree with those of Table I to within 0.1 meV and yields
for the n =2 superlattice ~=2.85 meV/(4 atoms). ]
This demonstrated transferability shows that the expan-
sion of Eq. (2) including up to fourth-neighbor pair in-
teractions captures the essential energetics of substitu-
tional A1As-GaAs systems. The resulting interactions
are repulsive (J2 ~ & 0) between nearest fcc cations, and
weaker, mostly attractive beyond this range. Conse-
quently, under equilibrium conditions, all of our ordered
Landau-Lifshitz structures [exhibiting ~(s) &0] are
predicted to be unstable at T =0 with respect to decom-
position into AlAs + GaAs. However, since low-
temperature phase separation (unlike ordering' ) is

strongly inhibited kinetically in semiconductor alloys,
we will also study below the free energies of the next
lowest thermodynamic states.

The utility of the analysis of Eqs. (1)-(3) lies in the
fact that the knowledge of a converged and transferable
set [Jk ] affords simple calculations of the internal en-
ergies of more complex configurations cr through evalua-
tion of [gk (cr)] rather than by the more laborious
direct self-consistent calculations of ~(cr). Coupled
with simple models for the entropy, this permits model-
ing of the relative thermodynamic stability of alloys and
longer-period superlattices.

The random Ala sGao sos alloy. —Calculations of spa-
tial correlations for the A[„Ga~ —„As alloy ' have
shown that (because of the small size and electronega-
tivity difference between Ga and Al) this alloy is very
nearly random (R) above room temperature. For ran-
dom alloys, the ensemble-averaged expansion coefftcients

(R) are again simple constants; they are given in the
last line of Table I. Equations (2) and (4) then give the
excess energy of the 50%-50% random alloy: AF(R,x
=0.5) 7.0 meV/(4 atoms). Since this energy is posi-
tive, the random alloy is not the T =0 ground state.

Coupled with the calculated internal energies ~(O)
of the ordered (0) short-period superlattices given in
Table I, this leads to the following conclusions: (i) Since
we find hE(R) & AE(O) and (neglecting differences in
vibrational entropies) the excess free energies are
~(R) =AE(R) —TS(R) and AF(O) =~(O), where
S(R) &0 is the configurational entropy of the random
alloy, we predict for A[„Ga~ „As that AF(R) & hF(O)
at all temperatures. In the absence of size mismatch, or-
dered monolayer (n =I) superlattices [with ~(O) &0]
are, hence, always of higher free energy then the the ran-
dom alloy of the same composition. This suggests that
the layered tetragonal ("CuAu-like" ) ordering observed

by Kuan et al. " in Al„Ga~ —„As is not driven by bulk

AF'(n, G) =2I[G]/n, n ~ n„ (5)

a relationship derived earlier by Wood, Wei, and
Zunger ' from different considerations. This scaling
[Fig. 1(a)], indicating a greater stability per atom of
longer (relative to shorter) period, "repelling" (I &0)
superlattices, simply reflects the fact that electronic and
structural changes attendant upon the formation of an
interface are limited to a certain distance from the inter-
face. From Table II and Eq. (4), we find the interfacial
energies I[001]=3.6 meV, I[110]=5.8 meV, and
I[111]= —,

' I[100] 2.7 meV, suggesting the [110] inter-
face to be the most unstable, whereas the [111]interface
is the most stable in this sequence.

TABLE II. The expansion coefficients g2, (n, G) (per unit
cell or 4n atoms) and the excess energy ~(n, G) [in meV/(4
atoms)] of (AC), (BC), superlattices.

G

[OOI]

[I io]

n=1
n~2
n 1

7l =2
Pl =3
n~4
n=l
n~2

—16
—16
—16
—24
—24
—24
—12
—12

0
—16

0
—16
—16
—16
—12
—12

—32
—64
—32
—48
—80
—80
—24
—48

(2,4

0
—32

0
—32
—40
—48

0
—24

m(n, G)

1 1.4
3.6

1 1.4
6.5
4. 1

2.9
7.5
2.7

thermodynamics (but could be a consequence of surface
thermodynamics' ' or kinetic factors not included in
our theory). (ii) Our model predicts an "interaction pa-
rameter" 0 =4AE(R, x =0.5) =0.32 kcal/mol (a mole
of A ~ —,B„C unit), in reasonable agreement with the
range ' 0-1.6 obtained from the measured liquidus-
solidus phase diagram' ' and diffuse x-ray scattering, '

but in conflict with the results of Shen, Bylander, and
Kleinman. 's (iii) If we estimate the mixing entropy
S(R,x) from randotn statistics, the calculated miscibili-
ty-gap (MG) temperature at x =0.5 (below which the
components are immiscible) is TMo=~(R)/S(R) =59
K. No direct experimental value exists for TMG in

A[„Ga~ „As since it is well below conventional growth
temperatures (800-1000 K).

Longer-period superlattiees. —The expansion of Eq.
(2) can be generalized to longer-period (AC), (BC)„su-
perlattices grown in different orientations. Table II gives
the expansion coefftcients (2 (n, G) for the three orien-
tations G [001], [110], and [111], retaining up to
fourth-neighbor pair interactions (m =4). This shows
that for each orientation, the excess energy per cell be-
comes constant (denoted below as 2I[G]) past a critical
repeat period n, (G): retaining m ~ 4 gives n, =2 for the
[001]-and [111]-oriented superlattices and n, =4 for the
[110]-oriented superlattice. Hence, for n~ n„one has
(per 4 atoms)
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Comparison of ~(n, G) to the free energy ~(R)
—TS(R) of the random alloy shows that whereas the
latter is more stable than the monolayer (n =1) super-
lattice at all temperatures, longer-period superlattices
are predicted to be more stable than the random alloy
below a critical temperature

T(n, G) =TMo ~(n, G)/S(R) =TMo —A/n,

where TMG =~(R)/S(R), and A =2I[G]/S(R) for
n) n, [Fig. 1(b)]. If perfect equilibrium conditions can
be attained, the system will phase separate at T( TMo
into AC+BC [formally equivalent to the n ~ limit of
a (AC)„(BC)„"superlattice"]. At this limit we find, as
expected, T(~,G) TMo for all orientations. Since
complete phase separation (n ~) requires rearrange-
ment of many bonds, it could be kinetically hindered at
low temperatures, leaving the shorter-period n & 1 super-
lattice ordering (requiring lower activation barriers) as
the next available thermodynamic state [region III in

Fig. 1(b)]. In this case, once formed, the short period-
superlattices have no thermodynamic incentive to disor
der; they will persist even if there were no diff'usion ac-
tivation barriers for disordering. (Note, however, that
this explains only the stability of n & 1 superlattices, not
that of the n =1 system. ") Whereas for AI„Ga|-„As,
T(n, G) is considerably lower than growth (and even

room) temperature, ' in lattice mismatc-hed alloys these
temperatures are much higher: in GaAsosSbos, TMo
=1200 K and T(2,G) & 500 K for the chalcopyrite
(6=[201]) ordering. This is thermodynamically con-
sistent with the recent observation of spontaneous meta-
stable ordering in such alloys during growth (although
the precise value of the ordering temperatures is prob-
ably determined in real samples also by growth kinetics
and surface steps's).
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