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Lattice dynamics of solid n- and y-N, crystals at various pressures
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A previously published interaction potential between N, molecules has been utilized to compute the lattice
mode frequencies of solid a- and y-N, at the equilibrium crystal structure corresponding to various pressures.
Dispersion curves and the density of states are given. These are then used to calculate the lattice heat
capacity, Gruneisen mode parameters throughout the Brillouin zone, linear thermal-expansion coefficient,
Debye temperatures, and temperature-dependent root-mean-square amplitudes of vibrations. Whenever

comparison with experimental data is possible, good agreement is obtained.

I. INTRODUCTION

Lattice-. dynamics calculations, which have been
carried out extensively on atomic crystals, have
been extended recently to the study of molecular
crystals. ':This is mainly due to the accumula-
tion of extensive exyerimental data on properties
of molecular solids that are determined by the
phonon dynamics, such as Raman and infrared
spectra, coherent and incoherent neutron scatter-
ing, heat capacity, amplitude of vibrations, ther-
mal expansion, and high-pressure Raman spectra.
Using an explicit form for the intermolecular po-
tential, it is possible to calculate not only lattice-
dynamical properties but also the equilibrium crys-
tal structure corresponding to various crystal
phases and the lattice cohesive energy.

In a previous paper' it has been shown that an
explicit atom-atom potential is suitable for repro-
ducing Raman and infrared frequencies, and- unit-
cell parameters of n- and y-N~ crystals, cohesive
energy of n-N~, and virial coefficients for gaseous
N, which are in agreement with experimental re-
sults. It has been shown that special care must be
taken in the minimization of the crystal energy with
respect to structural parameters in order to avoid
erroneous results in the calculation of lattice fre-
quencies. The effect of zero-point energy and
convergence of the lattice sums of the calculated
structure and lattice frequencies, were also inves-
tigated. It is the aim of the present paper to ex-
tend these studies to properties which depend on
the detailed dynamical spectrum through the
Brillouin zone, such as mean-square amplitudes
of vibration, heat capacity, dispersion curves,
density of lattice modes, and thermal expansion.
The effect of pressure on some of these properties
will also be examined.

II. LATTICE-DYNAMICS CALCULATION

The 3or vibrational frequencies &u&(k) of a crys-
tal containing 0 molecules in the unit cell, each

g 8 jk t:R(l )-R(l ')] (2)

where M, and M, . denote masses, l and /' label the
unit cells (l = 1. ~ ~ N), and R(l ) denotes the position
of the unit cell relative to the origin. The force
constants are given

tt„„,(lst, l s t ) —
(l ) (P, ,

)

M„(let) denotes the displacement in the X direction
of the atom t in molecule s located at unit cell /.
The static interaction potential 4, is a sum of in-
termolecular (C t,t„) and intramolecular (tf „„,)
terms:

@g @inter+ @intra (4)

No assumptions about the rigidity of the molecules
are made. The intermolecular potential is given

oi'
inter 2 inter(Dst, s't') y (5)
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where V„„,(D, ", ,, t ) is the assumed atom-atom in-
teraction potential between atoms t belonging to a
molecule s located in a central unit cell (l =0) and
atom t' of the molecule s', located in unit cell l'.
Do,"„,, denotes the corresponding atom-atom dis-
tance. The intramolecular yotential is

having v atoms, are obtained for a given value of
the wave vector k, by solving the secular equations

ID „(ss'lf~'Ik) ~i(k)~11 ~tt I
=0, (1)

where & and &' denote Cartesian components, s and
s' label the molecules in the unit cell (s = 1. ~ ~ o),
and t and t' denote the atoms (f = 1 v). The
branch index j ranges from 1 to Sgv. The dynam-
ical matrix has elements given

1
D„,1,.(ss'

I
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where Do„'o„. denote intramolecular atom-atom dis-
tances. The self-term in the dynamical matrix is
calculated using the constraint of invariance of the
potential energy with respect to an over-all trans-
lation of the particles in the system, ' i.e. ,

@„g (fsf, fst) = — Q P„„,(fst, 1's't').
E'a't'Atilt

The constraints which have to be imposed on the
dynamical matrix due to the lattice symmetry and
the invariance of the lattice sums with respect to
the choice of the origin, are automatically ac-
counted for in our computational scheme owing to
the explicit calculation of the force constants from
the interaction potential.

In the computational scheme employed the calcu-
lation of the lattice dynamics is carried out in the
following way: An initial crystal configuration is
generated by assuming the values of the unit cell
parameters a, 5, c, n, p, and y and the positions
of the v atoms in one of the o molecules in the
central unit cell. The positions of the rest of the
atoms in the crystal are generated by applying
symmetry operations of an assumed space group
to this initial configuration. The positions of
the av. atoms in the unit cell and the values of
the unit-cell parameters at static equilibrium are
obtained from the solution of the set of equations

7; 4, =0, x=1 o'w, (8a)

V- 4 =0 P=1- 6 (8b)

where r„ is the position vector of atom x in the

unit cell while the R~ (p = 1 ~ ~ 6) are the 6 unit-cell
parameters. This set of equations is solved itera-
tively using steepest-descent and Newton-Baphson
minimization techniques without imposing any sym-
metry .restrictions on the minimization path. The
lattice sums in Eqs. (5) and (6) are examined to be
convergent (interactions are summed up to 25 A).
The dynamical eigenvalue problem [Eq. (1)] is
solved at the unit-nell parameters and atomic po-
sitions which satisfy Eq. (8). Since the crystal
interaction potential 4 [Eqs. (4)-(6)] is strongly
anharmonic, the elements of the dynamical matrix
given in Eq. (3) depend on both the unit-cell pa-
rameters (which determine the volume per mole-
cule) and the atomic positions inside the unit cell.
Relaxation of all the forces and torques exerted on
the molecules [Eq. (Ba)] is necessary for obtaining
the lattice frequencies ~~(k) in a way which is con-
sistent with the potential adopted. In simple atomic
crystals (e.g. , fcc, bcc) the symmetry of the lat-
tice already assures the vanishing of forces on the
atoms.

The effect of zero-point energy on the lattice
conformation is introduced in the second step of
the calculation where we minimize the total inter-
action potential 4„, rather than the static part 4, :

Cq, ~ =4, +C, .
The minimizing conditions are given

(10a)

(10b)

&r @'~0~ =Oy

&R,@'~.~ = 0.

4„denotes the zero-point energy, calculated from
the density of states D(a&):

00

O'„=— D(co) dr@.
. o

(10c)

The density of states is obtained (see below) from
the eigenvalues &u&(k) calculated in the previous
step, using the interpolation scheme of Gilat and
Raubenheimer. A channel width of 0. 25 cm ~ is
employed and 800-k-grid points are used. At the
conformation obtained after solving Eqs. (10), we
repeat the dynamical calculation. This cycle is
repeated until the conformation and lattice spectrum
are stabilized. The calculated dynamical proper-
ties reported here for the zero-pressure Q.-N3
phase, correspond to this final step in the compu-
tation scheme. The calculations on the high-pres-
sure y-Ka phase and on the e-Nz at-P10 are per-.
formed by solving Eqs. (8a) and (10a) for a given
molar volume. The value of —VR C„, is now re-
lated to the external pressure that corresponds to
these volumes at a dynamical equilibrium.

In the previous work5 the intermolecular poten-
tial Eq. (5) was approximated by a Lennard-Jones
type of interaction:

l/2 6-
o, r'

1'&.&.,(D.g„~ ) —& Do, i
— —

Do. r ~ (11)
SC&8't~ stg8't'

The parameters a and & have been fitted through
a least-square procedure to reproduce the experi-
mental unit-cell dimensions, 9'o the cohesive en-
ergy, ""and the infrared"'" and Raman" ' fre-
quencies of u-Nz at k = 0. This yielded

0=3.30 A,

e = 0.30 kcal/mole,

where the intramolecular bond length was kept
fixed at the experimental value of 1.OS8 A..

For the intramolecular interaction [Eq. (6)], we
have adopted the form suggested by Levine from
the vibrational analysis of isolated Na molecule, '8

V (d) =D [1-dJd] [e-'""~4']' (l2)

where do is the intramolecular bond length, d
=D, q ]„D~ is the molecular dissociation energy,
and P and P are parameters given by Levine. The
exact form of the intramolecular potential does not
affect the lattice modes because of the large en-
ergy separation between internal and external
modes (the lowest molecular frequency is around
2300 cm ' and the highest lattice frequency is 110
cm~).
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TABLE I. Comparison between calculated and measured inelastic-neutron-
scattering (Ref. 15) lattice frequencies at high-symmetry points in the Brillouin
zone. The values in parenthesis correspond to the optical measurements (Refs.
13-16). Values given in cm ~.

Calc.

I' Point

Obs.

M Point

Obs.

R Point

Calc.

X Point

Obs,

69. 5
47. 5
51, 8
47. 0
43. 7
38. 5
34, 5

69.60 (70. 0)
60. 0 (60. 0)
54. 20
48. 56 (36.0)
46. 92
36.42 (36.0)
32.37 (31.5)

61.2

53.7
42. 9
34. 7
24. 6

62, 7

55.0
46. 9
38.0
27. 9

68.4

42. 0
40. 8
32. 9
32. 2

68. 7

47. 3
43. 7
34. 8
33.9

60. 9
56.1
49.3
40. 8
40. 5
36.7
36.5
26. 5
24. 01

38.0

27. 5

phase transition was observed' '3 at a volume of
24. 1 cm at 20. 5 'K. '

It can be seen that the dispersion of the curves is
only slightly affected by increasing the pressure.
The frequencies of the optical branches are shifted
quite homogeneously to higher values, while the
highest acoustic mode is shifted strongly only for
k & 0. 5 and much less for higher k-values. The
dispersion curves obtained in our calculations are
similar in shape to those obtained by Ron and
Schnepp using a different 6-12 potential, and to
those obtained by Raich et al. using a self-con-
sistent phonon treatment. One significant differ-
ence between our results and those of Ron and
Schnepp is the removal of the accidental degeneracy
at the R points in the present calculation. On the
other hand, our calculations and those of Ron and
Schnepp2~ and Raich et aE. 23 differ significantly from
the recent calculations of Kjems and Dolling. '
The erratic behavior of the dispersion curves ob-
tained by the latter probably result from the inad-
equacy of the renormalization between translational
and librational modes at general k points.

Dispersion curves for y-N2 (space group D4„, two
molecules per unit cell) at the unit-cell parameters
a=b=3. 94 A, e=5.08 A corresponding to the cal-
culated equilibrium structure under an external
pressure of 4015 atm (experimental data' a=5
= 3.957 A, e = 5. 109 A under the same pressure)
are shown in Fig. 3 along several directions. [In
our previous work (Ref. 5), we have erroneously
interchanged the assignment of the B,~ and A~
librational modes of a-Nm (Table VIII therein). The
correct order is revealed in Fig. 3 here. We are
grateful to Professor J. C. Raich for bringing this
point to our attention. ] The assignment of the
branches were made by studying the transformation
properties of the eigenvectors and using the non-
crossing rule for branches of the same symmetry.
Up to the present time, no experimental neutron-

diffraction data is available for comparison with
the calculated results for y-N2. The agreement
between calculated and optically observed frequen-
cies at k=O is satisfactory. ~ Recently, Pawley
et aE. have reported a calculation on y-N3 at k=0
using a e ~ potential. The results arequalitatively
similar to our results, however better quantitative
agreement is obtained in the present calculation
with the 12-6 potentia, l.

The dispersion of the Griineisenparameters y~(k)

(-) d In~, (k)
(13)din V

were calculated numerically from the dispersion
curves at several volumes. Some representative
results obtained for the three acoustical modes and
two of the optical modes (one a pure translational
mode and the other a pure rotational mode at k= 0)
along the [ill], [110], and [100]directions in u-N3,
are shown in Fig. 4. The acoustical nondegenerate
Au mode has the highest Gruneisen parameter at
k=0. Around k=0. 5 along the [ill] and [110]and
around k =0. 7 along the [100]direction, the
Gruneisen parameter drops strongly, indicating
the softening of this mode. The other acoustical-
mode parameters as well as the optical-mode pa-
rameters exhibit low dispersion. The mode pa-
rameters of branches that are degenerate at %=0
and nondegenerate at higher k values, differ only
slightly. The agreement between observed ' and
calculated Gruneisen mode parameters at k =0 is
quite poor. The addition of interaction terms fall-
ing with distance slower than the 12-6 potential
(e. g. , quadrupole-quadrupole) would lower the cal-
culated values 7 thus bringing them to better agree-
ment with experiment.

IV. DENSITY QF STATES

The k-space interpolation scheme of Gilat and
Baubenheimers was used to obtain the normalized
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FIG. 5. Density of states of &- and y-N2. (a) O'-N2 at
V=27. 2 cm3; Q) O.'-N2 at V=24. 1 cm3; (c) y-N2 at V
=24. 1 cms.

density-of-lattice-states function D(v) for n-Nz
and y-Nz at various volumes. The standard meth-
od was used for a cubic a phase while suitable
modifications were introduced into the BZ sampling
scheme for treating the tetragonal y phase. Stan-
dard channel widths of 0.25 cm ' were employed.
The convergence properties of the calculated den-
sity of states were examined by requiring that the
calculated nth moment of the frequency (~") will be
stable within a prescribed tolerance with respect
to an increase in the k-grid mesh used for sampl-
ing the BZ. Since lattice contributions to thermo-
dynamic properties are calculated by performing
suitable ensemble averaging over the density of
states, such a convergence cheek will define the

accuracy of the calculated thermodynamic prop-
erties. We thus compute

(aP),, =j D„,(~)aFd~, (14)

where D~, (~) denotes the normalized density of
states calculated with a k-grid mesh indicated by
nk, (i =x,y, and z in the reciprocal-space unit-cell
axis) for —2 &~ &20. We require that the largest
difference ((~")»|—(~")»,)/(aP)»c (where 4k',
denotes the highest k-grid mesh) be less than 1%
for all moments. Around k=O a fixed grid of 190
k points is employed to avoid numerical errors in-
troduced by the interpolation scheme. For low-
temperature crystal phases such as n- and y-N~
(transition temperature to the disordered high-
temperature P phase being 36. 5-50 'K for pressure
lower than 6 atm) such a stability of the -2 to 20th
moments against an increase in the k-grid mesh,
should suffice t;o assure good accuracy in the cal-
culated lattice free energy, heat capacity, and
root-mean-square amplitudes of vibrations. It was
observed that the use of 1007 inequivalent %points
in the BZ and a mesh of 190 points around the
vicinity of k=O assures the convergence of the
Debye temperature to within less than 10~% for the
first moment and 10~% for the 20th moment. A

similar accuracy was obtained for the y-N2 den-
sity of states. For smaller unit-cell volumes a
somewhat lower accuracy was obtained for the high
moments, e.g. , 4. 6 x 10~% for the 20th moment of
o.-N2 'at unit-cell dimension of 5.40 A (correspond-
ing to a pressure of 4 atm at T=0 'K). This ac-
curacy is considered sufficient for our purpose,
and subsequently this grid was used in further cal-
culations. The density of states calcul. ated with
convergent k grids for n-N, and y-N2 are given in
Fig. 5 for several densities.

The highest-frequency peak in both a.- and y-N2
is contributed by the high-energy modes that are
translations at the I' point. The doublet in the
a-N2 density of states at around 30-40 cm ' at
zero pressure and at 55-60 cm-' Bt 4 kbars are
contributed by lattice modes that are pure rotations
at k=O. The increase in pressure tends to shift
the whole spectrum almost uniformly to Nigher
frequencies although the low-frequency part is
slightly less shifted.

It has been previously commented by several
authors that it is desirable to obtain an effective
Debye temperature from a detailed real-solid den-
sity-of-states calculations in order to facilitate
calculations of properties such as the Mossbauer
recoiless fraction 3 and heat capacity. Figure
6 reveals the dependence of the Debye temperature
GL)"' calculated from the nth moment of the fre-
quency, on n.
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8'"'=(h/k )[-'(n+3)(uP)]'~", n &-3 nvO. (16)

GD"' is the cutoff temperature of a Debye distribu-
tion having the same nth moment as the real D(e).
Similar plots for rare-gas solids'~ indicate a vari-
ation of less than 2% in Gn'"' in the range —2 &n & 4.
In a molecular solid such as a-N~ the large num-
ber of optical branches introduce strong deviations
from a Debye spectrum, resulting in a rapid vari-
ation of ~"' for low e.

This "fitting" of an actual density of state to a
Debye model in molecular crystals having- a rela-
tively large number of optical branches requires
some comments. It can be easily seen that the
"normalized" nth moment in the Qebye model with
a characteristic cutoff frequency u~' is

20

l5

C=

O33
ca

IO

(&n)/((ua)"= 3(n+3)(~)", (u)n) = s(n+ 3) (un (16)

and does not depend neither on the crystal space
group nor on the crystal density. These simpli-
fications, inherent in the Debye model, are not
satisfied in actual calculations for molecular solids
where a large part of the density of states is con-
tributed by the optical branches that have an in-
volved frequency dependence. Furthermore, the

fitting of an actual density of states to a Debye den-
sity of states by minimizing the sum of differences

5 IO l5

I

20
n

FlG. 7. Normalized moment ratio for the exact and
Debye model calculations a-N2, a=5. 40 A; o.-N~, a

0 0=5.65 A, c.'-N&, a=5. 67 A; V-N2, a =b=5. 94 A, c=5.10

is divergent as n increases. This can be viewed
from Fig. 7 where the ratio ((~")/(~')"/((&n)/

I

4
I

l4
I

20
0

FIG. 6. variation of 8D" calculated from the nth mo-
ment of the real density of states D(~) for e-N2.

(&n)") vs n is plotted for several volumes of u-Ns
and for y-N2. It is seen that while for the lowest
values of n (which give more weight to the density
at low frequencies) the ratio is close to unity, it
diverges strongly for large n, the deviation in-
creasing with decreasing volume. It is therefore
evident that in calculating thermodynamic prop-
erties of molecular solids such as root-mean-
square amplitude, zero-point energy, specific
heat, etc. , by expanding the corresponding integral
over the density of states in gower series of the
various frequency momentss 'b' one should avoid
using a Debye density of states that strongly under-
estimates high-frequency moments.

The calculations presented here also suggest that
the Debye model might be used to determine prop-
erties that depend on low and positive moments of
frequency such as the high-temperature limit of the
specific heat, while it should be less adequate for
calculating the low-temperature heat capacity and
the high-temperature root-mean- square amplitudes
that depend on the negative frequency moments.
The approximation made in the Debye model that
the solid is an elastic continuum is thus unjustified
for solid properties that are related to high mo-
monts where the discrete structure of the solid
should be explicitly considered.

To compare our calculated values of OD with ex-
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periments the most common choice of Domb and
Salter e» =(~ ) is employed.

Experimental determination of 8~ for the n
phase are: 68 'K at T= 20 K, 73 'K at'4 10 K and
80.6' at the lowest temperature measured T=4. 2
= 4. 2 'K. ' Our calculation yields 8~ = 84. 4 K at
the unit-cell volume corresponding to equilibrium
at 7. = 0 K in good agreement with the value of
Bagatoskii et al. Using the linear expansion co-
efficient determined experimentally by Bolz et
al. , the calculated Q~ at the unit-cell volume cor-
responding to 20 'K is 75. 3 'K, in reasonable
agreement with the experimental data. '

Schuch and Mills' have estimated OD in comput-
ing the experimental Debye-Wailer factor for y-N2,
using the de Boer reduced equation of state' as an
interpolation scheme, obtaining OD = 94 'K. Our
calculated value of 125.0 'K is considerably higher
and provides a better approximation. A lower
Debye-Wailer factor is thus predicted by the pres-
ent calculation. It should be noted that our calcu-
lation of the volume dependence of the Debye tem-
perature QD(V) predicts similar values for the n
and the y phases at the same volume, in agree-
ment with the approximation made by Raich'~ in
calculating n-to-y phase transition.

V. THERMAL EXPANSION

The density of states D(~) is used to compute the
thermal-expansion coefficient of n-N~. This is
done by minimizing the total crystal free energy
E(a, T) (where a denotes the unit-cell parameter),
for various values of (a, 7). The free energy is
given

E(a, T) = 4,(a)+ ~As D((u, a)(ed(u
0

D(u, a) ln(1- e ""~ r)dv. (17)

4,(a) is the static energy calculated by performing
the appropriate lattice sums on the pair potential
V(r,.&) [Eqs. (4)-(6)]. It has been previously shown'

that summation of the contribution of 5' unit cells
relative to a central, unit cell, suffices to assure
the convergence of C,(a) to within less than 0. I%%uq.

The second and third terms in Eq. (1V) denote the
zero-point energy and the lattice thermal energy,
respectively. The contribution of the intramolec-
ular modes to these terms is neglected since these
modes (of frequency 2300 cm ' for a-N~) are only
slightly populated below the~a-j8 transition temper-
ature and thus contribute negligibly to the thermal
expansion. The last two terms in Eq. (1V) are
calculated numerically from the density of states.
Minimization of the static energy alone with re-
spect, to the unit-cell volume has been shown to
yield a unit-cell parameter of a= 5. 63 A while ad-

I.OI2

I.OI 0

0a
C)

IQ06

I.004

I.002

l.000
0 IO . , 20 : 40

T. ('K j

FIG. 8. Calculated temperature dependence of the 0.-
N2 unit-cell parameter.

dition of the zero-point-energy term to the mini-
mization procedure was shown to increase this
value to 5. 66 A. ' Zero-point-energy contribu-
tions have been calculated self-consistently using
D(~, a) at the unit-cell parameter that minimizes
the first two terms in Eg. (17). Minimization of
E(a, T) yields the function a(T). The results are
plotted in Fig. 6 in units of ao=—a(T=O). Fitting
to the relation a/ao = 1+re yields an average linear
thermal-expansion coefficient of q- 2. Sx10- 'K-'
for 0 & 7.'& 20'. This agrees reasonably well with
the rough experimental estimation of g-2x10 4

oK-1 for 4 2&T&20
It should be noted that the zero-point-energy

term could be calculated to a very good approxi-
mation from the k=O mode frequencies without the
detailed knowledge of the density of states. ' This
could be done by using an Einstein model for each
of the optical branches with its appropriate fre-
quency at k=O, and a Debye model for the acous-
tic branches using an acoustic Debye temperature
that is determined from the lowest optical frequen-
cy. This yieMs a zero-point energy of 0.4138 and

0.3127 kcal/mole for n N~ at unit-ce-ll volumes of
41 A~ and 44. 6 As/molecule, respectively, com-
pared with 0.4097 and 0.3112 kcal/mole obtained
from a direct evaluation from the density of states
using a low grid mesh of 226 points, and 0.4086
and 0.3124 kcal/mole obtained with a higher grid
mesh of SV1 points. Since the evaluation of D(~)
for polyatomic molecular crystals is usually dif-
ficult to implement in practice„such an approxi-
mation to the zero-point energy and its volume de-
pendence could be useful in calculating cohesive
energies, conformations at dynamical equilibrium,
and low temper atures.
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FIG. 9. Heat capacity. of e- and p-N2. The n-N2 val-
ues are calculated at the equilibrium zero-pressure con-
formation {V=27.2 cm ), and the y-N2 values are calcu-
lated at equilibrium under a pressure of 4 kbars {V=24.1
cm3). Points indicate the experimental data of Giauque
and Clayton {Ref. 11) for ~-N2.

VI. HEAT CAPACITY

Next, we turn to the calculation of the lattice
contribution to the heat capacity of n- and y-N~.
The heat capacity at constant pressure is

C (T)=9Nof C((o)C((a, T)d(a+99BTT
0

where C(~, T) is the heat capacity of a harmonic
oscillator having a frequency (d, N0 is Avogadro's
number, 5%0 is the total number of degrees of
freedom (two librations and three translations for
each molecule), 8 is the bulk modulus, and V is the
molar volume. Using the experimental estimate3
to 8 (10' -10"erg. cm ~) with the experimental
linear-expansion coefficient g and molar volume
V, the second term in Eq. (13) is estimated to be
small relative to the first term, and consequently
can be neglected. The thermal-expansion effects
on D(&o) are likewise small and may be safely
neglected. The calculated heat capacity as a func-
tion of temperature of n-N& at zero pressure, and
of y-N2 at a molar volume of 24. 1 cm correspond-
ing to a pressure of 4 kbars, are shown on Fig. 9,
together with the experimental points of Giauque
et al. i' for n-N2 above 16'K. The calculated and
experimental results agree fairly well below 27 'K.
Above this temperature the agreement becomes
worse owing to the increase in lattice anharmonicity
accompanying the a-to P phase transition at 35.6
'K. The y-N~ heat capacity is considerably lower

than the corresponding Q. -N2 values owing to its
higher density of states at the high-frequency part
of the spectrum that is relatively unpopulated at
low temperatures. Presently, no experimental
data on the y-N~ heat capacity and on the low-tem-
perature n-N& heat capacity, are available.

VII. AMPLITUDE OF VIBRATION

The amplitudes of vibrations of n-N~ were cal-
culated directly from the displacement-correlation
function

(u„u„) = (u„u, ) = (u,u, ),
(u„u„) =(u,u, ) =(u,u, ).

(20)

The values of (u,.uj) at different temperatures are
given in columns 2 and 3 of Table II. Column 4
shows the components of the amplitude of vibration
along the molecular axis, which is given by

(u) ) = (u) ) + 2uga)

column 5 gives the component of the displacement
along each one of the two principal axis perpendic-
ular to the molecular axis

(u, ) = (u„—u„)'i'.
It is difficult to estimate how much of the ther-

mal motion is due to rotation of the molecule and how
much is due to the translation of its center of mass.
However, assuming, as did La Placa and Hamil-
ton, ' that the translational motion is isotropic,

TABI.K II. Thermal parameters, root-mean. -square
displacements, and estimate of amplitude of libration of
n-N2.

T
{'K)

4 K
10'K
15 'K
20'K
25'K
36'K

(u2;)
(A&)

0.0315
0, 0409
0.0514
0, 0614
0.0726
0.1020

—0. 0080
—0. 0124
—0. 0150
—0.0190
—0.0230
—0.0301

0.124
0.129
0.146
0.153
0.163
0.204

(ut)
g)

0.198
0.230
0.257
0.283
0.309
0.360

{deg)

17.7
21.8
24. 3
27 3
30.1
34. 4

(u), (lt)u), .(lt')) = g) ~ e),(t I kj)
t t'

~ J

x e„,(f' I kj) cothk&u, .(k)/2ksT, (19)

using the eigenvectors e(tl k, j) of the lattice fre-
quencies calculated at N points in the Brillouin
zone. The summation over j in Eq. (19) is per-
formed over all the branches, and the acoustical
modes at k=0 are excluded. A dense sampling of
points in the Brillouin zone was taken so as to
assure the convergence of the sum in Eq. (6). The
results of the calculations using Eq. (19) satisfy
the relation
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u, can be associated with the translation, and

(8) = 2(v'SU„/f), where f is the length of the Nz
molecule, represents the root-mean-square angu-
lar displacement (in radians) for each one of the
two librational degrees of freedom.

The values for librational motion given in Table
II are in agreement with the x-ray results of La
Placa and Hamilton, who reported a value of 17'
at 20'K.

In conclusion, our results for the mean-square-
amplitude displacements confirm the approximated
calculation of Cahill and LeRoi and Goodings and
Henkelman, and point out that anharmonicity
couM be important in the librational motions of
o.-N~.

VIII. COMPARISON PATH SELF-CONSISTENT PHONON
TREATMENT

Raich et a/. have recently performed a self-
consistent phonon (SCP) treatment44 of solid u-N~
using a different 12-6 potential. As a comparison
between the SCP and the quasiharmonic (QH) re-
sults the above-mentioned authors presented the
lattice frequencies at k= 0 as computed by both-
methods using the same potential, however the
experimental unit-cell dimensions were used for
the QH treatment (a = 5. 649 A); while for the SCP
treatment the predicted theoretical value (a= 5. '714

A), was employed. Previous SCP calculations we
were performed only on atomic crystals. %'e thus
briefly comment on the relation between QH and
SCP results for the molecular solid studied here
at T=O'K.

The basic methodology used in SCP theory is to
incorporate anharmonic effects to first order by
replacing the QH force constants of Eq. (18) by an
appropriate ensemble average over a function re-
lated to the displacement-correlation tensor. On
the other hand, anharmonic effects are partially
introduced in the QH scheme by calculating the
lattice-dynamical properties at the atomic positions
that minimize the frequency-dependent free energy.
At T= 0 'K, this reduces to the modification in the
lattice frequencies owing to the changes in atomic
positions induced by zero-point effects. Thus in
the QH approach one assumes that the collective
effect of all lattice mode is to renormalize the
dynamical variables generating thereby a new set
of fixed atomic positions at which the force can-
stants are to be evaluated; in the SCP method, an
ensemble average is used. Since the ensemble
average yields a larger force constant than the
discrete force constant obtained at a given unit-
cell parameter a, one gets ~~~op(a) &~)"(a) for a
given value of a." On the other hand, the equilib-
rium lattice parameter aacp calculated by minimiz-
ing the SCP free energy, is usually larger than the
corresponding value ao„calculated in the QH ap-

TABI,K III. Comparison between self-consistent pho-
non and quasiharmonic frequencies each calculated at the
minimum of the corresponding free energy at O'K. Val-
ues given in cm ~.

Mode

Tu
Eu
Tf
Tg
A„
Tg

~s&eP (asc

70. 1
52. 0
47. 6
48. 8
44. 3
40. 8
36.7

cuj~" (a~„)

70. 8
53.2
47. 8
47. 8
44. 1
39.3
35. 2

proximation. 48 This tends to decrease the ~u& (a~cd, )
relative to &a~@"(a~„). To investigate in more de-
tail these conflicting effects we repeated our QH
calculation using the potential employed by Raich
et al. ~3 A careful minimization of the total lattice
energy at T =0' yielded az„= 5. 62 A as compared
with as~~ = 5. V14 A. The frequencies at k=0 ob-
tained by us at this a~„value are compared with
the frequencies obtained by Raich et a/. in a SCP
treatment at a«p in Table III. The weighted devia-
tion

~QH ~SOP

The previously published, interaction potential
between Na molecules was used to compute the
lattice-mode frequencies of n- and y-N3 crystals
at the equilibrium structure corresponding to
various pressures. Dispersion curves as well as
density of lattice modes are given for both phases.
These are used to compute the lattice heat capacity,
root-mean-square amplitudes of vibrations, dis-
persion of Gruneisen mode parameters, linear

is only 0. 95 cm-". 47 The dispersion curves calcu-
lated by the QH method have exactly the same
shape as those obtained by SCP calculation, since
the averaging procedure used by the latter method
removes almost completely all the k dependence of
the anharmonic corrections. Similarly, the bind-
ing energy calculated by the SCP method is 1.58
kcal/mole, while that calculated by the QH method
is 1.56 kcal/mole.

Vfe thus conclude that if one follows consistently
the QH scheme, reasonably accurate frequencies
can be obtained owing to the nearly cancelling ef-
fects of the increase in the lattice frequencies at
fixed volume and the increase in equilibrium vol-
ume in going from QH to SCP approximation. For
more accurate determination of the lattice param-
eter at equilibrium and behavior at higher temper-
atures, SCP methods can not be avoided.

IX. SUMMARY
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thermal-expansion coefficients, and the Debye
temperatures. Reasonable agreement is obtained
with experimental data whenever experimental data
are available. More intensive examination of the
proposed calculations would be possible when more
experimental data such as neutron scattering (co-
herent elastic and incoherent inelastic) and crystal-
lographically determined amplitude of vibration
would be available.

The calculation of the dynamical properties of
molecular crystals do not pose any serious diffi-
culty relative to the more familiar atomic crystals
calculations. The marked differences in the cal-
culation schemes are the following.

(a) In calculations on molecular crystals of ar-
bitrary conformation, one should take special care
with the problem of relaxing all forces and torques
exerted by the crystal field on the molecules. Be-
cause of the anharmonicity of the crystal potential,
residual forces and torques have a marked effect
on the calculated lattice frequencies.

(b) Because of the presence of a relatively large
number of optical modes in the molecular crystal
lattice spectrum, the lattice zero-point energy
contributes a significant part to the free energy at
low temperatures. Optimization of the crystal
structure for a given interaction potential, should

take zero-point effect into account. Because of the
high ratio between the number of optical to acout-
tical branches characterizing molecular crystals,
the lattice spectrum deviates significantly from a
Debye-type spectrum. A Debye model is thus inad-
dequate for computing thermodynamical properties
that involve high-frequency moments.

In view of the practical possibility of computing
lattice properties for a given molecular potentiaI,
it seems that such calculation should provide a
good test to the quality of the interaction potential.
Substantial effort has been lately devoted to the
calculation of interaction potential from first prin-
ciples, ~ and from combinations of first principle
and empirical data. ' The quality of these poten-
tials has been examined by calculating virial coef-
ficients and viscosity ' or lattice cohesive ener-
gies. ' Vfe believe that calculations of lattice-
dynamical properties in the corresponding crystals
would provide a much better examination of the
anisotropy and detailed characteristics of such in-

teractionn

potentials. '~
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