PHYSICAL REVIEW B

VOLUME 38, NUMBER 9

Ordering of isovalent intersemiconductor alloys

James E. Bernard, L. G. Ferreira, S.-H. Wei, and Alex Zunger Solar Energy Research Institute, Golden, Colorado 80401 (Received 9 June 1988)

Recent observations of spontaneous long-range ordering in alloys of isovalent semiconductors, despite independent evidence for repulsive interactions in these systems, are interpreted in terms of first-principles total-energy calculations for ordered compounds and cluster-variation-method calculations for the disordered phase.

Solid $A_x B_{1-x} C$ alloys of isovalent semiconductor constituents AC and BC are known¹ to universally exhibit in their high-temperature disordered (D) phase positive mixing enthalpies $\Delta H^{(D)} = H[A_x B_{1-x} C] - x H[AC]$ -(1-x)H[BC]. At sufficiently low temperatures, phase separation of such alloys into their binary constituents is often observed.¹ Similar effects are observed in many other isovalent octet alloys, e.g., those formed between alkali halides.² These phenomena have led to the widely held view $^{1-6}$ that the microscopic interactions between the local bonding configurations in an isovalent octet alloy (e.g., between A_4C and B_4C clusters in zinc-blende alloys) are fundamentally repulsive, and hence that no long-rangeordered isovalent compounds between AC and BC (such as those common in intermetallic phases, e.g., ordered CuAu-I) are to be expected in semiconductor physics. Since artificial $(AC)_n(BC)_m$ short-period superlattices can be viewed as ordered intersemiconductor compounds, this would imply that such isovalent superlattices are fundamentally unstable and owe their (temporary) existence to artificially imposed layer-by-layer growth processes. Zunger and co-workers⁷⁻⁹ showed, however, that the microscopic stain energy associated with packing on a lattice atoms A and B of dissimilar sizes can lead to (i) $\Delta H^{(D)} > 0$ even if the microscopic interaction between A and B is attractive,^{7,9} and (ii) a preference at low temperatures of ordered (O) over disordered arrangements⁸ even if the formation enthalpy of the ordered compounds $\Delta H^{(O)} = H[ABC_2] - 0.5H[AC] - 0.5H[BC]$ is positive. In either case, long-range-ordered phases which are stable⁹ (case i) or metastable⁸ (case ii) with respect to phase separation could exist at sufficiently low temperatures, since $\Delta H^{(O)} < \Delta H^{(D)}(x=0.5)$. Subsequently, ordered intersemiconductor phases were observed to occur spontaneously in lattice-matched epitaxial-growth experiments¹⁰⁻¹³ (see Fig. 1 for crystal structures).

In this work we calculate $\Delta H^{(O)}$ and $\Delta H^{(D)}$ for two prototype pseudobinary alloys in which ordering has been observed—one with a small size mismatch (AlAs-GaAs, with relative lattice parameters $\Delta a/a = 0.1\%$) and one with a large size mismatch (GaAs-GaSb, where $\Delta a/a = 7.5\%$). We explore the factors controlling the *relative* stabilities of three types of 50\%-50\% ordered structures (Fig. 1) as well as the disordered phase.

Self-consistent total-energy calculations for AlGaAs₂ and Ga₂AsSb in the three ordered structures, and the binary constituents provide $\Delta H^{(O)}$. These were performed using the all-electron general-potential linearized augmented-plane-wave method¹⁴ (LAPW) within the local-density-functional formalism. The total energy was minimized with respect to the lattice parameter, as well as atomic positions within the unit cell. (Cubic geometry was retained for all the structures; the error introduced by this constraint is estimated to be about 2 meV per 4 atoms.) A precision of at least 3 meV per 4 atoms was secured by using precisely equivalent basis sets, muffin-tin radii, and sampling **k** points for all structures. To calculate $\Delta H^{(D)}$ we extract from total-energy calcu-

To calculate $\Delta H^{(D)}$ we extract from total-energy calculations for nine $A_n B_{4-n} C_4$ ordered structures $(0 \le n \le 4)$ the volume-dependent k-atom interaction energies^{8,15} $\{J_{k,m}(V)\}$, retaining $k \le 4$ and $m \le$ third neighbors. Using the cluster-variation method (CVM) and retaining up to four-body statistical correlations,⁸ we then solve approximately the fcc Ising model appropriate to the nine interactions $\{J_{k,m}(V)\}$ (with second- and third-neighbor effects resummed into nearest-neighbor terms¹⁵) to obtain the mixing enthalpy $\Delta H^{(D)}(x,T)$ of the disordered phase. Using an elastic valence-force-field (VFF) method, we

FIG. 1. Three possible structures for ordered ABC_2 compounds: The CuAu-I-like layered tetragonal structure (the AB sublattice has the CuAu-I structure), the chalcopyrite structure, and the CuPt-like layered trigonal structure (the AB sublattice has the CuPt structure).

also study a broad range of ordered isovalent systems, comparing their equilibrium strain energies.

Figures 2(a) and 2(b) show the calculated formation enthalpies $\Delta H^{(0)}$ of AlGaAs₂ [Fig. 2(a)] and Ga₂AsSb [Fig. 2(b)], along with the calculated low-temperature mixing enthalpies $\Delta H^{(D)}(x=0.5)$ of the corresponding disordered alloys. The following points are evident. (i) For both systems all of the ordered and disordered phases have positive excess enthalpies and so are unstable at low-temperature equilibrium (if attainable) with respect to decomposition into pure AC and pure BC.¹⁶ (ii) For small size mismatch (AlAs-GaAs), $\Delta H^{(D)} < \Delta H^{(O)}$, hence these ordered structures are also unstable with respect to disordering. The order of formation enthalpies in this case is $\Delta H^{(CA)} > \Delta H^{(CH)} > \Delta H^{(CP)}$, CA, CH, and CP denoting CuAu-I, chalcopyrite, and CuPt, respectively (Fig. 1). (iii) For large size mismatch (GaAs-GaSb), we find $\Delta H^{(D)}(x=0.5) > \Delta H^{(CH)}$ at all temperatures [and even $\Delta H^{(D)}(x=0.5) > \Delta H^{(CA)}$ above ≈ 700 K]; hence, at least the chalcopyrite-ordered structure could persist below some temperature T_c if phase separation is kinetically inhibited by low atomic mobilities below T_c . Neglect of vibrational contributions and use of random statistics to estimate the mixing entropy ΔS of the disordered phase then suggests $T_c = (\Delta H^{(O)} - \Delta H^{(D)})/$ $\Delta S \approx 425$ K. The order of formation enthalpies differs from that in (ii) above: $\Delta H^{(CP)} > \Delta H^{(CA)} > \Delta H^{(CH)}$. The total energy per atom $\Delta E^{(n)}$ of size-matched $(AC)_n (BC)_n$ superlattices scales as $2\sigma/n$, where σ is an orientation-dependent interface energy.¹⁷ Hence, while short-period superlattices such as CuAu-I (an n=1 superlattice in the [001] direction) or CuPt (an n=1 superlattice in the [111] direction) may have energies higher than the disordered phase (Fig. 2), beyond a critical repeat period n_c the opposite is true and metastable ordering is thermodynamically possible.

We next show that the order of formation enthalpies is determined by *structural* effects when $\Delta a/a$ is large, and by *chemical* effects when it is small. We begin by decomposing the formation enthalpy $\Delta H^{(O)}$ into three physically

FIG. 2. Formation enthalpies for (a) bulk AlGaAs₂ and (b) bulk Ga₂AsSb in the three ordered structures of Fig. 1. Epitaxial formation enthalpies for Ga₂AsSb with substrate lattice constant $a_s = 5.89$ Å are shown in (c). Mixing enthalpies for disordered 50%-50% phases calculated from nine interaction parameters are also shown at (a) T = 80 K and (b) and (c) T = 300 K. The thick solid lines denote the zero of energy.

recognizable terms.⁷ These are (i) volume deformation (VD): compress and dilate the binaries from their equilibrium molar volumes (V_{AC} and V_{BC}) to the intermediate volume V, investing

$$\Delta E_{\rm VD}(V) = [E_{AC}(V) - E_{AC}(V_{AC})] + [E_{BC}(V) - E_{BC}(V_{BC})]; \qquad (1)$$

(ii) charge exchange (CE): combine AC and BC, at volume V, to form ABC_2 in a given ordered structure, retaining the unrelaxed atomic positions of (i); the associated energy is

$$\Delta E_{CE}(V) = E_{ABC_2}(V, \{u_0\}) - [E_{AC}(V) + E_{BC}(V)], \quad (2)$$

where $\{u_0\}$ denotes unrelaxed cell-internal atomic positions; and (iii) structural (S) relaxation: relax the cellinternal atomic positions $\{u\}$ (consistent with the space group symmetry) to minimize strain, allowing bond lengths and angles to approach "natural" values characteristic of the (unstrained) binaries; the associated energy is

$$\Delta E_{S}(V) = E_{ABC_{2}}(V, \{u_{rel}\}) - E_{ABC_{2}}(V, \{u_{0}\}).$$
(3)

The sum of these energies [(1)-(3)] at the equilibrium volume V_{eq} of ABC_2 is just the formation enthalpy of the ordered compound

$$\Delta H^{(O)} \equiv E_{ABC_2}(V_{eq}, \{u_{rel}\}) - [E_{AC}(V_{AC}) + E_{BC}(V_{BC})].$$
(4)

Large $\Delta a/a$: Figure 3 depicts the energies of Eqs. (1)-(3) vs volume for GaAs-GaSb. We find that (i) the equilibrium cubic-cell volumes of the three structures are rather similar ($V_{CH} = 204.57$ Å³, $V_{CA} = 204.62$ Å³, and $V_{CP} = 205.11$ Å³), hence $\Delta E_{VD}(V_{eq})$ [Fig. 3(a)] does not distinguish much between these structures; (ii) the $\Delta E_{CE}(V)$ [Fig. 3(b)] are rather small and essentially volume independent; and (iii) in view of (i) and (ii), $\Delta E_S(V)$ [Fig. 3(c)] controls the order of formation enthalpies when $\Delta a/a$ is large, exhibiting $\Delta E_S^{(CP)} > \Delta E_S^{(CA)} > \Delta E_S^{(CH)}$, the same order as $\Delta H^{(O)}$ [Fig. 2(b)].

The near volume and structure independence of ΔE_{CE} suggests that a strain-only model can be used to assess both *relative* energies $\Delta H^{(0)}$ and equilibrium volumes for large $\Delta a/a$. Such a model permits exploratory calculations for a large number of size-mismatched semiconductors to determine the generality of the LAPW results and the way in which ΔE_S leads to a particular order of stability. We use a Keating-type¹⁸ VFF model, which includes strain contributions due to bond stretching and bond bending. The parameters of the model are natural bond lengths and angles and bond-stretching and bond-bending force constants, all determined from measured lattice and elastic constants.^{19,20} This model has been shown to give good results in the prediction of equilibrium structural geometries and enthalpies of formation of strained structures. 19

The elastic strain contributions to $\Delta H^{(O)}$ are plotted versus lattice mismatch, in Fig. 4 for 18 III-V ternary compounds in the structures of Fig. 1. The order of strain energies is *universally* $\Delta H^{(CP)} > \Delta H^{(CA)} > \Delta H^{(CH)}$, the same order obtained from the LAPW calculations for 6340

BERNARD, FERREIRA, WEI, AND ZUNGER

FIG. 3. Decomposition of the formation energy of ordered Ga_2AsSb into three components: (a) volume deformation [Eq. (1)], (b) charge exchange [Eq. (2)], and (c) structural relaxation [Eq. (3)].

GaAs-GaSb [Fig. 2(b)]. Since ΔE_{VD} does not distinguish the three ordered structures, and ΔE_{CE} is absent in VFF, the predicted order of stabilities of Fig. 4 must reflect relative strain-only structural relaxation energies. The order of ΔE_S reflects differences in the degree to which various ordered structures accommodate natural bond lengths and angles. In accommodating distinct A-C and B-C bond lengths, the displacement of the C atom in the chalcopyrite structure causes less bond-angle distortion (thus allowing less bond-length distortion) than in CuAu-I. The CuPt structure has large strain because it must accommodate in the same lattice two clusters, A_3BC and AB_3C , with different size. The emergence of chalcopyrite as the lowest energy form when $\Delta a/a$ is large is consistent with the fact that among $I-III-VI_2$ and $II-IV-V_2$ ordered adamantine ABC_2 semiconductors, none exists in the CuAu-I or CuPt form; instead, all have the chalcopyrite structure.²¹

Small $\Delta a/a$: Equations (1)-(3) show that for small $\Delta a/a$ one finds $\Delta E_{\rm VD} \approx 0$ and $\Delta E_S \approx 0$, leaving $\Delta E_{\rm CE}$ as the main contribution to $\Delta H^{(O)}$ (hence, VFF cannot be used in this limit). Modeling¹⁷ $\Delta E_{\rm CE}$ in this limit as the excess Madelung electrostatic energy of ordered ABC_2 relative to AC and BC, one finds for structure λ (per four-atom cell)

$$\Delta E_M^{\lambda} = \frac{1}{d} \left[\frac{a}{2} (\Delta q)^2 - 2\beta_{\lambda} (\Delta Q_{\lambda})^2 \right], \qquad (5)$$

FIG. 4. Strain energy of 18 III-V ordered ternary semiconductor compounds in the three structures of Fig. 1, calculated via a valence-force-field model.

where d is the nearest-neighbor anion-cation bond length (unique when $\Delta a/a \rightarrow 0$), $\Delta q = q_A(AC) - q_B(BC)$ is the difference in the charges on A and B in the binary compounds, $\Delta Q = Q_A(ABC_2) - Q_B(ABC_2)$ is the corresponding difference in the ternaries, α is the Madelung constant for zinc-blende, and β_{λ} is a geometrical constant. The values of the constants are²² $\beta_{CH} = 0.1253$, $\beta_{CA} = 0.1220$, $\beta_{\rm CP} = 0.1868$, and $\alpha = 1.6381$. Thus, (i) if ΔQ_{λ} is the same for the three ordered structures, we find²³ $\Delta E_M^{(CA)}$ > $\Delta E_M^{(CH)} > \Delta E_M^{(CP)}$, just the order of formation enthalpies found from the LAPW calculation for the latticematched system AlGaAs₂ [Fig. 2(a)]; (ii) in the absence of additional charge exchange in the ternary relative to the binaries $(\Delta Q_{\lambda} - \Delta q)$, the excess Madelung energy is positive (destabilizing); (iii) only if $\Delta Q_{\lambda}/\Delta q$ exceeds the critical value $(\alpha/4\beta_{\lambda})^{1/2}$ (1.83 for CuAu-I, 1.81 for chalcopyrite, and 1.48 for CuPt) is $\Delta E_M < 0$.

Most recent observations of ordering in semiconductor alloys are for films grown epitaxially on a substrate. 10-13The (sufficiently thin) film grows in atomic registry with the substrate (coherent growth), its lattice constants parallel to the substrate matching that of the substrate a_s , the third being free to adjust to accommodate strain. In most cases lattice-matched substrates are used, i.e., $a_s \approx a_{eq}(ABC_2) \approx a_{eq}(A_{0.5}B_{0.5}C) \approx a_{avg}$ While this choice exerts no strain on either the ordered ABC_2 or the disordered $A_{0.5}B_{0.5}C$ phases, it discourages phase separation into AC+BC since coherently grown constituents would be highly strained ²⁴ if Δa is nonzero. The epitaxial formation enthalpy is then calculated with respect to strained binaries:²⁴

$$\delta H^{(O)} = H[ABC_{2}, a_{s}] - H[AC, a_{s}] - H[BC, a_{s}].$$
 (6)

Figure 2(c) depicts δH for the GaAs-GaSb system lattice matched to $a_s = a_{avg} = 5.89$ Å. The destabilization of epitaxial GaAs and GaSb exposes the bulk-metastable chalcopyrite phase [Fig. 2(b)] as *epitaxially stable* $[\delta H^{(CH)} < 0]$. This is consistent with recent observations of chalcopyrite-like and CuAu-I-like ordering in Ga₂AsSb, ¹¹ and possibly also in GaInAs₂.¹³

We conclude that (i) the ordered intersemiconductor structures of Fig. 1 are unstable in bulk equilibrium since, when $\Delta a/a$ is large, the positive volume-deformation energies overwhelm the negative structural-relaxation energies, whereas for small $\Delta a/a$ the positive excess electrostatic energies lead to instability. (ii) For large $\Delta a/a$, the order of formation energies is $\Delta H^{(CP)} > \Delta H^{(CA)}$ > $\Delta H^{(CH)}$, dictated by the availability of different types of strain-lowering structural degrees of freedom; for small $\Delta a/a$, the order is $\Delta H^{(CA)} > \Delta H^{(CH)} > \Delta H^{(CP)}$, consistent with the order of the electrostatic energies. (iii) For large $\Delta a/a$, the better accommodation of strain by ordered (relative to disordered) structures leads to $\Delta H^{(O)} < \Delta H^{(D)}$, hence, to metastable bulk ordering. This could become stable ordering under epitaxial conditions. Items (i) and (ii) suggest that recent observations of CuPt-like ordering in epitaxially grown Ga₂AsSb (Ref. 12) and GaInP₂ (Ref. 25) are a result of surface thermodynamic effects rather

- ¹M. B. Panish and M. Ilegems, Prog. Solid State Chem. 7, 39 (1972).
- ²P. K. Davies and A. Novrotsky, J. Solid State Chem. 46, 1 (1983).
- ³G. B. Stringfellow, J. Cryst. Growth 27, 21 (1974).
- ⁴P. A. Fedders and M. W. Muller, J. Phys. Chem. Solids **45**, 685 (1984).
- ⁵J. A. Van Vechten, in *Handbook on Semiconductors, Vol. 3: Materials and Preparation*, edited by S. P. Keller and T. S. Moss (North-Holland, Amsterdam, 1980), p. 1.
- ⁶L. M. Foster, J. Electrochem. Soc. **121**, 1662 (1976).
- ⁷G. P. Srivastava, J. L. Martins, and A. Zunger, Phys. Rev. B **31**, 2561 (1985).
- ⁸See A. A. Mbaye, L. G. Ferreira, and A. Zunger, Phys. Rev. Lett. **58**, 49 (1987), and references therein.
- ⁹J. L. Martins and A. Zunger, J. Mater. Res. 1, 523 (1986).
- ¹⁰T. S. Kuan, T. F. Kuech, W. I. Wang, and E. L. Wilkie, Phys. Rev. Lett. **54**, 201 (1985).
- ¹¹H. R. Jen, M. J. Jou, M. J. Cherng, and G. B. Stringfellow, J. Cryst. Growth **85**, 175 (1987).
- ¹²Y.-E. Ihm, N. Otsuka, J. Klem, and H. Morkoç, Appl. Phys. Lett. 51, 2013 (1987).
- ¹³T. S. Kuan, W. I. Wang, and E. L. Wilkie, Appl. Phys. Lett. 51, 51 (1987).
- ¹⁴S.-H. Wei and H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985),

than bulk thermodynamic effects. For small $\Delta a/a$, the dominance of chemical pair interactions leads to $\Delta H^{(D)} < \Delta H^{(O)}$, hence, no thermodynamic ordering (stable or metastable) is predicted at this limit; *longer* period superlattices can, however, be stabler than the disordered phase at low temperature.

We wish to thank David Wood for a number of useful discussions. This work was supported by the Office of Energy Research, Materials Science Division, U.S. Department of Energy under Grant No. DE-AC02-77-CH00178.

and references therein.

- ¹⁵L. G. Ferreira, S.-H. Wei, and A. Zunger (unpublished); for series resummation method, see also A. Carlsson, Phys. Rev. B 35, 4858 (1987).
- ¹⁶The slight stability ($\Delta E^{(2)} = -25$ meV per 4 atoms) obtained in Ref. 8 for GaInP₂ using nonrelativistic local pseudopotentials is in error. A fully structurally optimized all-electron semirelativistic LAPW calculation gives $\Delta E^{(Ca)} = 91$ meV per 4 atoms. This system is thus predicted to order metastably.
- ¹⁷D. M. Wood, S.-H. Wei, and A. Zunger, Phys. Rev. B 37, 1342 (1988); Phys. Rev. Lett. 58, 1123 (1987).
- ¹⁸P. N. Keating, Phys. Rev. **145**, 637 (1966).
- ¹⁹J. L. Martins and A. Zunger, Phys. Rev. B 30, 6217 (1984).
- ²⁰R. M. Martin, Phys. Rev. B 1, 4005 (1970).
- ²¹E. Parthé, Crystal Chemistry of Tetrahedral Structures (Gordon and Breach, New York, 1964), pp. 37-42.
- ²²D. M. Wood (private communication).
- ²³Adding to Eq. (5) a term $-\gamma_{\lambda}U(\Delta q)^2$ due to on-site Coulomb repulsion U (see Ref. 17), where $\gamma_{CH} - \gamma_{CA} - \frac{1}{4}$ and $\gamma_{CP} - \frac{3}{16}$, gives the same order $\Delta E_{CE}^{(CA)} > \Delta E_{CE}^{(CH)} > \Delta E_{CE}^{(CP)}$, as found for the ΔE_M^{λ} when the ΔE_{CE}^{λ} are positive.
- ²⁴J. L. Martins and A. Zunger, Phys. Rev. Lett. 56, 1400 (1986).
- ²⁵A. Gomyo, T. Suzuki, and S. Iijima, Phys. Rev. Lett. **60**, 2645 (1988).

FIG. 1. Three possible structures for ordered ABC_2 compounds: The CuAu-I-like layered tetragonal structure (the AB sublattice has the CuAu-I structure), the chalcopyrite structure, and the CuPt-like layered trigonal structure (the AB sublattice has the CuPt structure).