Electronic structure and stability of II–VI semiconductors and their alloys: The role of metal d bands S.-H. Wei and Alex Zunger Citation: Journal of Vacuum Science & Technology A 6, 2597 (1988); doi: 10.1116/1.575515 View online: http://dx.doi.org/10.1116/1.575515 View Table of Contents: http://scitation.aip.org/content/avs/journal/jvsta/6/4?ver=pdfcov Published by the AVS: Science & Technology of Materials, Interfaces, and Processing ### Articles you may be interested in Gain characteristics of gain-guided II–VI laser diodes Appl. Phys. Lett. **69**, 3893 (1996); 10.1063/1.117561 Smooth etching of various III/V and II/VI semiconductors by CI2 reactive ion beam etching J. Vac. Sci. Technol. B 14, 1764 (1996); 10.1116/1.588554 Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys J. Appl. Phys. 78, 3846 (1995); 10.1063/1.359901 Crystal-structure studies of II-VI semiconductors using angle-dispersive diffraction techniques with an imageplate detector AIP Conf. Proc. 309, 633 (1994); 10.1063/1.46413 Epitaxial growth of II-VI semiconductor superlattices by pulsed-laser deposition AIP Conf. Proc. 288, 577 (1993); 10.1063/1.44857 # Electronic structure and stability of II–VI semiconductors and their alloys: The role of metal *d* bands S.-H. Wei and Alex Zunger Solar Energy Research Institute, Golden, Colorado 80401 (Received 22 December 1987; accepted 17 February 1988) It has been traditionally accepted in various theoretical approaches to II-VI semiconductors (e.g., tight binding, pseudopotentials) to neglect the effects of the cation d bands, hoping that in some sense they are "deep," "localized," and hence, unresponsive to many perturbations of chemical interest. There are, however, two qualitative reasons to think that this is not so: first, d bands in II-VI's are only 7-11 eV below the valence-band maximum (VBM) (i.e., inside the main valence band), and second, in tetrahedral (but not octahedral) symmetry, cation d orbitals have the same representation (Γ_{15}) as the anion p orbitals, hence the two can interact. We have considered the effects of the cation d bands in II-VI's on both the electronic and structural properties of the binary and ternary compounds, treating all electrons on the same footing, in a self-consistent first-principles manner. We find that the d orbitals: (i) reverse the direction of charge transfer in the alloy (e.g., relative to s-p tight binding), (ii) reverse the trends in the spinorbit splitting at the VBM in the series ZnTe → CdTe → HgTe, (iii) are responsible for most of the valence-band offset between, e.g., HgTe-CdTe, (iv) affect the structural stability, equilibrium lattice parameters, and bulk moduli. We also discuss the equilibrium bond lengths, formation enthalpies, and degree of clustering of inter-II-VI systems $A_n^{II}B_{4-n}^{II}$ Te₄ comparing the results to experiment and to simpler tight-binding models. ### I. INTRODUCTION The electronic structure of II-VI semiconductors ZnX^{VI}, CdXVI, and HgXVI is distinguished from that of both column IIA chalcogenides CaXVI, SrXVI, and BaXVI and from the III-V semiconductors by having a cation d band inside the main valence band. These valence d bands are evident in photoemission spectra¹⁻³ (Fig. 1 and Table I) and in allelectron band-structure calculations⁴⁻¹¹ (Fig. 2), both exhibiting a moderately narrow ($\leq 1 \text{ eV}$), fully occupied metal d band around 7-11 eV below the valence band maximum, or 6-2 eV above its minimum. In early electronic structure calculations for II-VI semiconductors, the metal d bands were retained (see also more recent results in Refs. 7-11). However, most current calculations, using empirical, 12-18 semiempirical, 19 or first-principles 20,21 pseudopotential approaches, as well as tight-binding approaches²²⁻²⁴ to bulk II-VI semiconductors, their alloys²⁵⁻²⁹ and their impurity states $^{30-32}$ have ignored the metal d bands, assuming them to be a part of the chemically inert atomic cores. The underlying thought in these approaches seems to have been that the d bands in II-VI semiconductors are nonbonding, energetically removed from the outer valence orbitals and difficult to treat explicitly in either pseudopotential or tight-binding methods and hence are best explicitly discarded from the spectrum and represented only implicitly through their indirect effects on the valence s and p electrons. Indeed the *indirect* effects of d orbitals on the properties of IIB–VI semiconductors can be taken into account by models that explicitly neglect^{12–32} the d bands, by using sufficiently tightly bound (relative to group-IIA atoms) metal s orbital energies or sufficiently attractive metal pseudopotentials. It is then possible to fit, for example, the calculated low-lying band gaps of such compounds to experiment. Manipulating atomic quantities (atomic orbital energies and pseudopotentials) could, however, misrepresent the *direct* effects of the *d* orbitals in the solid-state phase, i.e., the *p-d hybridization* effects which can change the band gaps, charge distribution, and the equilibrium structural properties. FIG. 1. Observed photoemission spectra (Refs. 1-3) of cation d states (shaded regions) in the II-VI compounds. The arrow at E=0 points to the valence-band maximum. TABLE I. Experimentally observed cation d band binding energies (in eV) with respect to valence-band maximum. When two values are given for a compound, the first corresponds to J=5/2 and the second to J=3/2 spinorbit components. | | Reference 1 | Reference 2 | Reference 3 | |---------|-------------|-------------|-------------| | ZnO,3d | (#6±967 | 8.81 | 8.5 | | ZnS,3d | 222 | 9.03 | (****) | | ZnSe,3d | *** | 9.20 | 8.9 | | ZnTe,3d | 9.5 | 9.84 | 9.1 | | | 9.8 | | | | CdS,4d | ******* | 9.64 | 10.0 | | CdSe,4d | 9.55 | 10.04 | 10.7 | | | 10.28 | | | | CdTe,4d | 10.09 | 10.49 | 10.5 | | | 10.72 | | | | HgSe,5d | 7.33 | +3.4 | *** | | | 9.13 | | | | HgTe,5d | 7.70 | 7.87 | 7.6 | | | 9.55 | 9.64 | 9.5 | In this paper we study the extent to which the metal d orbitals in II-VI semiconductors can be viewed as corelike, chemically inert states. We use all-electron band-structure and total energy techniques which treat the outer metal d electrons on the same footing as other valence electrons. We compare the results with those in which the d bands are omitted or frozen. We establish the effects of these metal d bands on: (i) band gaps; (ii) spin-orbit splittings at the valence-band maximum; (iii) ground-state properties such as equilibrium lattice parameters, cohesive energies, formation enthalpies, and bulk moduli; and (iv) valence-band offsets between semiconductors. Significant d-electron effects are found in all of the above quantities. # II. p-d COUPLING IN TETRAHEDRAL STRUCTURE: ESSENTIAL PHYSICS Whereas the octahedral space group (O_h^5) akin to the NaCl structure has inversion symmetry, the tetrahedral space group (T_d^2) pertinent to zinc-blende compounds does not. Consequently, symmetry representations of O_h^5 do not mix even and odd angular momenta (e.g., p with d), whereas those of T_d^2 do. ³³ This has some obvious implications on the band structure of tetrahedrally bonded compounds near the band-gap region. Consider, for example, a zinc-blende crystal and ignore for a moment the cation d states. The states near the Fermi energy can be described qualitatively by a simple tight-binding model retaining the cation p orbitals (p^c with energy ϵ_p^c) and the anion p orbitals (p^a , with energy ϵ_p^a). Since both have the same symmetry representation Γ_{15} (also termed t_2), they can interact [Fig. 3(a)] through a coupling matrix element V_{pp} . They hence form a lower energy bonding state at the energy $$\epsilon \left[\Gamma_{15v}(p)\right] = \frac{\epsilon_p^c + \epsilon_p^a}{2} - \left[\frac{\left(\epsilon_p^a - \epsilon_p^c\right)^2}{4} + V_{pp}^2\right]^{1/2} \tag{1}$$ and an antibonding state at $$\epsilon \left[\Gamma_{15c}(p)\right] = \frac{\epsilon_p^c + \epsilon_p^a}{2} + \left[\frac{\left(\epsilon_p^a - \epsilon_p^c\right)^2}{4} + V_{pp}^2\right]^{1/2}. \quad (2)$$ The bonding state has no node and its energy is lowered relative to ϵ_p^a [Fig. 3(a)]. If, however, cation d states are included at an energy ϵ_d^c [Fig. 3(b)], they too have a representation of t_2 symmetry (their Γ_{12} , or e-symmetry state cannot couple to l=1, hence it remains unshifted) and can couple, through a matrix element V_{pd} to the p-like anion state. One can estimate semi-quantitatively the magnitude of these p-d couplings by considering the p-d repulsion energy perturbatively, as $$\Delta E_{pd} \simeq V_{pd}^2 / (\epsilon_p^a - \epsilon_d^c). \tag{3}$$ The magnitude of the energy denominator can be approximated by difference of atomic orbital energies, e.g., using semirelativistic local density orbital energies. Estimating V_{pd} from Harrison's^{22(a)} formula $V_{pd} = A(r_d^{3/2}/d^{7/2})$, where r_d and d are the cation d-orbital radius and the average bond length, respectively, one finds $V_{pd} \simeq 1-2$ eV. This suggests that the p-d repulsion shifts the valence-band maximum to higher energies by ΔE_{pd} , of the order of 0.1 to 0.2 eV FIG. 2. Calculated (LAPW) band structure of (a) ZnTe, (b) CdTe, and (c) HgTe near their equilibrium lattice constants. The cation d bands are highlighted by the dashed lines. The band-gap regions are shaded. Dashed lines indicate doubly degenerate states. FIG. 3. Schematic plot of pp and pd coupling in zinc-blende semiconductor: (a) pp coupling only and (b) inclusion of pp and pd coupling. for III–V compounds, but of order 1 eV for II–VI compounds. It thus appears from these simple estimates that p–d repulsion cannot be neglected in II–VI semiconductors. Quantitative calculations, supporting this simple expectation (using all-electron first-principles methods) will be presented
in Sec. IV. This qualitative model (Fig. 3) points to the main consequences of p-d repulsion in II–VI semiconductors: - (i) It reduces the direct band gap by repelling Γ_{15v} upwards without affecting the direct conduction-band minimum (of Γ_{1c} symmetry, hence non-pd). A particularly striking example is provided by the fact that despite the greater ionicity of ZnO, it has a smaller band gap ($\sim 3.4 \,\mathrm{eV}^{34}$ in its wurtzite form) than ZnS (3.90 and 3.82 eV for wurtzite and zinc-blende forms, respectively35). This is contrary to the situation encountered in salts which lack active d bands, e.g., CaO, SrO, and BaO have larger band gaps (7.1, 5.3, and 4.4 eV, respectively³⁴) then the corresponding less ionic sulfides CaS, SrS, and BaS (5.8, 4.8, and 3.9 eV, respectively³⁴). We suggest that the reason for this is the stronger p-d repulsion in ZnO (where the Zn 3d to O 2p orbital energy difference is small) relative to ZnS (having a larger Zn 3d to S 3p orital energy difference). Again, empirical adjustment of the band-structure parameters can be used to reproduce the experimental band gap even if the d bands are ignored. ^{15(c)} However, the physical mechanism leading to these trends remains obscure in such approaches. - (ii) Since p-d repulsion raises the energy of the valence-band maximum E_v in inverse proportion to the anion p-c ation d energy difference [Eq. (3)], common-anion materials AC and BC whose cations A and B have different d orbital energies would also have different values of ΔE_{pd} . The difference $\delta_{pd} = \Delta E_{pd}$ (AC) $-\Delta E_{pd}$ (BC) will hence contribute to the valence-band discontinuity between the semiconductors AC and BC (Sec. IV E). - (iii) p-d coupling admixes d character into the wave function at the valence-band maximum. (This is verified by direct calculations, see Sec. IV B.) Since d states contribute oppositely to the spin-orbit splitting (lowering it), relative to p orbitals (which raise it), p-d coupling would hence af- fect the trends in spin-orbit energies. This will be discussed in Sec. IV C. - (iv) Whereas classical point—ion crystal-field models³³ predict for T_d symmetry that the e level is below the t_2 level, p-d repulsion, neglected by crystal field models can reverse the level ordering. This is the case for II–VI compounds (see Fig. 2) where band-structure calculations indeed find⁵⁻¹⁰ that the Γ_{15} (pd) band (t_2 -like) is below the Γ_{12} (d) (e-like) band - (v) Two-level perturbation theory for nonoverlapping orbitals would suggest that p-d repulsion does not change the cohesive energy (since this repulsion displaces the bonding $\Gamma_{15}(d)$ and antibonding $\Gamma_{15}(p)$ by equal amounts to opposite directions, but both of these states are occupied). However, since p-d orbitals overlap in crystal, their mutual repulsion also modifies the Γ_{15} wave functions, which in turn could affect the cohesive energy. In particular, the p-d repulsion diminishes the content of p orbitals in the upper valence band and, in raising the energy of the valence-band maximum (VBM), also spreads out its wave function. This is likely to lead to a larger equilibrium volume (lattice parameter) relative to the pure p case. This conjecture is supported by our calculation discussed in Sec. IV A. ### **III. METHOD OF CALCULATION** We have used the self-consisted first-principles general potential linearized augmented plane-wave (LAPW) method³⁶ within the local density functional formalism³⁷ to calculate the properties of ZnTe, CdTe, HgTe, and their ordered ternary compounds. We used the Hedin–Lundqvist exchange and correlation formula.³⁸ The details of this method can be found elsewhere.³⁶ Since we are studying compounds with heavy atom constituents, scalar relativistic effects³⁹ (i.e., all the relativistic effects except spin-orbit coupling), are included for all valence states (including the outermost cation d states). Core states are calculated fully relativistically using an atomiclike approach (i.e., retaining only the spherical part of the potential). No shape approximations are made to the crystal potential and charge density. All states (including the core states) are calculated fully self-consistently. ### **IV. RESULTS** # A. Ground-state properties of binary and ternary II–VI's To qualitatively assess the effect of p-d repulsion on the ground-state properties, we compare in Table II⁴⁰⁻⁴⁶ the results obtained here (retaining the cation d bands) with those obtained using the first-principles pseudopotential method²⁰ [assuming frozen (n-1)d cation orbitals, hence, no cation d band in the valence band]. The latter method incorporates the *indirect* effects of the d orbitals on the atomic valence s and p pseudopotentials but lacks d-band wave functions in the solid, hence misses entirely the symmetry induced p-d repulsion effect. Comparison of the calculated ground-state properties with experiment (Table II) shows a rather good agreement when the cation d bands are retained (present results). Note, however, that the underlying local density formalism itself is not free of error; for example, we find a_{eq} of HgTe to be larger than a_{eq} of CdTe by 0.022 Å, whereas the experimental results^{41,42} show a_{eq} (HgTe) to be smaller than a_{eq} (CdTe) by 0.02 Å. Similarly, our calculated cohesive energies are too large by 1-1.5 eV, mainly a consequence of neglecting multiplet stabilization energies (more negative in the free atoms than in the solids and decreasing along the Zn→Cd→Hg sequence). 47 However, the discrepancies relative to experiment evident in the "no d" pseudopotential calculation far exceed the error limits of the local density method or the intrinsic convergence errors. When the cation d bands are omitted (pseudopotential results, 20 denoted in Table II as no d), the predicted lattice constants are too small relative to experiment by 7.7%, 10.2%, and 13%; and the predicted bulk moduli are too small by 46%, 70%, and 90% for ZnTe, CdTe, and HgTe, respectively. These errors are particularly large for HgTe which has the shallowest (and most spatially delocalized) cation d orbitals, hence, the strongest p-d repulsion. Whereas such systematic discrepancies can be fixed by adding an empirical repulsive potential adjusted to match the experimental ground-state properties,20 the need for such substantial adjustments (for II-VI's, but not for III-V's) testifies to the significant role of p-drepulsions in these systems. It would also suggest that p-drepulsion, in depleting p character from the upper valence band and delocalizing its wave function, leads to a larger equilibrium lattice constant relative to the pure p case. Calculations of alloy phase diagrams (see Sec. IV F) often require the knowledge of the relative cohesive energies ΔH of an ordered *ternary* phase⁴⁸ (e.g., CdHgTe₂) with respect to equivalent amounts of the binary constituents (e.g., CdTe + HgTe). It is interesting to note that calculation techniques which omit p-d repulsion have produced overly negative formation enthalpies, e.g., $\Delta H = -0.6$ meV/4-atoms using tight binding,⁴⁹ or $\Delta H = -60$ meV/4-atoms using pseudopotentials²⁰ for CdHgTe₂ in the CuAuI-like structure, compared with the present result of $\Delta H = +12.3$ meV/4-atoms. Whereas the small magnitude of these ener- gies⁴⁹ and the numerical intricacies involved in obtaining them make it difficult to quantitatively assess their precision, our foregoing discussion suggests that here, too, the omission of the destabilizing p-d repulsion could be responsible for the predicted stability of the ordered phase^{20,49} by both tight-binding and pseudopotential methods, compared with the instability predicted here. (No ordering is found experimentally.) # B. Antibonding *d* character in the upper valence bands Figure 2 depicts the calculated band structures of ZnTe, CdTe, and HgTe. Table III⁵⁰⁻⁵⁸ summarizes some of the band-structure parameters. Inspection of the orbital character of the various band states in ZnTe, CdTe, and HgTe reveals a number of interesting features: (i) states that can mix d character by symmetry, do so. This is evident at the valence-band maximum Γ_{15v} (7.2%, 7.4%, and 12.9% cation d character in the cation muffin-tin spheres of ZnTe, CdTe, and HgTe, respectively); in Γ_{15c} (10.6%, 9.2%, and 9.7% anion d character in ZnTe, CdTe, and HgTe, respectively) and in $X_{3\nu}$ (6.5%, 2.8%, and 15.1% cation d character in ZnTe, CdTe, and HgTe, respectively). (ii) States forming the anion s band at the bottom of the valence band (e.g., X_{10} and L_{1v}) are found to include also contributions from the cation d states: 6.4%, 15.8%, and 9.3% in X_{1v} , and 4.1%, 11.2%, and 6.4% in L_{1v} , for ZnTe, CdTe, and HgTe, respectively. This suggests that the photoemission peak normally associated with the anion s band (indicated in Fig. 1 by an arrow near $\sim -12 \text{ eV}$) could exhibit a contribution (e.g., a low-energy shoulder in ZnTe and CdTe) due to the tailing density of states of the cation d band. This effect is absent in the photoemission spectra of III-V compounds lacking a d band (e.g., BP, AlP). Furthermore, since the L_{1v} and X_{1v} states contain d character, but the Γ_{1v} does not (by symmetry), p-d repulsion acts to narrow the lowest, L_{1v} - Γ_{1v} - X_{1v} Table II. Comparison of calculated ground-state properties of II–VI compounds (lattice parameter a, cohesive energy E_c , and bulk modulus B) using the present all-electron (LAPW) approach which retains the cation d band, and a pseudopotential (ps) approach which does not. Both calculations are semirelativistic. Experimental results are given for comparison. | | ZnTe | | | CdTe | | | HgTe | | | |-----------------|-------------------------------|-------------------|-------------------------------
----------------------------|--------------------|---------------------------|----------------------------|-------------------|-------------------------------| | Property | With d
(LAPW) ^a | Exptl. | No <i>d</i> (ps) ^b | With d (LAPW) ^a | Exptl. | No d
(ps) ^b | With d (LAPW) ^a | Exptl. | No <i>d</i> (ps) ^b | | a (Å) | 6.052 | 6.089° | 5.618 | 6.470 | 6.481 ^d | 5.818 | 6.492 | 6.461° | 5.616 | | E_c (eV/pair) | 5.64 | 4.82 ^f | 6.75 | 5.35 | 4.45 ^f | 6.77 | 4.46 | 3.22 ^f | 7.05 | | B (GPa) | 52.1 | 50.9 ^g | 27.3 | 44.0 | 44.5 ^h | 13.3 | 46.1 | 47.6 ^h | 4.7 | ^a Present results. b Pseudopotential study of Ref. 20 in which the cation d band is frozen. This calculation, like the one reported here, uses the Hedin-Lindqvist exchange-correlation functional. c Reference 40. d Reference 41. e Reference 42. References 43 and 44. g Reference 45. h Reference 46. Table III. Calculated band gaps E_g , center of d band energies ϵ_d , spin-orbit splittings of valence bands at $\Gamma(\Delta_0)$, and $L(\Delta_1)$, and that of the cation d bands Δ_d , for ZnTe, CdTe, and HgTe. NR, SR, and R denote nonrelativistic, semirelativistic, and relativistic calculations, respectively. All the energies are in eV. | | ZnTe | | | CdTe | | | HgTe | | | |------------------------|---------|-------|---------------------|--------------------------------------|-------|-------------------|------------|-------|-------------------| | | LMTOª | LAPW | Exptl. | LMTO | LAPW | Exptl. | LMTO° | LAPWb | Exptl. | | E_{α} (NR) | et t.t. | 1.98 | 9577 | 6.00 | 1,44 | *** | 99.9 | 1.14 | 444 | | $E_{\sigma}(SR)$ | 0.96 | 1.02 | 39369 | 0.51a | 0.47 | 9990 | (*(*(*) | -0.99 | 3000 | | $E_g^{\rm g}({\rm R})$ | 0.63 | 0.72 | 2.39 ^d | 0.29, ^a 0.47 ^c | 0.18 | 1.59° | -1.06 | -1.27 | -0.30^{r} | | ϵ_d | -7.2 | -7.18 | — 9.84 ^g | -8.55, a -7.80 c | -8.33 | -10.49^{g} | -7.38 | -7.18 | -8.58^{g} | | Δ_0 | 1.01 | 0.89 | 0.91 ^h | 0.90,° 0.95° | 0.86 | 0.90 | 0.90 | 0.78 | 1.08 ^j | | Δ_1 | 0.58 | 0.51 | 0.53k | 0.55^{a} 0.57^{c} | 0.53 | 0.54k | 1.31^{1} | 0.53 | 0.62k | | $-\Delta_d$ | | 0.37 | 0.3 ^m | 0.5° | 0.69 | 0.63 ^m | 1.7 | 1.68 | 1.85 ^m | a See Ref. 50 for details. valence band (while broadening the upper $L_{1v} - \Gamma_{15v} - X_{3v}$ valence band). (iii) The conduction-band minimum at Γ_{1c} , described by tight-binding methods^{22–26} as a *cation s* state, has significant *anion* character as well, e.g., 28.2%, 24.2%, and 25.5% for ZnTe, CdTe, and HgTe, respectively. The simple tight-binding argument for p-d mixing described in Sec. II and Fig. 3(b) suggests the antibonding character in the valence-band maximum state $\Gamma_{15\nu}$ to be the hallmark of p-d mixing. Figure 4(a) depicts the calculated wave function square for the $\Gamma_{15\nu}$ state in HgTe, clearly exhibiting a minimum along the Hg–Te bond direction (partially a consequence of the ionicity of this bond) and characteristic antibonding lobes around the Hg site (i.e., pointing away from the nearest bonded atoms, towards the interstitial sites). These antibonding lobes are absent in the $\Gamma_{15\nu}$ state of semiconductors which lack any significant $p\!-\!d$ repulsion (e.g., III–V's). Similar antibonding features are exhibited, e.g., by the $L_{3\nu}$ state [Fig. 4(b)] and the $X_{5\nu}$ state [Fig. 4(c)], all absent in the analogous states in III–V compounds. The antibonding character mixed into the valence-band maximum in II–VI compounds reflects the constraint of orthogonality to the corresponding Γ_{15} state of the metal d band [Γ_{15} (dp) in Fig. 3]. This is demonstrated in Fig. 5(a) which depicts the charge density contributed by this Γ_{15} (dp) state, showing its bonding charge buildup, oriented along the Hg–Te bond. (Note that the Γ_{12d} state, depicted in Fig. 5(b), is nonbonding and has its atomiclike charge distribution.) FIG. 4. Calculated wave-function amplitudes of the $\Gamma_{15\nu}$ (a), $L_{3\nu}$ (b), and $X_{5\nu}$ (c) for HgTe. ^b Present results. cReference 51. d Reference 52. e Reference 53. Reference 54. g Reference 2. h Reference 55. Reference 56. Reference 57. k Reference 58. ¹Reference 51; this could be a printing error. m Reference 1. FIG. 5. Wave-function amplitude for d band states in HgTe: (a) Γ_{15d} and (b) Γ_{12d} . Note the bonding buildup of charge along the bond in (a) and the nonbonding character in (b). To directly isolate the effect of p-d repulsion on the ground-state charge density, we have repeated band-structure calculations for CdTe and HgTe where the cation d orbitals are effectively removed from the basis set. This was done by setting the LAPW energy parameters ${}^{36}E_{L=2}^{Cd}$ and $E_{l=2}^{Hg}$ for the d wave basis functions inside the Cd and Hg spheres to values which are distant from the corresponding d band energies. We then plot the resulting total valence-band charge densities (from the $\Gamma_{15\nu}$ to the $\Gamma_{1\nu}$ state, without the contribution of the cation d states) in Fig. 6(a) (for HgTe) and Fig. 6(b) (for CdTe). Comparison with the valence charge densities of HgTe and CdTe calculated with p-d repulsions (i.e., retaining the cation d band in the variational calculations) is given in Figs. 6(c) and 6(d), respectively, whereas Figs. 6(e) and 6(f) give the differences in charge densities induced by p-d repulsion effects [i.e., (c)-(a) in Fig. 6(e) and (d)-(b) in Fig. 6(f)]. Inspection of these results shows that p-d repulsion depletes bonding charge from the cation-anion bond (negative contours, depicted in Figs. 6(e) and 6(f) by dashed contours), and deposits it in the antibonding direction around the cation site (lobes pointing away from the bond direction). This p-d repulsioninduced bond weakening (more pronounced in HgTe, with its shallow and delocalized d electrons) could be the reason that our calculated cohesive energies of these materials are smaller relative to calculations which omit the cation d bands (Table II). ## C. Spin-orbit splittings Spin-orbit (SO) splittings exhibit opposite contributions from p and d orbitals, ^{59,60} hence constitute an interesting measure to the p-d hybridization discussed in the previous section. FIG. 6. Comparison of charge density of CdTe and HgTe valence states calculated in (a) and (b) without p-d hybridization and in (c) and (d) with p-d hybridization (see text). (e) and (f) show the corresponding charge density differences. For clarity of display the cation d bands were omitted. Note in (e) how p-d hybridization removes charge from the Hg-Te bond. The charge density is given in units $[10^{-3} e/(a.u.)^3]$. The step sizes are five in (a)-(d) and two in (e)-(f). The dashed lines indicate negative region. The reduced bond strength in (e) is highlighted by the shaded area. If p-d mixing is allowed, the spin-oribt splitting can be described⁵⁹ as a linear combination of the splittings for pure p and pure d orbitals Δ_p and Δ_d , weighed by the fraction Q_d of the d charge in the state of question, i.e., $$\Delta \simeq \alpha (1 - Q_d) \Delta_p + \beta Q_d \Delta_d, \tag{4}$$ where α and β are the geometrical coefficient depends on the charge distribution of the state. In CuCl, having a very strong p-d mixing, Δ_0 is negative.³⁵ We have calculated the spin-orbit splitting Δ_0 at $\Gamma_{15\nu}$ and Δ_1 at $L_{3\nu}$ directly from the band structure through a second variation procedure. The results $[\Delta_0$ (band calculation) and Δ_1 (band calculation) are given in Table IV. In addition, we have calculated Δ_0 and Δ_1 from Eq. (4). We find that if we consider Δ_p as the SO splitting of the $\Gamma_{15\nu}$ states with no pd hybridization and Δ_d as the SO splitting of the cation d states then the coefficients α and β of Eq. (4) satisfy approximately $\alpha(1-Q_d)\simeq\beta\simeq 1$, i.e., $$\Delta = \Delta_p + Q_d \Delta_d. \tag{5}$$ Results obtained using this equation are also given in Table IV {denoted Δ [Eq. (5)]}. Our basic conclusions are the following: (i) Using in Eq. (5) the fraction of d character (Q_d) obtained from band-structure calculations we reproduce nearly the same spin-orbit splitting obtained directly by incorporating the spin-orbit operator H_{SO} into the band Hamiltonian. (ii) Our LAPW results are in substantial agreement with the LMTO results of Refs. 50 and 51. (iii) Our calculated results agree reasonably with experiment (Table III) for ZnTe and CdTe, but disagree with the experimental value^{57,61-68} quoted for HgTe (Table III). (iv) If p-d coupling is neglected (resulting in the $\Delta_0 = \Delta_p$; values given in the first line of Table IV), we find better agreement with the current experimental data for HgTe. The disagreement with the experimental result for HgTe deserves further attention. The experimental measurement TABLE IV. Calculated spin–orbit splittings at Γ (denoted Δ_0) and L (denoted Δ_1), in eV. Q_d denotes the fraction of d character in the respective wave functions. Δ (band calc.) is the value obtained from direct band-structure results, using the approach of Ref. 39. Δ [Eq. (5)] corresponds to the simple approximation of Eq. (5) where the SO splitting is expressed as a combination of the p-orbital contributions Δ_p and the d-orbital contribution $Q_d \Delta_d$. Here Δ_p is obtained from band calculations at Γ_{15v} where p-d repulsion is omitted, and Δ_d is obtained as the splitting of the cation d state when p-d repulsion is included. Δ_d is very close to the value obtained from atomic calculation, which gives -0.35, -0.70, and -1.78 eV for Zn, Cd, and Hg, respectively. | | ZnTe | CdTe | HgTe | |----------------------------------|-------|-------|-------| | $\Delta_{\rho}
(\Gamma_{15\nu})$ | 0.92 | 0.90 | 0.99 | | Δ_d | -0.37 | -0.69 | -1.68 | | $Q_d (\Gamma_{15v})$ | 0.072 | 0.074 | 0.129 | | Δ_0 [Eq. (5)] | 0.89 | 0.85 | 0.78 | | Δ_0 (band calc.) | 0.89 | 0.86 | 0.78 | | $\Delta_p (L_{3u})$ | 0.54 | 0.56 | 0.69 | | $Q_d(L_{3v})$ | 0.045 | 0.045 | 0.085 | | Δ_1 [Eq. (5)] | 0.52 | 0.53 | 0.55 | | Δ_1 (band calc.) | 0.51 | 0.53 | 0.53 | of Δ_0 for HgTe is complicated by the inverted band structure of this compound [see Fig. 2(c), showing Γ_{1c} below $\Gamma_{15\nu}$]. Unfortunately, only indirect measurements⁶¹⁻⁶⁸ have been used to deduce Δ_0 for HgTe. On the theoretical side, two uncertainties exist. First, in calculating Δ_0 from the band structure we assumed that the j = l + 1/2 and j = l - 1/2radial orbitals can be averaged.³⁹ This approximation could introduce an error of ≤ 0.2 eV for the Hg $6p_{1/2}$ state, hence the spin-orbit splitting of the Hg 6p level is underestimated by this amount. Since the $\Gamma_{15\nu}$ valence-band maximum of HgTe includes but 6% Hg 6p character, the value of Δ_0 is underestimated by ≤0.02 eV. This correction can be added to our directly calculated value of Table IV. The second potential source of error in the theory may arise from the fact that the calculated d band energies (Table III) are less bound than photoemission studies indicate (Table I); hence, p-d hybridization is overestimated in our calculation. To examine quantitatively the effects of this error, we have repeated a series of self-consistent band-structure calculations for ZnTe, CdTe, and HgTe, artificially moving the cation d bands to deeper binding energies. (This was done by artificially increasing the exchange parameter α which multiplies the exchange potential away from its nominal value of 2 towards 1. Owing to the larger spatial localization of cation d orbitals relative to all other valence states, this scaling moves the cation d bands to more negative energies relative to other states.) Figure 7 depicts the calculated Δ_0 for ZnTe, CdTe, and HgTe as a function of the separation of the cation d band from the valence band maximum. The vertical arrows denote the observed position of the $d_{3/2}$ states in photoemission experiments (Table I). Adding the estimated correction due to averaging the l + 1/2 and l - 1/2 radial orbitals for HgTe, we find the calculated Δ_0 and Δ_1 values (in eV) at the observed position of the cation d bands to be $$\begin{split} &\Delta_0(\text{ZnTe}) = 0.94, \quad \Delta_1(\text{ZnTe}) = 0.56; \\ &\Delta_0 \text{ (CdTe)} = 0.91, \quad \Delta_1 \text{ (CdTe)} = 0.56; \\ &\Delta_0 \text{ (HgTe)} = 0.90, \quad \Delta_1 \text{ (HgTe)} = 0.63; \\ &\text{hence,} \end{split}$$ $$\Delta_0 (\text{CdTe}) \simeq \Delta_0 (\text{HgTe}),$$ (7) FIG. 7. Variation of spin—orbit splitting Δ_0 as a function of the energy position of the cation $d_{3/2}$ states $E_{d_{3/2}}$ with respect to VBM for ZnTe, CdTe, and HgTe. The arrows point to the position of the experimentally observed $E_{d_{3/2}}$ from photoemission (Table I). in contrast with the currently accepted experimental results^{56,57} Δ_0 (HgTe) = 1.08 eV; Δ_0 (CdTe) = 0.90 eV. The difference between our predictions of Eq. (7) and the accepted experimental values showing $\Delta_0(\text{CdTe}) < \Delta_0(\text{HgTe})$ has an important implication: current interpretations and fittings of Δ_0 have traditionally assumed that Δ_0 of common-anion systems generally increases with the cation atomic number. 60 We find, however, that if p-d mixing exists, the opposite can be true, because the conventional analysis disregards p-d mixing effects which also increase with the cation atomic number and contribute to a reduction of Δ_0 . Direct experimental determinations of Δ_0 for HgTe would be very desirable and would test our predictions [Eq. (7)], currently in conflict with the indirectly measured Δ_0 values. # D. Charge redistribution in forming ternary compounds Current interest in HgTe-CdTe alloys has raised the question of the stability and relative charge transfer^{25,26,49} in ordered $\operatorname{Hg}_n \operatorname{Cd}_{4-n} \operatorname{Te}_4$ compounds (n = 1, 2, and 3) relative to the binary constituents (n = 0 and n = 4). We have calculated the band structure, total energies, and charge densities of $HgCdTe_2$ (n = 2 above) in the tetragonal CuAuI-like structure. As discussed in Sec. IV A, we find this ternary compound to have a higher energy per bond relative to its constituents and hence predict that no spontaneous ordering would occur in Hg_{0.5} Cd_{0.5} Te solid solution. To examine the charge redistribution in the ternary compound relative to the binary constituents, we show charge-density differences in Fig. 8 along the bond directions. If the contributions of the cation d bands to the charge densities were ignored [Figs. 8(a) and 8(b), denoted "no d") one would have erroneously concluded that in the ternary phase electron charge is accumulated on the Hg-Te bond [positive dashed areas in Fig. FIG. 8. Valence charge difference between CdHgTe₂ and its binary constituents CdTe and HgTe along the cation–anion bond directions. (a) and (c) Hg–Te bond; (b) and (d) Cd–Te bond. In (a) and (b) cation d bands are removed, in (c) and (d) cation d bands are included. 8(a)] and depleted from the Cd-Te bond [negative dashed areas in Fig. 8(b)]. However, this "weakening" of the Hg-Te bond (relative to the Cd-Te bond) in the ternary system is but an artifact of the omission of the contributions of the cation d bands to the charge densities, as evidenced by Figs. 8(c) and 8(d), exhibiting depletion of bond charge on the Hg-Te bond [Fig. 8(c)] and the Cd-Te bond [Fig. 8(d)] in forming the ternary phase from its binary constituents. The buildup of charge on the Hg-Te bond in the absence of contributions from the deep d band [Fig. 8(a)] is merely a consequence of a smaller p-d repulsion in CdHgTe₂ relative to HgTe. The reduced bond charge on the Hg-Te bond in the real system [Fig. 8(c)] is due to reduced d orbital bonding in the ternary phase. Using the tight-binding method (which neglects cation d bands) Chen et al. 26(b) have suggested that the reduced Hg-Te bond strength in the ternary is due to an unfavorable charge transfer from Cd-Te bond (in bonding state) to Hg-Te bond (in antibonding state), i.e., in opposite direction to what our calculations show. Their argument is hence, not supported by our results, since we find that charge on the Hg–Te bond is actually reduced [Fig. 8(c)]. ## E. Valence-band offsets between II-VI compounds Tight-binding models⁶⁹ have calculated the valence-band offset $\Delta E_{\rm vbm}$ between two semiconductors as the difference between the energies of the $\Gamma_{15\nu}$ valence-band maximum [Eq. (3)] of AC and BC: $$E_{\text{vbm}}(\text{AC/BC}) = \epsilon_{\text{BC}} \left[\Gamma_{15\nu} \right] - \epsilon_{\text{AC}} \left[\Gamma_{15\nu} \right]. \tag{8}$$ Since common-anion semiconductors have the same anion energy ϵ_p^a , the difference $\Delta E_{\rm vbm}$ (AC/BC) reflects in this model the effect of different cation energies ϵ_p^c and different matrix elements V_{pp} . However, all IIB cations have similar ϵ_p^c values. Furthermore, the CdTe–HgTe and GaAs–AlAs pairs have also nearly identical bond lengths, hence V_{pp} (which, in the tight-bonding model^{22(a)} depends solely on bond length) is nearly identical for each member of the pair. This has led, by Eq. (8) to very small $\Delta E_{\rm vbm}$ (AC/BC) values for most common-anion semiconductors (Table V). This result has been formulated earlier in the hitherto successful "common-anion rule" stating that two semiconductors sharing the same anion would have a very small valence-band offset. Consider first two binary common-anion semiconductors AX and BX and neglect the effect of d states on the band discontinuity between them [Fig. 9(a)]. The cation p orbitals (A,p) and (B,p) can couple with the anion p orbital (X,p) as all have the same symmetry $(t_2, \text{ or } \Gamma_{15})$ in the zinc-blende lattice. This coupling results in the two bonding states $\Gamma_{15\nu}(A-X)$ and $\Gamma_{15\nu}(B-X)$ whose energy difference provides in this model $\Delta E_{\nu}(AX/BX)$. We see that each of these bonding states is repelled to deeper energies relative to (X,p) since the cation p orbital energy is above the anion p orbital energy. This repulsion $V(A,p;X,p)^2/[\epsilon(A,p)-\epsilon(X,p)]$ is proportional to the coupling matrix element V(Ap;Xp) and hence increases as the A-X bond length becomes shorter. If AX and BX have the same bond length and similar cation p energies (as is the case in CdTe-HgTe or AlAs-GaAs) this TABLE V. Calculated and observed valence-band offsets (in eV), for II-VI semiconductor pairs. The right-hand compound in each pair has the higher VBM. Comparison is given with the tight-binding (TB) and Tersoff's results. | | CdTe/ZnTe | CdTe/HgTe | ZnTe/HgTe | MnTe/CdTe | |--|-------------------------|--|-------------------------|---------------------| | $\Delta E_{\rm VBM}$ (with d) ^a | 0.13 ± 0.02 | 0.37 ± 0.03 | 0.26 ± 0.04 | 0.25 ± 0.10^{b} | | Expt. | $0.10 \pm 0.06^{\circ}$ | $0.35 \pm 0.06^{d} \\ 0.36 \pm 0.05^{c}$ | $0.25 \pm 0.05^{\circ}$ | < 0.1 ^e | | ΔE_{VBM} (TB, no d) ^f | - 0.07 | 0.00 | 0.07 | 0.04 | ^a Present study; spin-orbit splitting effects are included; see Ref. 70. 2605 In many binary materials AX and BX the cation d states cannot be neglected. If these orbitals are below the anion p state (e.g., Cu 3d, Zn 3d, Ag 4d, Cd 4d, Au 5d, or Hg 5d) they will repel upwards the valence-band maximum, as shown in Fig. 9(b). Since this repulsion is proportional to
$V(A,d;X,p)^2/[\epsilon(A,d)-\epsilon(X,p)]$ it is larger the shorter the A-X bond is and the shallower is the d orbital energy of the cation A. Hence, since the Hg 5d state is shallower than the Cd 4d state, HgTe would have a higher VBM energy than CdTe. This model leads to finite band offsets between common-anion pairs with the same bond length and similar cation p orbital energies, in agreement with experiment. (Note that Al has empty, high-energy 3d orbitals which lower the VBM in AlAs relative to GaAs.) Fig. 9. Energy level diagram applied to binary semiconductor heterojunctions, neglecting (a) or considering (b) the role of the cation d states. CB indicates conduction band. We have calculated 70,71 the valence-band offsets of the common-anion semiconductors CdTe/HgTe, CdTe/ZnTe, ZnTe/HgTe, and MnTe/CdTe in a way that parallels their measurement in photoemission core level spectroscopy. 72 Three quantities are needed in such a calculation. The core level binding energies $E_{nl,\mathrm{A}}^{\mathrm{AC}}$ and $E_{n'l',\mathrm{B}}^{\mathrm{BC}}$ of the cations A and B, respectively, relative to the VBM (obtained from the band structures of AC and BC, respectively) and the core level difference $\Delta E_{nl,n'l'}^{A,B}$ [calculated from the band structure of the (001) (AC)₁ (BC)₁ superlattice, which is equivalent to the ABC₂ "CuAu-I" structure]. We have shown,⁷¹ using a simple electrostatic model, that for common-anion systems interface dipole effects can be small and localized near the interface, so that an ultrathin superlattice could be used to obtain the core level difference $\Delta E_{nl,n'l'}^{A,B}$. The valence-band offset ΔE_{VBM} is then obtained as $$\Delta E_{VBM} \simeq E_{nl,A}^{AC} - E_{n'l',B}^{BC} + \Delta E_{nl,n'l'}^{A,B}$$ (9) We find that after including p-d hybridization our calculated valence-band offsets are in good agreement with experimental data. Our results (with d) are compared with tight-binding (TB) calculation (no pd repulsion) and experimental data for CdTe/ZnTe, CdTe/HgTe, ZnTe/HgTe, and MnTe/CdTe in Table V.⁷²⁻⁷⁵ # F. Alloy clustering and stability of inter-II–VI compounds One of the central quantities computed in statistical mechanics models of $A_x B_{1-x} C$ alloys, 48,49,76 is the populations of the C-centered molecular clusters $A_n B_{4-n}$ ($0 \le n \le 4$) at given compositions (x) and temperatures (T). These cluster populations, $P^{(n)}(x,T)$ are then contrasted with those predicted by a purely random (R) distribution $P_R^{(n)}(x)$. If $$\Delta P^{(n)}(x,T) = P^{(n)}(x,T) - P_R^{(n)}(x) \tag{10}$$ is positive, the system is said to exhibit "clustering" of cluster n, whereas if $\Delta P^{(n)}(x,T) < 0$, it is said to exhibit "anticlustering." These quantities depend naturally on the volume-dependent interaction energies $\Delta E^{(n)}(V)$ of the $A_n B_{4-n} C_4$ (free or embedded) clusters, ^b Averaged over spin-up and spin-down states. c Reference 73. d Reference 72. e Reference 74. Reference 75 and Eq. (8). $$\Delta E^{(n)}(V) = E \left[A_n B_{4-n} C_4; V \right]$$ $$- (n/4) E \left[AC \right] - \left[(4-n)/4 \right] E \left[BC \right].$$ (11) Figure 10 contrasts the cluster energies obtained by Sher et $al.^{49}$ with those obtained here for the $Hg_{1-x}Cd_xTe$ system. The tight-binding results [Fig. 10(a)] predict that the Hg₂Cd₂Te₄ cluster is stable relative to its constituents $[\Delta E^{(2)} < 0]$, whereas our first-principles results [Fig. 10(b) show the opposite. Furthermore, Sher et al. predict the HgCd₃ and Hg₃Cd clusters to have comparable excess energies and that both are less stable than Hg, Cd, whereas the present results predict the 1:3 clusters to be stabler then the 1:1 cluster. Figure 11 contrasts the excess populations $\Delta P^{(n)}(x,T)$ obtained by both groups, using the quasichemical method in the case of Sher et al., 49,76 and the cluster variation method⁴⁸ in the present study. Table VI compares the signs of $\Delta P^{(n)}(x,T)$ obtained with the various methods, compared with those deduced from recent nuclear magnetic resonance (NMR) studies.^{77–79} We see the following: (i) For the alloy systems $Hg_{1-x}Zn_xTe$ and $Cd_{1-x}Zn_xTe$ (for which a considerable size mismatch exists between the binary constituents), the tight-binding theory^{49,76} predicts an incorrect sign of $\Delta P^{(n)}(x)$ for all cases where data are available. (The present first-principles theory has not been Fig. 10. Calculated excess cluster energies [Eq. (11)] for $Hg_nCd_{4-n}Te_4$. Results of Sher *et al.* (Ref. 49) are shown in (a), whereas (b) shows the present first-principles results. FIG. 11. Calculated excess cluster probabilities [Eq. (10)] for CdTe-HgTe alloys. The results of Sher *et al.* (Ref. 49) are shown in (a), whereas (b) gives the present first-principles results. extended yet to these systems.) (ii) For $\mathrm{Hg}_{1-x}\mathrm{Cd}_x\mathrm{Te}$ (nearly vanishing size mismatch), the present theory and tight binding agree on the sign of $\Delta P^{(n)}(x,T)$ for $n\neq 2$ (but not for n=2 in Hg-rich side). Both theories agree with experiment for Hg-poor alloys, and both disagree with experiment (which suggests a deficiency of $\mathrm{Hg}_4\mathrm{Te}$ clusters) for Hg-rich alloys. The discrepancies between theory and experiment for Hgrich Hg_{1-x}Cd_xTe alloys deserve further attention. It is possible that the Hg-rich samples⁷⁸ were structurally poor, i.e., that not all of the nominal Hg was actually bonded to Te in the fcc lattice, but a portion of it existed as metallic inclusions or as a surface segregated phase, or has been lost altogether from the sample. Hence, the experimental result suggesting deficiency of bonded Hg₄ Te clusters could reflect the fact that not all 75% Hg are bonded to Te. There are two experimental facts that support this possibility. First, Trekhov et al.80(a) have observed that one needs a nominal Cd_{0.45} Hg_{0.55} Te sample to maintain an equal number of Cd and Hg atoms on the cation sublattice, i.e., a nominal x = 0.5 sample has < 50% bonded Hg. Second, Sporken et al., 80(b) in studying the Hg core photoemission have found that a substantial amount of Hg outdiffuses from the sample to its surface, leaving a deficiency of Hg₄Te in the bulk and producing cluser Hg_n on the surface (with radii of 5–10 Å) of the sample. The Hg $4f_{7/2}$ photoemission of the surfaceclustered Hg appears at a higher binding energy than that of the bulk Hg. For large cluster radii R, the binding energy of TABLE VI. Comparison between theory and experiment in the predicted trends in clustering [Eq. (10)]. | Cluster | | Hg-rich Hg _{1-x} Zn | _x Te | Hg -poor $Hg_{1-x}Zn_xTe$ | | | | | |--------------------|--|------------------------------|-------------------|--|------------------------------|-------------------|--|--| | type | Sher et al.ª | | Exptl. | Sher et al.a | | Exptl. | | | | Hg ₄ | Deficiency (—) | | | | | | | | | Hg_3Zn | Excess (+) | | | | | | | | | $HgZn_3$ | Deficiency (-) | | | Excess (+) | | | | | | Zn ₄ | | | | Deficiency (-) | | | | | | | | Cd-rich Cd _{1-x} Zn | ,Te | | Cd-poor Cd _{t-x} Zn | ı _x Te | | | | Cluster | Sher et al.b | | Exptl.® | Sher et al.a | | Exptl.d | | | | type | | | (<i>x</i> ≤0.12) | | | (x = 0.9) | | | | Cd ₄ | Deficiency (-) | | Excess (+) | | | | | | | Cd₃Zn | Excess (+) | | Deficiency (-) | | | | | | | $CdZn_3$ | Deficiency (-) | 3 | | Excess (+) | | Deficiency (—) | | | | Zn ₄ | | | | Deficiency (-) | | Excess (+) | | | | | $\operatorname{Hg-rich} \operatorname{Hg}_{1-x}\operatorname{Cd}_x\operatorname{Te}$ | | | $\operatorname{Hg-poor} \operatorname{Hg}_{1-x}\operatorname{Cd}_x\operatorname{Te}$ | | | | | | Cluster | | | Exptl.c | - | | Exptl.d | | | | type | Sher et al.d | Wei and Zunger | (x = 0.25) | Sher et al.d | Wei and Zunger | (x = 0.75) | | | | Hg₄ | Excess (+) | Excess (+) | Deficiency (—) | | | | | | | Hg ₃ Cd | Deficiency (—) | Deficiency (—) | Excess (+) | | | | | | | Hg_2Cd_2 | Excess (+) | Deficiency (-) | | Excess (+) | Excess (+) | | | | | $HgCd_3$ | | | | Deficiency (-) | Deficiency (-) | Deficiency (-) | | | | Cd_4 | | | | Excess (+) | Excess (+) | Excess (+) | | | ^aResults for clustering in Hg_{1-x}Zn_xTe were presented by Sher *et al.* in Ref. 49, Fig. 5. Note that the labels for Hg₄ and Zn₄ were interchanged erroneously in this figure. The same error occurred in Fig. 5 of Sher *et al.* (Ref. 76). 2607 the surface Hg approaches that of metallic Hg. This raises the possibility that the Hg-rich samples studied by NMR contain less bulk bonded Hg than the nominal concentration would suggest, explaining the discrepancy with theory. A careful reexamination of the content of the bonded Hg in this sample and new experiments on crystalline samples (rather than crushed polycrystalline samples of unknown stoichiometry⁷⁸) are called for. ### G. Ground-state properties of ordered alloys To assess the relative stability of the various bonds between II–VI compounds, we have calculated the total energies of ordered $A_nB_{4-n}C_4$ structures (zinc blende for n=0 and 4, the tetragonal CuAuI-like structure for n=2 and the "Luzonite" structure for n=1 and 3). The total energy has been minimized both with respect to the lattice parameter and with respect to the cell-internal structural degrees of freedom, controlling the two bond lengths R(A-C) and R(B-C) and the bond angles. We define the formation enthalpy $\Delta H^{(n)}$ of the structure $A_nB_{4-n}C_4$ as its energy (at equilibrium) with respect to the energies of equivalent amounts of AC and BC (also at their equilibrium) [i.e., as the equilibrium value of Eq. (11)]: $$\Delta H^{(n)} = E \left[A_n B_{4-n} C_4; V_{eq} \right]$$ $$- (n/4) E \left[AC \right] - \left[
(4-n)/4 \right] E \left[BC \right]. (12)$$ Table VII gives $\Delta H^{(n)}$ in units of kcal per four-atom formula mole (i.e., ABC₂, or double zinc blende). Table VII also gives the bulk moduli $B^{(n)}$, the equilibrium bond lengths, and the dimensionless parameter u measuring the extent of bond alternation in these systems. For the CuAuI structure, assuming c = a, we have $$R(A-C) = [1/8 + u^2]^{1/2}a,$$ $R(B-C) = [1/8 + (1/2 - u)^2]^{1/2}a,$ (13) for the Luzonite structure (AB₃C₄, space group T_d^1), we have $$R(A-C) = \sqrt{3}ua,$$ $R(B-C) = [2(1/2 - u)^2 + u^2]^{1/2}a,$ (14) so that u = 1/4 gives R(A-C) = R(B-C). The results show the following: (i) In all cases, $\Delta H^{(n)} > 0$, hence the ternary ordered phase $A_n B_{4-n} C_4$ for n=1, 2, or 3 will disproportionate, at equilibrium, to nAC + (4-n)BC. (This is reflected by the increased population of Hg_4 and Cd_4 clusters in Fig. 11.) ^bResults for clustering in Cd_{1-x}Zn_xTe were presented by Sher et al., Ref. 76, Fig. 4. Note that the labels for Cd₄ and Zn₄ were erroneously interchanged in this figure. ^cBeshah et al., Ref. 77. dResults for clustering in $Hg_{1-x}Cd_xTe$ were presented by Sher et al., Ref. 49, Fig. 6. Note that the labels Hg_4 and Cd_4 were erroneously interchanged in that figure. eZax et al., Ref. 78. TABLE VII. Calculated (semirelativistic LAPW) ground-state properties of ordered $A_n B_{4-n} C_4$ ($0 \le n \le 4$) structures between ZnTe, CdTe, and HgTe. | Ordered compound | $a_{eq}^{(n)}$ (Å) | R(Zd-Te)
(Å) | R(Cd-Te)
(Å) | R(Hg-Te)
(Å) | и | B (n) (GPa) | $\Delta H^{(n)}$ (kcal/4-atom mole) | |-----------------------------------|--------------------|-----------------|-----------------|-----------------|--------|-------------|-------------------------------------| | • | (/ | | | () | | (314) | (Koul) 1 atom mole) | | ZnTe | 6.052 | 2.621 | 12.5 | 100000 | 0.25 | 52.1 | 0 | | CdTe | 6.470 | *** | 2.802 | -1414 | 0.25 | 44.0 | 0 | | HgTe | 6.492 | | 7.2.7 | 2.811 | 0.25 | 46.1 | 0 | | Cd ₃ ZnTe ₄ | 6.368 | 2.643 | 2.797 | *** | 0.2397 | 47.3 | 0.76 | | CdZnTe ₂ | 6.263 | 2.638 | 2.790 | \$3000 | 0.2290 | 44.0 | 1.25 | | CdZn ₃ Te ₄ | 6.158 | 2.630 | 2.783 | \$18.50 | 0.2609 | 50.2 | 1.08 | | Hg ₃ ZnTe ₄ | 6.383 | 2.645 | 100 | 2.806 | 0.2393 | 48.6 | 0.62 | | $HgZnTe_2$ | 6.269 | 2.637 | 1999 | 2.797 | 0.2279 | 45.2 | 0.98 | | $HgZn_3Te_4$ | 6.163 | 2.632 | *: | 2.787 | 0.2611 | 49.4 | 0.84 | | Cd ₃ HgTe ₄ | 6.476 | 300 | 2.802 | 2.810 | 0.2505 | 44.8 | 0.24 | | CdHgTe ₂ | 6.481 | 35,5,50 | 2.801 | 2.812 | 0.2485 | 44.2 | 0.28 | | CdHg ₃ Te ₄ | 6.485 | (47904) | 2.804 | 2.810 | 0.2496 | 46.2 | 0.17 | Our results for HgCdTe₂ disagree with the results of Sher *et al.*⁴⁹ and Hass and Vanderbilt²⁰ who found that if the (destabilizing) d band is ignored, $\Delta H[\text{CdHgTe}_2] < 0$. (ii) Comparing the magnitudes of $\Delta H^{(n)}$ for a fixed stoichiometry n and different compounds (e.g., CdHgTe₂, HgZnTe₂, and CdZnTe₂) we find that CdHgTe₂ (having a very small lattice mismatch between its binary constituents) is the least unstable, whereas both HgZnTe₂ and CdZnTe₂ (with relative lattice mismatches of 5.9% and 6.2%, respectively) are considerably less stable. (Of course, formation enthalpies reflect thermodynamic stability/instability towards disproportionation, not to be confused with stability against other reactions, such as oxidation, diffusion, etc.) Our results are in generally good agreement with the pseudopotential calculation²⁰ for lattice mismatched CdZnTe₂ and HgZnTe₂. Tight-binding calculation by Sher et al.⁷⁶ give $\Delta H [Hg_{0.5}Zn_{0.5}Te] \simeq 0.72$ kcal/(4-atom mole) $\Delta H [Cd_{0.5}Zn_{0.5}Te] \simeq 0 [Fig. 3(a) and 3(b), Ref. 76], how$ ever, results given by Sher et al. in Ref. 25 show $\Delta H \left[\text{Cd}_{0.5} \text{Zn}_{0.5} \text{Te} \right] \simeq 0.65 \text{ kcal/(4-atom mole)}.$ (iii) We find that the shorter of the two bonds in AC and BC becomes *longer* in the ternary phase $A_n B_{4-n} C_4$, whereas the longer of the two binary bonds becomes shorter. Hence, comparing ZnTe and CdTe, the shorter (Zn-Te) bond has a length of 2.621, 2.630, 2.638, and 2.643 Å in ZnTe, Cd₃ZnTe₄, CdZnTe₂, and CdZn₃Te₄, respectively. This agrees with the valence force field (VFF) calculations of Martins and Zunger⁸¹ and with extended x-ray absorption fine-structure (EXAFS) measurements.82 In the CdTe-HgTe system (where our theory underestimates the length of the Cd-Te bond by 0.004 Å and overestimates that of Hg-Te by 0.013 Å), we find that the bond lengths in the ternary phase are nearly unchanged relative to their values in the binary compounds (e.g., the Hg-Te bond length is 2.811 Å in HgTe and 2.812 Å in CdHgTe₂; the Cd-Te bond length is 2.802 Å in CdTe and 2.801 Å in CdHgTe₂). This conflicts with the results of Sher et al.26 and Hass and Vanderbilt20 who find that the shorter (Hg-Te) bond becomes substantially shorter in the ternary phase, whereas the longer (Cd-Te) bond becomes yet longer in the ternary phase. This effect can be quantified by defining the relative bond length mismatch $R_{\rm BC}$ [A C:B] $-R_{\rm AC}$ [B C:A] in the dilute *alloy* (or impurity) limit with respect to the size mismatch in the *pure* compounds, $R_{\rm BC}^{\rm 0}$ and $R_{\rm AC}^{\rm 0}$: $$\eta(x) = (R_{\rm BC} [A_x B_{1-x} C] - R_{\rm AC} [A_{1-x} B_x C]) / (R_{\rm BC}^0 - R_{\rm AC}^0),$$ $$\eta(x \to 1) = (R_{\rm BC} [AC:B] - R_{\rm AC} [BC:A]) / (R_{\rm BC}^0 - R_{\rm AC}^0).$$ (15a) If $\eta < 1$, the alloy environment acts to *reduce* the difference between the bond lengths of the constituents, whereas if $\eta > 1$, the alloy *amplifies* the difference. For HgCdTe, Chen et al.²⁶ find $\eta(1) \cong 8$ and Hass and Vanderbilt²⁰ find $\eta(1) \cong 11$, whereas we find for all systems $\eta \leqslant 1$. Since this effect is very large in the calculations neglecting the d bands^{20,26} (the Hg–Te and Cd–Te bond lengths are predicted to differ in the Hg_{0.5} Cd_{0.5} Te alloy by 0.05 Å, compared with 0.009 Å in the end-point compounds), if correct it should be readily observed in future EXAFS measurements. ### H. Optical bowing Our calculations of the electronic structure of $A_n B_{4-n} C_4$ also provides information on their band structure. Bernard and Zunger⁸³ and Wood *et al.*⁸⁴ have shown that the optical bowing parameter *b* of an $A_x B_{1-x} C$ alloy can be calculated as a sum of an "ordered" contribution $b_{\rm ord}$ (obtained from comparing the band gap of ordered ABC₂ in CuAuI structure to the average of the gaps of AC and BC) and a "disordered" contribution $b_{\rm dis}$, reflecting the fact that the $A_x B_{1-x} C$ alloys contains, even at x=0.5, not only the $A_2 B_2$ cluster, but also the A_4 , $A_3 B$, $A B_3$, and B_4 clusters (Fig. 11): $$b = b_{\rm ord} + b_{\rm dis}. \tag{16}$$ For systems with a lattice mismatch, it is found that $b_{\rm ord} > b$, hence the "disorder" contribution acts to increase the alloy band gap, *reducing* thereby its bowing parameter. To calculate the band gaps of the systems of interest here, we must first correct for the well-known⁸⁵ underestimation of gaps by the local density approximation (LDA). We do so by contrasting the LDA calculated gaps for ZnTe, CdTe, and HgTe with those measured³⁵ (extrapolating the result to TABLE VIII. Band gaps of binary and ternary II-VI compounds. | | $E_{\rm g}({ m LDA})$ (eV) | E_g (exptl.)
0 K
(eV) | LDA
error
(eV) | LDA
corrected
(eV) | b (exptl. at $x = 0.5$) | b_{ord} (calc. at $x = 0.5$) | |---------------------|----------------------------|-------------------------------|----------------------|--------------------------|-----------------------------------|--| | ZnTe | 1.02 | 2.39ª | 1.37 | 2.39 | | | | CdTe | 0.47 | 1.61 ^a | 1.14 | 1.61 | | *** | | HgTe | 0.99 | -0.30^{a} | 0.69 | -0.30 | | • • • • | | CdHgTe ₂ | -0.27 | 0.60 ^b | (0.91) | 0.64 | 0.23 ^b ,0 ^a | 0.05 | | HgZnTe ₂ | -0.09 | 1.01° | (1.03) | 0.94 | 0.14° | 0.41 | | CdZnTe ₂ | 0.64 | 1.94 ^d | (1.25) | 1.89 | 0.26 ^d | 0.44 | a Reference 35. 0 K), and applying to our calculated LDA gaps of ABC, the average LDA error for AC and BC (Table VIII). We hence predict for CdHgTe₂, HgZnTe₂, and CdZnTe₂ zero-temperature band gaps of 0.64, 0.94, and 1.89 eV, respectively. The measured results for the corresponding disordered alloys at x = 0.5 (extrapolated to 0 K) are 0.595, ⁸⁶ 1.01, ⁸⁷ and 1.94 eV, 88 respectively. Our calculated $b_{\rm ord}$, given in Table VIII, overestimates, as discussed above, the total b for lattice mismatched system, yet they suggest definite trends $b(CdZnTe) \simeq b(HgZnTe) \gg b(CdHgTe)$ associated with the trends in bond length mismatch⁸³ (see also Table VII). Our result b_{ord} (CdHgTe) = 0.05 eV can be compared also with that of Podgorny and Czyzyk²⁹ (0.96 eV), Hass et al.²⁷ (\sim 0.27 eV), and Berding et al.⁸⁹ (0.36 eV). For HgZnTe, our result b_{ord} (HgZnTe) = 0.41 eV can be compared with b = 0.79 eV obtained by Berding et al.⁸⁹ None of the other calculations incorporate the metal d band. This explains why these approaches overestimate the bowing parameters in these systems: Since there is a smaller p-d repulsion in ABC₂ relative to AC and BC, inclusion of this effect raises the gap of ABC₂ (hence, reduces the bowing) relative to calculations which omit d bands. #### V. SUMMARY We have demonstrated that the existence of a fully occupied, nominally "nonbonding" d band inside the valence band of II-VI semiconductors affects the properties of these systems near the valence-band maximum. The incomplete screening by the d electrons of the core leads to profoundly different properties of IIB-VI compounds relative to IIA-VI compounds, lacking this d shell. In addition, the d electrons have a direct effect on the other orbitals of the system, due to the symmetry-allowed p-d interaction. These effects involve (i) reduction
of the direct band gap due to upward repulsion of the Γ_{15n} state by the d bands at lower energies; (ii) reduction of the spin-orbit splitting; (iii) reversal of the order of the d-orbital Γ_{15} and Γ_{12} states relative to the prediction of point-ion crystal-field models; (iv) introduction of antibonding character in the charge distribution of the upper valence bands; (v) significant increase in the valenceband offset between common-anion II-VI pairs (e.g., CdTe-HgTe); and (vi) reduction in the optical bowing parameters. We further predict that p-d repulsion will lead to a near equality of the spin-orbit splitting at $\Gamma_{15\nu}$ of CdTe and HgTe, in contrast with the currently accepted result Δ_0 (HgTe) $> \Delta_0$ (CdTe). Detailed results on equilibrium bond lengths, formation enthalpies, and clustering of inter-II-VI compounds are presented. Note added in proof: In Sec. IV G we have shown that whereas calculations omitting the d bands (Refs. 20, 26) predict that the alloy environment in Hg_{1-x}Cd_xTe acts to increase the bond length size difference $R_{\text{Cd-Te}}(x)$ $-R_{\text{He-Te}}(x)$ relative to the same quantity $R_{\text{Cd-Te}}(1)$ $-R_{\rm He-Te}(0)$ in the pure end-point compounds, our own calculations predict the opposite, i.e., that $\eta(x)$ of Eq. (15a) satisfies $\eta(x) \le 1$. Recently, an experimental EXAFS study of the bond lengths in $Hg_{1-x}Cd_xTe$ has been published by Balzarotti [Physica B 146, 150 (1987)]. This shows that $R_{\text{Hg-Te}}^{0}(0) = 2.798 \,\text{Å}, R_{\text{Cd-Te}}^{0}(1) = 2.8065 \,\text{Å}, R_{\text{Hg-Te}}(0.5)$ = 2.799 Å, and $R_{\text{Cd-Te}}(0.5) = 2.803$ Å, yielding $\eta(0.5) = 0.47$. Although small uncertainties in the (rather close) bond lengths of the end-point compounds are critical for the EXAFS analysis, this experimental study seems to clearly demonstrate that the alloy environmental reduces the bond length size mismatch (i.e., the long bond becomes shorter and the short bond becomes longer), in agreement with our prediction $[\eta(0.5) \simeq 1 \text{ from our Table VII}]$, and in conflict with the previous no-d calculations^{20,26} [e.g., $\eta(0.5) \simeq 5.8$ in Ref. 20 and $\eta(0.5) \simeq 4.4$ in Ref. 26]. This new experimental result also contradicts the speculation of Ref. 77 that $\eta(x) > 1$. #### **ACKNOWLEDGMENTS** We gratefully acknowledge stimulating discussions with Dr. D. Zamir and Dr. S. Vega on the NMR results for II-VI alloys. This work was supported by the Office of Energy Research, Materials Science Division, U.S. Department of Energy, under Grant No. DE-ACO2-77-CH00178. ¹N. J. Shevchik, J. Tejeda, M. Cardona, and D. W. Langer, Phys. Status Solidi B **59**, 87 (1973). ²L. Ley, R. A. Pollak, F. R. Mcfeely, S. P. Kowalczyk, and D. A. Shirley, Phys. Rev. B 9, 600 (1974). ³(a) C. J. Veseley, R. L. Hengehold, and D. W. Langer, Phys. Rev. B 5, 2296 (1972); (b) E. P. Domashevskaya and V. A. Terehov, Phys. Status Solidi B 105, 121 (1981); (c) V. Formichev, T. M. Zimkina, and I. I. Zhukovn, Sov. Phys. Solid State 10, 2421 (1969). ^b Alloy data at x = 0.5, recommended T = 0 K values by Brice, from data compiled in Ref. 86. ^c Alloy data at x = 0.5, Ref. 87. d Reference 88. - ⁴D. J. Stukel, R. N. Euwema, T. C. Collins, F. Herman, and R. L. Kortum, Phys. Rev. 179, 740 (1969). - ⁵F. Herman, R. L. Kortum, C. D. Kuglin, and J. L. Shay, in *II-VI Semi-conducting Compounds*, edited by D. G. Thomas (Benjamin, New York, 1967), p. 503; F. Herman, R. L. Kortum, C. D. Kuglin, J. P. Van Dyke, and S. Skillman, in *Methods of Computational Physics* (Academic, New York, 1968), p. 193. - ⁶P. Eckelt, O. Madelung, and J. Treusch, Phys. Rev. Lett. 18, 656 (1967); J. Treusch, P. Eckelt, and O. Madelung, in *II-VI Semiconducting Compounds*, edited by D. G. Thomas (Benjamin, New York, 1967), p. 558; H. Overhof, Phys. Status Solidi B 45, 315 (1971). - ⁷A. Zunger and A. J. Freeman, Phys. Rev. B 17, 4850 (1978). - ⁸C. S. Wang and B. M. Klein, Phys. Rev. B 27, 3393 (1981). - ⁹P. Bendt and A. Zunger, Phys. Rev. B 26, 3114 (1982). - ¹⁰J. E. Bernard and A. Zunger, Phys. Rev. B 36, 3199 (1987); 34, 5992 (1986). - ¹¹S.-H. Wei and A. Zunger, Phys. Rev. B 35, 2340 (1987-I). - ¹²M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789 (1966). - ¹³M. L. Cohen, in *II-VI Semiconducting Compounds*, edited by D. G. Thomas (Benjamin, New York, 1967), p. 462. - ¹⁴F. Aymerich, F. Meloni, and G. Mulor, Phys. Rev. B 15, 3980 (1977); F. Aymerich, A. Baldereschi, and F. Meloni, Jpn. J. Appl. Phys. 19, Suppl. 19-3, 161 (1980). - 15(a) J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976); (b) R. M. Wentzcovitch, S. L. Richardson, and M. L. Cohen, Phys. Lett. A 114, 203 (1986); (c) J. R. Chelikowsky, Solid State Commun. 22, 351 (1977). - ¹⁶J. R. Chelikowsky, D. J. Chadi, and M. L. Cohen. Phys. Rev. B 8, 2786 (1973). - ¹⁷(a) J. D. Joannopoulos and M. L. Cohen, J. Phys. C 6, 1572 (1973); (b) M. L. Cohen, Science 179, 1189 (1973); (c) J. P. Walter and M. L. Cohen, Phys. Rev. B 4, 1877 (1971). - ¹⁸(a) J. P. Walter, M. L. Cohen, Y. Petroff, and M. Balkanski, Phys. Rev. B 1, 2662 (1970); (b) D. J. Chadi, J. P. Walter, M. L. Cohen, Y. Petrokff, and M. Balkanski, Phys. Rev. B 5, 3058 (1972). - ¹⁹(a) J. Ihm and M. L. Cohen, Phys. Rev. B 20, 729 (1979); W. E. Pickett and M. L. Cohen, *ibid.* 18, 939 (1978); W. E. Pickett, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 39, 109 (1977); J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 13, 826 (1976). - ²⁰K. C. Hass and D. Vanderbilt, in 18th International Conference on the Physics of Semiconductors, edited by O. Engstrom (World Scientific, Singapore, 1987), pp. 1181; J. Vac. Sci. Technol. A 5, 3019 (1987). - ²¹K. J. Chang, S. Froyen, and M. L. Cohen, Phys. Rev. B 28, 4736 (1983). - ²²(a) W. A. Harrison, Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980); (b) J. Vac. Sci. Technol. B 3, 1231 (1985). - ²³D. J. Chadi and M. L. Cohen, Phys. Status Solidi B 68, 49 (1975). - ²⁴P. Vogl, H. P. Hjalmarson, and J. D. Dow, J. Phys. Chem. Solids **44**, 365 (1983). - ²⁵A. B. Chen and A. Sher, Phys. Rev. B 32, 3695 (1985). - ²⁶(a) A. Sher, A. B. Chen, W. E. Spicer, and C. K. Shih, J. Vac. Sci. Technol. A 3, 105 (1985); (b) A.-B. Chen, A. Sher, and W. E. Spicer, *ibid.* 3, 1674 (1985). - ²⁷K. C. Hass, H. Ehrenreich, and B. Velicky, Phys. Rev. B 27, 1088 (1983). - ²⁸D. J. Chadi, Phys. Rev. B **16**, 790 (1977); see also D. J. Chadi and M. L. Cohen, *ibid*. **7**, 692 (1973). - ²⁹M. Podgorny and M. T. Czyzyk, Solid State Commun. **32**, 413 (1974). - ³⁰A. B. Chen and A. Sher, Phys. Rev. B 31, 6490 (1985). - ³¹P. Pecheur, J. van der Rest, and G. Toussaint, J. Cryst. Growth 72, 147 (1985); P. H. Meijer, P. Pecheur, and G. Toussaint, Phys. Status Solidi B 140, 155 (1987). - ³²P. Vogl, in Festkörperproblem XXI (Advance in Solid State Physics), edited by P. Grosse (Pergamon/Vieweg, Braunschweig, 1981), p. 191. - ³³H. Watanabe, Operator Methods in Ligand Field Theory (Prentice Hall, Englewood Cliffs, NJ, 1966), p. 87. - ³⁴W. H. Strehlow and E. L. Cook, J. Phys. Chem. Ref. Data 2, 163 (1973). Results for ZnO are given by D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960). - 35 Landolt-Börnstein Numerical Data and Functional Relationship in Science and Technology, edited by O. Madelung (Springer, Berlin, 1982), Vol. 17b. - ³⁶S.-H. Wei and H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985), and references therein. - ³⁷P. Hohenberg and W. Kohn, Phys. Rev. B **136**, 864 (1964); W. Kohn and L. J. Sham, Phys. Rev. A **140**, 1133 (1965). - ³⁸L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2063 (1971). - ³⁹(a) D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977); (b) A. H. MacDonald, W. E. Pickett, and D. D. Koelling, *ibid.* 13, 2675 (1980). - ⁴⁰R. Juza, A. Rabenau, and G. Pascher, Z. Anorg. Allg. Chem. 285, 61 (1956). - ⁴¹B. Segall, M. R. Lorenz, and R. E. Halsted, Phys. Rev. **129**, 2471 (1963). - ⁴²J. C. Wooley and B. Ray, J. Phys. Chem. Solids 13, 151 (1960). - ⁴³O. Kubachevski and C. B. Alcock, *Metallurgical Thermochemistry*, 5th ed. (Pergamon, New York, 1979), pp. 267–322. - ⁴⁴C. Kittel, Solid State Physics, 5th ed. (Wiley, New York, 1976), p. 74. - ⁴⁵D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. **129**, 1009 (1963). - ⁴⁶R. Dornhaus and G. Nimitz, in *Narrow-gap Semiconductors*, edited by G. Höhler and E. A. Niekisch (Springer, New York, 1983), p. 126. - ⁴⁷A. Fazzio, M. J. Caldas, and A. Zunger, Phys. Rev. B 30, 3430 (1984). - ⁴⁸S.-H. Wei, A. A. Mbaye, L. G. Ferreira, and A. Zunger, Phys. Rev. B **36**, 4163 (1987-I); A. A. Mbaye, L. G. Ferreira, and A. Zunger, Phys. Rev. Lett. **58**, 49 (1987). - ⁴⁹A. Sher, M. A. Berding, S. Krishnamurthy, M. van Schilfgaarde, A.-B. Chen, and W. Chen, Mater. Res. Soc. Symp. Proc. (to be published). - ⁵⁰N. E. Christensen and O. B. Christensen, Phys. Rev. B 33, 4739 (1986). - ⁵¹N. A. Cade and P. M. Lee, Solid State Commun. **56**, 637 (1985). - ⁵²A. V. Savitskii, M. V. Kurik, and K. D. Tovstyuk, Opt. Spectrosc. 19, 59 (1964). - ⁵³D. G. Thomas, J. Appl. Phys. 32, 2298 (1961). - ⁵⁴Y. Guldner, C. Rigaux, M. Grynberg, and A. Mycielski, Phys. Rev. B 8, 3875 (1973). - ⁵⁵M. Cardona and D. L. Greenaway, Phys. Rev. 131, 98 (1963). - ⁵⁶D. T. Marple and H. Ehrenreich, Phys. Rev. Lett. 8, 87 (1962). - ⁵⁷(a) A. Moritani, K. Taniguchi, C. Hamaguchi, and J. Nakai, J. Phys. Soc. Jpn. 34, 79 (1973); (b) P. M. Amirthara, F. H. Pollak, and J. K. Furdyna, Solid State Commun. 39, 35 (1981). - ⁵⁸M. Cardona and G. Harbeke, Phys. Rev. Lett. 8, 90 (1962). - ⁵⁹M. Cardona, in *Modulation Spectroscopy*, Solid State Physics Suppl. 11, edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic, New York, 1969), pp. 65–73; see also K. S. Song, J. Phys. (Paris) 28, 195, Suppl. C3–C4 (1967). - ⁶⁰J. C. Phillips, in *Bonds and Bands in Semiconductors* (Academic, New York, 1973), pp. 178–187. - ⁶¹S. H. Groves, R. N. Brown, and C. R. Pidgeon, Phys. Rev. **161**, 779 (1967). -
⁶²G. A. Antcliffe, Phys. Rev. B 2, 345 (1970). - ⁶³H. Kahlert and G. Bauer, Phys. Rev. Lett. **30**, 1211 (1973). - ⁶⁴B. D. McCombe, R. J. Wagner, and G. A. Prinz, Phys. Rev. Lett. 25, 87 (1970). - ⁶⁵M. A. Kinch and D. D. Buss, J. Phys. Chem. Solids 32, 461 (1971). - ⁶⁶C. Verie and E. Decamps, Phys. Status Solidi 9, 797 (1965). - ⁶⁷D. J. Olego, J. P. Faurie, and P. M. Raccah, Phys. Rev. Lett. 55, 328 (1985). - ⁶⁸C. Verie, F. Raymond, J. Besson, and T. N. Duy, J. Cryst. Growth **59**, 342 (1982). - ⁶⁹W. A. Harrison, J. Vac. Sci. Technol. 14, 1016 (1977). - ⁷⁰S.-H. Wei and A. Zunger, Phys. Rev. Lett. **59**, 144 (1987). - ⁷¹S.-H. Wei and A. Zunger, J. Vac. Sci. Technol. B 5, 1239 (1987). In this paper we have made mistakes in calculating apparent chemical shift (ACS) and true chemical shift (TCS) for AlAs/GaAs pairs. In Table I the ACS in the column of AlAs/GaAs should read 0.89, 0.85, 0.86, 0.84, 0.84, and 0.83, instead of 0.836, 0.809, 0.812, 0.838, 0.840, and 0.834. The average value should be 0.86 \pm 0.03, instead of 0.825 \pm 0.016. In Table II the TCS in the column of AlAs/GaAs should read 0.45, 0.45, and 0.46, instead of 0.423, 0.408, and 0.411. The average is 0.45 instead of 0.416. The results of ΔE_{VBM} (AlAs/GaAs) = 0.41 \pm 0.03 eV are correct. Results obtained from our recent calculation of an (AlAs)₂(GaAs)₂ superlattice find ΔE_{VBM} (AlAs/GaAs) to be ~0.1 eV larger than the results for (AlAs)₁(GaAs)₁. The dependence of the calculated ΔE_{VBM} on superlattice thickness is expected to be smaller for II–VI's because of their smaller charge transfer effects. ⁷²S. P. Kowalczyk, J. T. Cheung, E. A. Kraut, and R. W. Grant, Phys. Rev. Lett. **56**, 1605 (1986). 2611 - ⁷³T. M. Duc, C. Hsu, and J. P. Faurie, Phys. Rev. Lett. 58, 1127 (1987). ⁷⁴M. Pessa and O. Jylhä, Appl. Phys. Lett. 45, 646 (1984). - ⁷⁵The tight-binding results are obtained using our semirelativistic local density orbital energies, see Ref. 70. - ⁷⁶A. Sher, A.-B. Chen, and M. van Schilfgaarde, J. Vac. Sci. Technol. A 4, 1965 (1986). - ⁷⁷K. Beshah, D. Zamir, P. Becla, P. A. Wolff, and R. G. Griffin, Phys. Rev. B 36, 6420 (1987). - ⁷⁸D. B. Zax, S. Vega, N. Yellin, and D. Zamir, Chem. Phys. Lett. **130**, 105 (1987). - ⁷⁹D. Zamir, K. Beshah, P. Becla, P. A. Wolff, R. G. Griffin, D. Zax, S. Vega, and N. Yellin, J. Vac. Sci. Technol. A 6, 2612 (1988) (these proceedings). - ⁸⁰(a) V. A. Terekov, V. M. Kashkarov, Yu. A. Teterin, I. M. Rarenko, and E. P. Domashevskaya, Sov. Phys. Semicond. 20, 1038 (1986); (b) R. - Sporken, S. Sivananthan, J. Reno, and J. P. Faurie (unpublished). - 81J. L. Martins and A. Zunger, Phys. Rev. B 30, 6217 (1984). - ⁸²A. Balzarotti, M. T. Czyzyk, A. Kisiel, P. Letardi, N. Motta, M. Podgorhy, and M. Zimnal-Starnawska, Festkoerperprobleme 25, 689 (1985). - 83J. Bernard and A. Zunger, Phys. Rev. B 36, 3199 (1987). - ⁸⁴D. M. Wood, S.-H.Wei, and A. Zunger, Phys. Rev. B 37,1342 (1988). - ⁸⁵J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). - ⁸⁶J. C. Brice, in *Properties of Mercury Cadmium Telluride*, Data Review Series (Inspec., London, 1987), p. 103. - ⁸⁷B. Toulouse, R. Granger, S. Roll, and R. Triboulet, J. Phys. (Paris) 48, 247 (1987). - ⁸⁸V. G. Sredin, Sov. Phys. Semicond. 12, 1084 (1978); V. A. Tyagai, O. V. Snitko, V. N. Bondarenko, N. I. Vitrikhovskii, V. B. Popov, and A. N. Krasiko, Sov. Phys. Solid State 16, 885 (1974); K. Saito, A. Ebina, and T. Takahashi, Solid State Commun. 11, 841 (1972). - ⁸⁹M. A. Berding, A.-B. Chen, and A. Sher (unpublished).