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%'e examine theoretically structural and electronic properties of thin Si„Ge„superlattices for
n =1, 2, 4, and 6, grown on (001}-oriented substrates. The increased repeat distance along the

growth direction leads to folding of conduction-band states to the I point of the superlattice Bril-
louin zone, resulting in a significant reduction in the minimum direct band gap. Transitions to these
folded-in states have nonzero dipole matrix elements because of {i)atomic relaxation, leading to the

accommodation of distinct Si—Si and Ge—Ge bond lengths and (ii) the superlattice ordering poten-

tial. Our calculations show that superlattices grown pseudomorphjcally on a Si substrate remain

indirect-band-gap structures, with a minimum gap from I to 6 {near the X point) of the fcc Bril-
louin zone. %e 6nd, however, that increasing the lattice parameter a, of the substrate will further

reduce the direct band gap. For a, a, where a is the average of the lattice constants for Si and Ge,
we predict a nearly direct band gap: For Si&Ge6 the indirect band gap for a, =a is only -0.01 eV
smaller than the direct band gap. The lowest conduction-band states in this case are localized on

the Si sublattice.

I. INTRODUCTION

One of the outstanding issues in semiconductor physics
has been the hope to combine and manipulate Si and Ge
to create a material that shares the advantageous proper-
ties of these semiconductors, yet has a direct band gap
(and is capable of light emission). Attempts in this direc-
tion have been based on interstitial substitution, applica-
tion of pressure, 2 growth of alloy superlattices
Si„(Si„Ge&„)on Si, and, more recently, ' through
growth of ultrathin elemental Si„Ge„superlattices on a
(001)-oriented Si substrate. Although theoretical studies
on bulk sohd solutions of Si„Ge, „alloys" are rather
complete, until recently comparable studies on strained
alloy superlattices of' ' Si„(Si„Ge,„)or on strained
elemental superlattices'"'~ Si„Ge have been performed
on systems with rather long repeat periods (n, m). In
such systems, simple approximations (perturbative expan-
sion in terms of virtual-crystal orbitals, '2 the envelope-
function approximation, ' one-dimensional two-band
models, ' or the tight-binding approximation' ) are ap-
plicable. The recent advent of ultrathin superlattices '
and the observation of new, low-energy direct transitions
with no counterpart either in the bulk alloy" or in
strained alloy superlattices, have created the need for
theoretical approaches capable of treating systems with
atomic-scale repeat periods.

Although it has been observed' that the electronic
charge density and potential approach their bulk values
within one to two monolayers of an interface, the elec-
tronic states of ultrathin superlattices do not follow the
simple scaling with layer thickness obeyed by ordinary
thick superlattices. This is because the simple eS'ective-
mass or "particle-in-a-box" descriptions of quantum
con6ned states break down in this case. The wel1 width

(proportional to the repeat distance) is no longer large
compared with the width of the interface, so the efFective
potential is no longer piecewise constant along the repeat
direction. Furthermore, for most states the band offsets
are too small (given the narrow well width) to confine the
states to a sublayer, and they will in general show three-
dimensional delocalization over all sublattices. In this
case it is more natural to consider the superlattice as a
new type of compound semiconductor in its own right
and to interpret its electronic properties in terms of dis-
tortions and band folding induced in the electronic struc-
ture of a disordered alloy of the same composition. A
preliminary report has recently been published. ' Relat-
ed publications have also appeared' ' recently on the
same subject.

This paper presents results of a density-functional
study of Si„Ge„superlattices for n= 1, 2, 4, and 6. The
method is discussed in Sec. II, Sec. III describes structur-
al properties, including total energies as a function of lay-
er thickness n, and electronic properties are discussed in
Sec. IV. Section V discusses substrates other than Si.

II. METHOD

We use the momentum-space pseudopotential total-
energy scheme to determine structural energies and
internal atomic forces and stress. ' Atomic pseudopoten-
tials are generated using a method described by Kerker.
Di8'erent, semirelativistic potentials for orbitals of s, p,
and d symmetry are constructed to give the correct wave
functions, energy levels, and excitation energies for a
number of atomic configurations, including the positive
and negative ions. The errors in the excitation energies
are all smaller than 1 mRy, and usually much smaller.

Wave functions in the solid are expanded in a plane-
wave basis, and the total energy, forces, and stress for a
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given structure are computed as described in Refs. 20 and
21. The basis set contains plane waves up to a kinetic-
energy cutoff' of 12 Ry for total-energy calculations and
up to 15 Ry for the (harder-to-converge) conduction-band
energies. We estimate that the 15-Ry cutoff' gives band
energies accurate to 0.03 eV, with the exception of the s-
like I 2, state, where the error is 0.06 eV. This basis-set
cutoff' energy and the limited number of quadrature
points used in Brillouin-zone integration were found to
lead to uncertainties in the total energy of the order of 2
mRy (30 meV). We find, however, that a small basis-set
energy cutoff' of 6 Ry is inadequate for calculating super-
lattice energy levels: not only are the errors large (e.g.,
for a Si4Ge4 superlattice on Ge, the energies obtained
with 6 Ry cutoff' are 0.54, 0.44, 1.1, and 1.1 eV higher
than those obtained with 15 Ry cutoff for Xtt, X„I.„and
I 2„respectively), but these errors are also strongly state
dependent, prohibiting a simple correction for the errors
caused by insuScient convergence.

The calculations are carried out self-consistently by
evaluating the electronic charge density at the equivalent
of six (10 for the n=4 superlattice) special points in the
irreducible face-centered-cubic Brillouin zone. Exchange
and correlation are treated within the local-density ap-
proximation using the parametrization of Perdew and
Zunger of the electron-gas data of Ceperley and Alder.

The electron band energies we report are all calculated
for superlattices in their theoretical equilibrium struc-
ture. The lattice parameters a~~ parallel to the substrate
are taken as the theoretical value for the substrate select-
ed, assuming coherent, pseudomorphic growth. All
remaining structural degrees of freedom are determined
through total-energy minimization. This includes relaxa-
tion of the e/ai ratio and of the intracell interplanar
spacings. In order to avoid costly erst-principles scans of
up to seven simultaneous structural parameters, structur-
al relaxation was performed in three steps, as follows.
First, bond-bending and bond-stretching force constants
were determined from pseudopotential total-energy cal-
culations for bulk Si, Ge, zinc-blende SiGe, and their ep-
itaxial forms (i.e., fixing a~~ and varying e). Next, prelimi-
nary superlattice interplanar spacings were found by en-
ergy minimization within the valence-force-field model,
using these force constants and bond lengths as input.
Finally, the superlattice structure was refined (when
necessary) using the full-pseudopotential total-energy
method. ' ' In this final phase, calculated forces and
stress were used to determine the minimum-energy

configuration. We found that the valence force Geld with
ab initio parameters gave interplanar spacings within
0.005 A of the pseudopotential results. This changes the
total energies by less than 0.07 meV per two atoms and
the band energies by less than 30 meV.

The local-density approximation (LDA), with its well-
known band-gap problem, underestimates conduction-
band energies. Fortunately, the lowest superlattice con-
duction bands derive only from states of Si and Ge
around X and I. (other states are displaced to higher ener-
gies because of strain and confinement effects; see Sec.
IV). Our results can therefore be corrected approximate-
ly for the LDA errors by applying the average correc-

tions needed to bring the LDA results for bulk Si and Ge
into agreement with experiment. For the X&, states of
bulk Si and Ge, we find calculated LDA values lower
than the observed ' ' results by 0.66 and 0.62 eV, respec-
tively. We will, therefore, shift superlattice states evolv-

ing from X„upward by 0.64+0.04 eV. For the I.
„

states of Si and Ge, we 6nd the LDA to underestimate
the observed values by 0.58 and 0.46 eV, respectively.
Since the superlattice states evolving from I.&, have ap-
proximately equal weights from Si and Ge (see Fig. 6
below), we will use the average correction of 0.52+0.12
eV. We find the LDA to underestimate the I 2, states by
0.86 and 0.58 eV for Si and Ge, respectively. Our error
margin for 1,-derived superlattice states is therefore as
large as -0.3 eV. Fortunately, this state occurs at a very
high energy (see Sec. IVE), so that this error does not
aff'ect our calculated band edges. In what follows we will

report our local-density results directly, and apply the
shifts above only in Sec. IV E2, where comparison with
experiment is made. Note that the local-density formal-
ism produces good agreement with the measured defor-
mation potentials (Sec. IVB), so that calculated band
shifts caused by strain present in these strained-layer su-
perlattices are expected to be accurate.

III. STRUCTURAL PROPERTIES
OF STRAINED Si„Ge„SUPKRI.ATTICKS

We calculate equilibrium lattice constants of 5.41 and
5.61 A for pure Si and Ge, respectively. The experimen-
tal values "are 5.430 and 5.657 A.

Assuming the strain induced by the mismatch between
Si and Ge lattice constants is accommodated elastically,
the Si„Ge„superlattices can grow pseudomorphically on
a (001) Si substrate. The equilibrium lattice constant of
Si„Ge„(closeto that for a disordered Sio 5Geo 5 alloy) is
about 2% larger than for pure Si. The superlattices
therefore experience a biaxial strain of 2% in the [100)
and [010] directions. The total strain energy can be re-
duced both by deforming the cell tetragonally and by re-
laxing the interplanar spacings in the [001j direction.
The average relaxation makes the e/ai ratio greater than
1 for a Si substrate, and smaller than one for a Ge sub-
strate; this will be denoted as tetragonal distortion. We
find for a Si substrate that all the superlattices (for n= 1,
2, 4, and 6) deform by approximately the same amount:
c /a

I~

——1.03+0.01. The uncertainty is partially caused by
numerical uncertainties in locating a shallow minimum in
the total energy versus e/ai, and partly by our underes-
timating the lattice mismatch between bulk Si and Ge
(since e/ai is proportional to the lattice mismatch).
Interplanar relaxations restore the interplanar spacings in
the Si and Ge layers to very close to those for the pure
constituents (Table I). For a Si substrate virtually all
strain is taken up by the Ge layer. The spacing between
adjacent planes a and P can be written as
d &

——(e/2n)(1+a), where s is the relaxation parameter
(zero when atoms are unrelaxed). Our results show
c.= —0.03 for Si—Si bonds and c= + 0.03 for Ge—Ge
bonds. Hence, for a Si substrate, to within 0.01 A, the
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TABLE I. Interplanar distances (A) for epitaxial Si„Ge„superlattices (m=2, 4, and 6} grown pseudomorphically on a (001)-
0 0 0

oriented substrate with substrate lattice parameter as; ——5.41 A, a=5.51 A, and ao, ——5.61 A, as obtained in valence-force-Geld
geometry optimization using the ab initio force constants a(Si-Si) =47.207, a(Ge-Ge) =38.212, a(Si-Ge) =42.855, p(Si-Si-Si) = 14.320,
P(Ge-Ge-Ge) =12.387, P(Si-Ge-Si) =P(Ge-Si-Ge) = 13.083, P(Si-Si-Ge) = 13.674, and P(Si-Ge-Ge) = 12.725, all given in N/m.

R(Si—Si)
A

a as;

R(Si—Ge)
A
0 as'

R(Ge—Ge)
A

aG

1.3488 1.3303 1.3112 1.3926 1.3750 1.3568 1.4378 1.4220 1.4057

1.3524
1.3505'

1.3342
1.3321'

1.3154
1.3132' 1.3928 1.3752 1.3570

1.4344
1.4364'

1.4183
1.4205'

1.4017
1.4040'

1.3521
1.3522'
1.3505'

'This distance occurs twice.

1.3338
1.3340'
1.3322'

1.3150
1.3152'
1.3132'

1.3928 1.3752 1.3570
1.4348
1.4346'
1.4364'

1.4187
1.4185'
1.4204'

1.4021
1.4019'
1.4340'

Si-Si interplanar distances are those of bulk Si (1.35 A)
and the Ge-Ge distances those of Ge grown epitaxially on
Si (1.43 A). The interlayer Si-Ge distance is close to the
average of the other two. A small deviation from this
rule is observed in the distances between the planes next
to the Si-Ge interfaces (Table I). On the Ge side of the
interface this distance is slightly larger than the other
Ge-Ge distances; on the Si side it is smaller. The
difFerence is small, less than 0.005 A, but noticeable in
both the n =4 and 6 superlattices. The overshoot of the
Ge—Ge bond length on the Ge side of the interface and
of the Si—Si bond length on the Si side of the interface
may reflect charge transfer across the interface: Since Ge
is the more electronegative element, charge will flow
from Si to Ge across the interface. The lattice expansion
on the Ge side and the contraction on the Si side then act
to restore the charge density toward the bulk value.

Our total-energy calculations permit assessment of su-

perlattice stability. The epitaxia/ formation enthalpy 5H
is given3o as the difFerence between the total energy of
Si„Ge„(whereall of its structural parameters are relaxed
for a fixed substrate lattice constant al) relative to
equivalent amounts of Si and Ge, also at al (and for
which c is relaxed). We find, for Si as a substrate,

5H'"'=0+30 meV/[(Si-Ge) pair]

for n= 1, 2, 4, and 6 (to within 3 meV; the 30-meV error
is the difference between the Stted and directly calculated
Ge energy at equilibrium). If the total superlattice thick-
ness exceeds h, ', the critical thickness for nucleation of
misfit dislocations for Ge grown epitaxially on an (001) Si
substrate, it is more appropriate to refer the formation
enthalpy of the superlattice to equivalent amounts of
(bulk) Si and bulk Ge. This gives

hH'"'=34+30 meV/[(Si-Ge) pair] .
Cotllpallsoil of 5H wltll kH shows that tlie epitaxial
superlattice is less unstable than the bulk superlattice, as
previously noted.

Previous calculations of the electronic structure of
strained superlattices (e.g., Refs. 12-15, 18, and 19) have

used tetragonally deformed unit cells (c/a 1+1),but have
ignored energy-lowering interplanar relaxation within the
tetragonal unit cell. We find (see Sec. IV E2 below) that
such displacements also sensitively control transition
probabilities into folded-in conduction-band states.

IV. ELECTRONIC PROPERTIES

A. Conceptual model for formation of strained superlattice
from bulk constituents

We are particularly interested in the direct versus in-
direct nature of the fundamental superlattice band gap
and will therefore focus on the behavior of the low-
energy conduction-band symmetry points I, X, and I.
and the Si conduction-band minimum at 6;„(using the
symmetry labels of the face-centered-cubic lattice). To
gain insight into the origins and nature of these states
and their evolution from the states of bulk. Si and Ge, we
will follow a stepwise conceptual process carrying bulk Si
snd bulk Ge into the final strained superlattice. We will
use the case of a Si substrate and an equimolar superlat-
tice (denoted Si„Ge„/Si)to illustrate this process. Nu-
merical results for other substrates are given in Sec. V.

In the jirst step we hydrostatically compress Ge from
its equilibrium bulk lattice parameter (ao, ) to that (as; )

of the substrate on which it is grown. In the second step
we allow its c axis to tetragonally deform to its equilibri-
um value for this substrate. Since the second superlattice
component (Si) is unstrained when grown on a Si sub-
strate, its electronic structure is computed at its (theoreti-
cal) bulk equilibrium lattice parameter as;. In the third
step we combine bulk Si with tetragona11y deformed Ge
to form the strained epitaxial Sio &Geo s alloy (at its equi-
librium value of c/ai). In this step we use the virtual-
crystal approximation ' to generate the band structure of
the tetragonal alloy. In the fourth and final step we con-
trast the electronic structure of the Sio 5Geo 5 disordered
epitiaxial alloy with that of the atomically ordered and
fully relaxed epitaxial Si„Ge„superlattiee. These two
structures share the same composition and molar
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volumes and difFer only in the atomic ordering within the
unit cell.

The structural parameters for each of the ordered com-
pounds are determined by the same procedure outlined in
Sec. III. For each step we compute self-consistently the
electronic structure, using precisely equivalent basis sets
and Brillouin-zone sampling points. Comparison of the
results of the four steps will determine, respectively, the
efFects of (i) hydrostatic compression, (ii) tetragonal defor-
mation, (iii} coexistence of chemically diff'erent constitu-
ents in the same cell, and (iv) superlattice ordering (with
its attendant band-folding, band-coupling, and charge-
transfer effects) on the electronic properties of the super-
lattice. The resulting band energies at high-symmetry
points are depicted in Fig. 1.

(e) (d) (c)
S|6.5Geo.l Ge

s~ at(cia+, (c/1}~

Ge
NQy

c/I =1

1.0-

II

Xc

L:
FIG. 1. Energy levels {in eV, relative to the average of the

strain-split valence-band-maximum states) at I, I, and L of (a)
bulk Ge {ao,——5.61 A) and {e) Si {as;——5.41 A), as vreB as (b)

compressed and {c) tetragonally distorted Ge and {d) Sio,Geo &

alloy.

8. Hydrostatic comyression efFects

Pure Ge can be grown pseudomorphically on Si, pro-
vided that the strain resulting from the lattice mismatch
can be accommodated elastically. This results in a con-
traction of the (larger) in-plane Ge lattice parameter to
match that of Si (a hydrostatic pressure efFect), and an
elongation of the lattice parameter in the perpendicular
direction. In the Srst step we consider only the hydro-
static pressure eSect. Comparing the electronic structure
of bulk Ge (at ao, ) of Fig. 1(a) with that of compressed
Ge (at as;, but with c/ui ——1), shown in Fig. 1(b), we see
that those states which have positive deformation poten-

tials (I 2, and I., ) have been displaced to higher ener-

gies, while the X, state, with its smaller and negatiue de-
formation potential, is shifted to lower energies. (The
calculated pressure deformation potentials for Ge, using
the same method employed here, are 11.6X 10 eV/bar
for I &„4.6&10 eV/bar for L„,and —1.4&10
eV/bar for Xi„in good agreement with experiment.
The difFerent deformation potentials of X, and I., result
in an interchange in the character of the conduction-band
minimum (X, falls below L, ). Whereas in bulk Ge, we
find I, to be below X, [by 0.4 eV, Fig. 1(a)], in
compressed Ge I, is above X, by 0.7 eV. %e will see in
Sec. IV D that the strong upward displacement of the Ge
I z, state described here, coupled with the yet higher en-

ergy position of the Si I"z, state, will make this state in-

consequential for low-energy transitions in the superlat-
tice, leaving the Si and Ge X, b, and I. states as the major
candidates for superlattice band edges.

C. Tetragonal deformation effects

Total-energy minimization calculations for epitaxial
Ge on al ——as; show a tetragonal elongation of the per-
pendicular c axis to c/al ——1.06. The calculated electron-
ic structure is depicted in Fig. 1(c). This biaxial cornpres-
sive strain (along the [100]and [010]directions) splits the
six equivalent fcc X, conduction-band states into two
equivalent X, states with their wave vector perpendicular
to the substrate, and four equivalent X,~~ states. Each
member retains the twofold degeneracy dictated by the
point-group symmetry. For c/al & 1 (appropriate to a Si
substrate) X, shifts to higher energies relative to X,~~ (we
find for Ge a sphtting of 0.5 eV). On the other hand, for
c/a~~ ~ 1 (appropriate, e.g., for Si on a Ge substrate), the
order is reversed and X, is the lowest-energy state. The
order of these states is crucial to the formation of a direct
or indirect band gap. As will be evident in Sec. IVE1,
for a (001}-oriented superlattice, only the X, state folds
into the center of the superlattice Brillouin zone. IfX, is
higher in energy than Xi (as is the case for a Si substrate},
the system is likely to have an indirect band gap, whereas
if X, is the lowest-energy state a direct band gap becomes
possible. %ave vectors for the conduction states at L are
oriented along the [111]direction and, therefore, these
states remain unsplit by the biaxial strain appropriate to
a (001)-oriented substrate. They shift uniformly to lower
energies, leading to a near degeneracy with X, [Fig. 1(c)].

The threefold-degenerate (in the absence of spin-orbit
coupling) valence-band maximum splits into an upper,
doubly degenerate I „state and a singly degenerate I,
state. Again, the order of these states depends on the
tetragonal deformation: For Ge as the substrate (where
c/ai (1), I ~~ is below I, (Fig. 10 below). Simple
deformation-potential calculations have been used in
the past to estimate this splitting.

The combined upward displacement of I ~~ and down-
ward displacement of L„botha consequence of epitaxial
strain, reduce the indirect I „~L,band gap of tetrago-
nally distorted Ge [Fig. 1(c)] relative to bulk Ge [Fig.
1(a)]. Furthermore, such deformations increase the direct
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gap I,~I,'. Hence, epitaxial strain alone makes Ge
"less direct" relative to bulk Ge.

Suppose we were to form an interface between thick,
tetragonally distorted Ge and a Si substrate. The relative
energy levels would then be given by Figs. 1(e) (bulk Si)
and 1(c) (tetragonal Ge), provided we align them to
reflect the band offset between these systems, i.e., shift
downwards the valence-band maximum of Si so that it is
at an energy EE„below the centroid of I I and I

„

for
tetragonally deformed Ge. As discussed at the end of
Sec. II, the almost constant local-density error at the fcc
I. and X points of Si and Ge means that such an align-
ment using local-density values will correctly predict rel
atiue conduction-band energies. (Shifting conduction-
band energies upward by 0.64 eV for X, and by 0.52 eV
for I., will, moreover, give a realistic absolute band dia-
gram. ) Using our calculated value, b,E=0.50 eV, for the
average valence-band offset appropriate for Ge grown on
Si (in good agreement with the offset, 0.54 eV, calculated
by Van de Walle and Martin'6), we find the results shown
in Table II; a schematic picture is given in Figs. 2(b) and
2(c). Although in a thick Si„Ge„superlattice the energies
of the band-edge states will be those of the pure constitu-
ents adjusted for the relevant band offsets, in thin super-
lattices with a narrow well width d the energy is raised by
quantum-confinement effects by~' an amount U =ir R2/
2m 'd~, where m ' is the appropriate efFective mass. One
expects that if U & b,E the relevant state will extend over
Si and Ge sublattices, while if U & b E, the state will pref-
erentially localize on that sublattice which has the lower
(higher) potential energy for electrons (holes). Table II
shows the calculated confinement energies U for n =4, us-
ing for d the sublayer thickness plus that of the interface
layer. This can be used to obtain rough estimates of the
nature of the Si4Ge4/Si states. The results show that we
can expect the valence-band-maximum states to be delo-
calized {with slight locahzation on the Ge sublattice) and

the X,ll, I.„andI,' states to be totally extended, awhile the
X' state can be expected to localize on the Si sublattice.
These simple expectations will be examined in Sec. IV E
in light of our self-consistent superlattice calculations.

D. Forming the epitaxial disordered alloy

In the third step of our conceptual process of forming a
Si„Ge„superlattice epitaxially on Si, we consider mixing
the states of bulk Si [Fig. 1(e)] with those of tetragonally
deformed Ge [Fig. 1(c)] to form an epitaxial Sio &Geo&
disordered alloy {not a superlattice). The electronic
structure of this tetragonally deformed alloy is calculated
in the virtual-crystal approximation, ' taking the alloy
pseudopotential as the average of those of Si and Ge.
The epitaxial alloy is constrained to ai ——as;, and we
choose c/ai ——1.03 as the tetragonal elongation in the
[001]directIon. There are three noteworthy points about
the alloy electronic structure: First, each alloy state has
an energy very close to the average energy of its constitu-
ents, i.e., bulk Si [Fig. 1(e)] and tetragonally deformed Ge
[Fig. 1(c)]. This near-averaging (small optical bowing pa-
rameter) is analogous to what is found in bulk Si„Ge,
alloy calculations. " This causes the low-energy 1. and I
conduction-band states of tetragonally deformed Ge to
shift up with respect to states at the X point, which now
becomes the conduction-band minimum. (We shall see
that this carries over to the superlattice. Hence the
conduction-band minima of the superlattice will involve
almost exclusively states of Si and Ge around X, for
which local-density errors are nearly identical. ) Second,
since the tetragonal deformation for the alloy
(c/Qi —1.03) is smaller than for Ge on Si (c/ai = 1.06),
the X,'~-X, splitting is smaller in the alloy. Third, the
strained alloy has a smaller gap then the bulk alloy: The
I I ~Xi minimum gap of the strained alloy (-0.5 eV) is

TABLE II. Band ofFsets, EE (in eV, calculated here), effective masses m for the relevant states [Ref.
28(b}], and energy change U=n I /2m d~ (in eV) caused by confinement, relative to the well
minimum. Results are given for an n=4 superlattice on a Si substrate. %e use the value d=7.0 A for
the well width. For each state, ~e indicate in the last column the nature (localized or delocalized) of
the wave function (in parentheses ere indicate the sublattice on which the amplitude is larger).

Superlattice
state

pl!

I l

x,'
gll

L,

Magnitude

0.7
0.2
0.9
0.3
0.7
2.1

Minimum
on

Si

0.3'
0.3
0.98

0.19'

0.12'

2.6

6.4

Expected nature
of state

delocalized (Ge)

delocalized (Ge)

localized on Si

delocalized

delocalized

delocalized

'Ge hole mass at I .
"Si longitudinal-electron mass at X.
'Si transversewlectron mass at X.
d[001] Ge electron mass at L
'Ge electron mass at F'z.
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S~p.g aep. s
s~

(c~)~

(b)
SI
Si

c/e = 0

Ge
s(

(c/a)eq

K. Ordering the disordered epitaxial alloy
into a suyerlatbce

l. Folding symmetry and ineguiualence ofL and L' states

let &E (l)

2.0-I
N
CPO~

C0
cs ]Q
'a

tl 0.5-c
I
«r QI
K

SEc(L)
Lc

Xc

II

{holes}
Wi'I4'ill"I"::::::"'

Lc 4

0.6

0.9) lg

xC

(electrons)

0.54
hE~

:::::':::::::::.t v':::::.'..'::.:'::::::.'.:':-':.'::::.

A

Xc
fc'

II

Xc

Lc

(holes)
I

.::::averige,;:

FIG. 2. Band-structure discontinuities of SjosGe&&s/Si [(a)
and (b)] and Ge/Si [(b) and {c)]. The valence-band offsets ts,F.

„

are taken from Ref. 16. Relative conduction-band offsets are
obtained from Fig. 1, by positioning the average energy of r~

and I ~ (denoted "average" ) of one material at a distance hE„
from the average of the other material. Due to the LDA error,
the magnitude of the gap cannot be reliably given. Shifting the
conduction band upwards by -0,6 eV {see text), however, pro-
duces realistic X, b„andI.gaps.

The final step in the process of creating the strained su-
perlattice from its bulk constituents involves the ordering
of the atomic sites of the random SiosGeo s/Si alloy,
without changing the stoichiometry or the molar
volumes.

When atoms are ordered into superlattice structures
with their larger uni. t cells, the face-centered-cubic Bril-
louin zone (Fig. 3) of the alloy folds into smaller ortho-
rhombic zones for even n (space group Pmma, 'point sym-
metry Dzt, ) and tetragonal zones for odd n (point group
D~). Rather than use orthorhombic or tetragonal sym-
metry notation, we will retain the fcc labels (with an
overbar added). This allows us to use a single, consistent
set of labels and avoids a problem with the n-dependent
fcc to orthorhombic or tetragonal mapping.

As a prelude to the discussion of the overall band gap
of Si„Ge„superlattices, we note that folding effects alone
could conceivably make Si„Ge„adirect-band-gap ma-
terial. The disordered epitaxial SiosGeos alloy has a
conduction-band minimum at a momentum k„between
I' and X. Simple geometry indicates that for
n =2/(1 —k, /kx) (or an integer multiple), k, will fold
into I. Taking k, =0.83k+ (appropriate for Si) gives
n= 12. For an epitaxial Si„Ge„superlattice, this estimate
would be somewhat modified by strain and any ordering-
induced change of k, .

As noted in Sec. IVC, substrate-induced tetragonal
distortion of a fcc structure splits the six equivalent X
points into four equivalent XII and two equivalent X~
points [Fig. 1(d)]. In a superlattice, such a splitting will,

l
ll
Il

I(l I

i I

l

l
I

I,
I

I

I

lower (by -0.1 eV) than that of the unstrained alloy [0.64
eV: approximately the average of Figs. 1(a) and 1(e)].

If we were to form an interface between a thick
Sio sGeo s alloy and a Si substrate, the relative energy lev-
els would be those obtained by positioning Figs. 1(e) and
1(d) on an absolute energy scale. Using an approximate
value for the valence-band offset of 0.27 eV (half the
value appropriate for Ge on Si), we find the band diagram
shown schematicaHy in Figs. 2{a) and 2(b). It shows a
small X -X ll conduction-band offset (with a shallow
minimum on the Si side), but a larger valence-band offset
(minimum on Si), predicting the formation of a predom-
inantly two-dimensional hole gas. This corresponds to
the situation reahzed in the Si„{SiosGeo z) /Si system.
[Note, however, that if the substrate had a larger lattice
constant, the conduction-band minimum would be
lowered on the Si side, as was observed in the
Si„(Sio.sGeo. s)m/Sio. 7sGeo. 2s system where electron
confinement to the Si layer was seen. ]

FIG. 3. Brillouin zone of the face-centered-cubic structure
(solid lines) and the folded n=2 superlattice Brillouin zone
(dashed lines), shoming the nonfolding (L, X~t, and I.') as well as
I -folding (X') states.
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in general, occur for Si„Ge„(evenor odd n), even in the
absence of tetragonal distortion because of the chemical
distinction between Si and Ge. In addition, in even-n su-
perlattices the fourfold inversion axis along [001] is ab-
sent, rendering the [111]and [111]L points inequivalent;
the four X~~ points remain equivalen. %e choose the
orientation of the superlattice such that the Si—Ge bonds
are in the [111]and [111]directions and label the two
inequivalent points L and I. ', directions and label the
two inequivalent points L and L ', respectively. (Odd-n
superlattices have the 4 symmetry operation but lack in-
version symmetry. ) For an n=2 superlattice, the X
point folds into I', and Xi points fold. onto themselves.
Since each of the Xl points was doubly degenerate before
folding (because of the inversion symmetry), the folding
of X~1 in an n=2 superlattice doubles the degeneracy to
four. Similarly, the L points (L and L ') also fold onto
themselves and become doubly degenerate.

To see how zone folding and band coupling change the
character of the states, we have examined the virtual-
crystal Sic &Geo 5 alloy in an n =2 superlattice cell, rather
than in its primitive (n = 1) cell. The probability densities
for these states are shown in Fig. 4{b) in the (T01) plane;
in a (001) surperlattice this plane will contain both types of
atoms. Figures 4(a) and 4(c) show the corresponding re-
sults for pure Si and Ge, respectively, in the same unit
cell. For Si, Ge, and Sin ~Geo 5, in order to fix the phases
and lift the degeneracies, we have added a tiny admixture
of the superlattice "ordering potential" [V(SitGez)-
V{Sio~Geo &)]. In addition to the obvious periodicity (of
repeat distance c =1.03al ) for 'the Si substrate) along the
[001J superlattice growth direction, the ordering poten-
tial also creates an oscillating potential in the [110]direc-
tion with period al/v 2. Notice how this causes states
with k-vector components along this direction (X t~ and
L) to acquire a periodicity of four monolayers in the
[001] direction, while the L ' states retain their double-
layer periodicity. We shaB see below (Sec. IVE3) how
this four-layer periodicity permits the wave functions to
selectively localize in Si and Ge sublayers for certain n

values.
For superlattices with n ~ 2, more states wiB fold to the

high-symmetry points. However, no additional, phase-
changing degeneracies are created. The four-layer
periodicity observed for n=2 is therefore preserved as
the layer thickness increases.

The calculated energy levels for the n =2, 4, and 6 su-
perlattices are shown in Fig. 5, where they are also com-
pared with the virtual-crystal-approximation (VCA) aBoy
states. The corresponding wave-function amplitudes are
plotted in Figs. 6(a)-6(c) for Si2Ge2, Si4Ge4, and Si6Ges.
%e have chosen the degeneracy-weighted average of the
three top valence bands at I as the zero of energy.

The uppermost valence bands for a Si substrate are all
delocalized through both Si and Ge sublattices with a
larger emphasis on the Ge sublattice. The lower, p, -like
state 1"

„

is split from the upper I „statesby the tetrago-
nal deformation (a "crystal-field" sphtting). The upper
(p„,p ) pajr, I 1, and I l2, is spht because of the missing
inversion axis.

While the total valence-band charge densities (lowest

panels in Fig. 6) are rather similar in the disordered alloy
and the ordered superlattices, substantial dim'erenees exist
in the individual states. The conduction-band states fall
naturaBy into two categories: the I'-folding states [Fig.
5(a)] X t and Z, where the lowest-energy states are local-
ized on the Si sublattice, and the nonfolding states [Fig.
5(b)] X l, ~ i, L, and L ', which have amplitude on both
sublattices. %e next discuss these two classes of states.

Si 05Geo.5 Ge
WT

Lc~
( gc

..I

/pl
c2

I/ I ~ /

O' 'Q
c1

o

Xc)I}

fAlfl(a
c

FIG. 4. Wave-function amplitude for Si [solid circles in (a)],
epitaxial Ge/Si [open circles in (c)], and a virtual-crystal epitaxi-
al Sio,Geo,/Si alloy [crosses in (b)], calculated in a four-atom
cell. A small potential perturbation has been introduced to
infinitesimally lift the resulting Iand L degeneracies.

2. I' fold-ing on o Si snbstrote ond new direct transitions

The I -folding states behave as conventional quantum-
confined states in two respects. First, except for the n =2
superlattice, they are con6ned to the Si sublattice, as can
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FIG. 5. Energy levels (in eV) of (a) quantum-con5ned longitudinal states and (b) extended transverse states of strained (001}Si„oe„
superlattices grown on Si for n=2, 4, and 6 and for the random Sio 56eo 5 alloy on Si, Dashed boxed regions indicate the extent of
downward dispersion of a band away from the symmetry point. The zero of energy is taken as the average of the top three valence
states at I . Note in (a) that while the alloy has no direct transition below -2 eV, the superlattice has six {for n =6) or four {for n =4)
new direct transitions.

be seen by inspecting the X „andX,z wave-function am-

plitudes in Fig. 6. Comparison with the corresponding
wave-function amplitudes shown in Fig. 4 highlights the
substantial segregation of charge in the superlattice (Fig.
6) relative to the alloy (Fig. 4). Second, the energy of the
I'-folding states drops as the layer (well) thickness in-
creases. The localization on a single sublattice of these
I -folding states (predicted also by simple models, see
Table II) emphasizes the possibility of quantum
confinement even in atomically thin superlattices. These
I -folding states are seen to occur in pairs, rejecting the
original degeneracy at I .

For n=4 and 6 the additional states along 5 which
fold into I still leave the conduction-band minimum
along b, (at 0.83k+) unfolded. This leads to a downward
dispersion of the lowest-conduction-band state away from
I in the [001] direction. The magnitude of this disper-
sion is indicated in Fig. 5 by the boxed region. For
larger-n superlattices it is limited by Brillouin-zone edge
efFects and by the small dimension of the Brillouin zone
in this direction.

Comparison of the direct transitions in the strained
Sip 5Gep 5/Si alloy with those of the strained superlattice
[Fig. 5(a)j reveals a dramatic change: Whereas the lowest
direct (I „~l,) transitions in the strained Sip 5Gep 5 al-

loy appear above 1.9 eV, four new direct transitions ap-
pear in the Si4Ge4 superlattice below this energy. The oc-
currence in a superlattice of lower-energy pseudodirect-
band-gap transitions even below the lowest indireet-
band-gap transition of the bulk alloy of the same compo-
sition has also been reported in (InAs)„(GaAs)„superlat-
tices, and in"' (GaAs)„(AlAs)„for n & 1. (However, in
these systems, at least one of the two compounds com-
posing the superlattice has a direct band gap even in bulk
form. )

Since the new low-energy conduction-band states are
folded-in states, they would normally be expected to have
small transition matrix elements with the upper valence-
band states. (In the absence of superlattice ordering and
atomic relaxations, such transitions carry no oscillator
strength. ) The transition matrix elements are, however,
enhanced by the Si-Ge potential di8'erence and by the
difFerent interplanar distances in the two sublayers (atom-
ic relaxation, see Table I). As the layers become thicker
the matrix elements must decrease and approach their
vanishing bulk value for very thick layers. This is clearly
seen in Table III, where the squares of the matrix ele-
ments are tabulated. Notice that in the n=4 superlattice
the symmetry of the lower conduction bands is opposite
that of the n=2 and 6 superlattices and all transitions to
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the lowest-conduction-band state are dipole-forbidden.
Figure 7 depicts the dipole-allowed transitions for paral-
lel and perpendicular polarizations. Figure 8 shows the
calculated matrix elements as a function of energy for
direct transitions at I . Since experimental resolution is
smaller than the I' I„-III„splitting, the component transi-
tions are not resolved.

We see that for parallel polarization [Fig. 8(b)] we ex-
pect three groups of transitions, denoted A, 8, and C.
Their energies (Table III), calculated in the local-density
formalism for n=4, are 0.63, 1.11, and 1.84 eV, respec-
tively. Correcting approximately for the local-density er-
ror (see Sec. II), this gives, for n =4,

(',a', i

Si2Ge2
r

~)) 0

l,'C.",
I

Si6Ge6

(i'
~ g

j~ X~2

JIG XL

p o0

+o

0

I
j

FIG. 6. Wave-function amplitude for states at 1,X, E;„,L, and l., for (a) Si2Ge2/Si, (1) Si4Ge4/Si, and (e) Si6Ge6/Si. Results for
n =6 are given in increasing order of energy; the energy order of n =2 and 4 is given in Fig. 5. Ge sites are denoted by open circles, Si
sites by solid circles. The lowest panels give the total valence-band charge density. Note that while the lowest conduction bands
(8, '", X ~~, 3 are delocalized, the next-highest conduction bands t,'X,&, X,23 are localized on the Si sublattice. Note further the four-
layer periodicity of I.,&

and I.,z for n =4 and 6.
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TA.BLE III. Calculated dipole matrix elements
I

&i I
x

I f} I and transition energies b,E in Si„Ge„
superlattices for @=2, 4, and 6 on a (001) Si substrate. (The values for a Ge substrate are given in

parentheses for n=4. ) (i
I

is a valence-band state and
I f ) a conduction-band state as indicated; a is

the direction of polarization. The notation for the states refers to Fig. 3. For a given valence band only
one type of polarization gives nonzero matrix elements. The matrix elements have been normalized so
that the strong, I »,~I z, -derived transition is unity. Energy differences are in eV.

I,(o.=I)
1&x.)1' aE

I (x.) I' aZ
r Il„(+=II)

I
&x.) I' ~Z

n=6

X„
X,
I,
X,',
X,
gi
gi
I",

0.21

0
1

0
0.02 (0.08)
0.04 (0.06)
0
1

0.01
0
0
0.03
0.04

0
1

0.93
1.11

2.30

0.80 (0.24)

0.91 (0.34)
1.39 (0.79)
1.58 (0.95)
2.12 (1.39)

0.67

0.73

1.13

1.24

1.88

2.02

2.05

1.28

0
1

0
0.04 (0.05)
0.12 (0.08)
0
1

0.11

0
0
0, 10

0.11

0
1

0.65

0.83

2.02

0.53 (0.43)
0.63 (0.53)
1.11 (0.97)
1.30 (1.13)
1.84 (1.57)

0.37

0.43

0.83

0.94
1.59

1.72

1.75

0.07

0
1

=0 (0.02)
=0 (=0)

=0

0.01

=0

0.61

0.79

1.98

0.52 (0.41)
0.63 (0.52)
1.11 (0.96)
1.30 (1.12)

1.84 (1.56)

0.37

0.43

0.83

0.94

1.59

1.72

1.75

(I Itl I &II ) X~& 1 27+0 04 eV (A)

)~g~3 1.7520.04 eV (8)

(I lil, 1211 ) r, 2.6*0.3 ev (c).
We tentatively assign transition A to that observed at
1.25 eV (with a linewidth of 0.13 eV), and the alloy-
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FIG. 7. Dipole-allowed transitions (neglecting spin-orbit
coupling) for Si4Ge+Si in different light polarizations. Note
that transitions to the loosest folding (X,&) conduction band are
forbidden.

Photon energy {ev)
FIG. 8. Photon-energy dependent dipole transition elements

for Si~Ge+Si, showing three transitions ( A ', 8', and C') for po-
larization e1 [in (a)] and three transitions for polarization eII [in
(b)]. Values corrected approximately for the LDA error (a
-0.6-eV shift) are given in parentheses.
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derived (I „~I',) transition C to that observed at 2.31
eV (linewidth of 0.24 eV}. The transition observed at
0.76 eV is not a direct-band gap transition according to
our calculation. It could correspond to the indirect
I i ~5, '" transition [0.28 eV from Fig. 5(b), or
0.92%0.04 eV after correcting for the LDA error]. Tran-
sition 8 was not reported in the experimental study.

In their tight-binding study, Brey and Tejedor Sad
for n=4 transition A at 1.1-1.2 eV, transitions 8 at
1.5-1.6 eV, and transition C at -2.2 eV. People and
Jackson's apparently do not Snd a transition of type 8,
possibly because they have assumed a single (rather than
a double) folding in the n =4 superlattice.

Our calculation does not include spin-orbit (SO) cou-
pling; qualitative effects can, however, be assessed from
the quasicubic model of Hopfield: (i) dipole-forbidden
transitions in the absence of SO couplings (Table III) can
become weakly allowed by mixing states belonging to the
same inversion parity. (ii) Transition energies from I'(,
to the conduction band are reduced by -b,o/3„where ho
is the spin-orbit splitting of the superlattice valence-band
maximum (approximately the average of ho(Ge)=0. 3
eV, "and ho(Si)=0.03 eV [Ref. 43(b)]). This reduces
the corresponding values of Eq. (1}, and the indirect
1 „'~Z,'" gap by ho/3=0. 05 eV, bringing them into
closer accord with experiment. (iii} The I i-1 1 crystal-
field splitting would increase by —ho/2=0. 075 eV.

3. Noufolding states on a Si substrate

Figure 5(b) shows, for a Si substrate, the variation of
the indirect-band-gay states with the superlattice period
n The .nonfolding X 1, L, and L ' states are extended on
both Si and Ge sublayers [Fig. 5(b)]. The fourfold degen-
eracy of the alloy X,I~ state is split by the superlattice po-
tential into upper and lower pairs.

. The doubly degenerate L point is split at L into L„
and L,z [Fig. 5(b}]but remains degenerate at L '. Figure
5(b) shows that the splitting of the L„andL,2 states os-
cillates with n, exhibiting a large energy difference for
n=2 and 6 and near degeneracy for n=—4. A similar
effect was recently predicted~ for (GaAs) (A1As)~ su-
perlattices, showing large (small) L„L,z splittin-g for m
odd (even). This variation with n in the magnitude of the
splitting is simply a measure of the commensurability of
the superlattice period with the period of the wave func-
tions. In the alloy we saw that the underlying period of
the wave functions was four monolayers (Fig. 4). Thus
the lattice is in perfect registry with the wave function in
the n =2 superlattice and the states are able to fully sam-
ple the difFerence between the Si and Ge potentials, re-
sulting in a maximum splitting. For n=4 the states are
forced to sample both sublattices equally and the sphtting
is close to zero [Fig. 5(b}]. For n=6 each wave function
can place —', of its weight on one sublattice and —,

' on the
other, giving —,

' of the sphtting of the n=2 superlattice
[Fig. 5(b)]. In general, the splitting is zero for n a multi-
ple of 4; for other n the wave function has relative arnpli-
tudes of 2/n and (n —2)/n on the two sublattices, leading
to a splitting 2/n times that for n=2. Because of their

V. OTHER SUSS'f$L4TES

In all the superlattices described so far, the indirect
states at X 1 are well below the I'-folding X, states. This
makes all of these superlattices indirect-band-gap sys-
tems. The origin of this situation is the tetragonal defor-
mation imposed by the substrate. If the substrate lattice
constant is increased, the claI ratio will decrease, and
the order of X i and X i is reversed (Fig. 9). To test this
hypothesis, we performed two additional calculations,
one for an n=4 superlattice with an in-plane lattice con-
stant a1 ——a, the average of Si and Ge (appropriate for a
superlattice grown on a Sio,Geo, alloy or for a free-
standing superlattice), and the other for an n =4 superlat-

Subetrates for Sla Ge4

Si05 Ge05 Ge

&c
e

~ 0
~4

0.0- average
VBM

FIG. 9. Change in level ordering between I -folding {L~ ) and
n.nf.lding ~~it) states as a function of substrate lattice constant,
fox Si, Sio,Geo &, and Ge substrates.

delocalized nature, the average of the states changes only
slightly with n, although for sufficiently thick layers the
states will localize and the energy will drop. This non-
monotonic behavior of the superlattice L- and X-point
conduction-band energies [Fig. 5(b)], coupled with the
small variations with n me find for the L- and X-point
valence-hand states, suggests that the energy of direct
X„~X,and I.„~I., transitions should be nonmonotonic
as a function of n O.ur calculations (uncorrected for
LDA errors) predict splittings X,-X„of3.43, 3.73, and

3.64 eV, and L,,-I., splittings of 1.43, 1.93, and 1.78 eV,
respectively, for n=2, 4, and 6. Experimental testing of
this prediction is lacking.

Comparison of the wave-function amplitudes for the
few lowest-conduction-band states of the superlattice
(Fig. 6} reveals an interesting situation where the lowest-
energy states (Z, '" and X li) are delocalized, while
higher-energy states X,i and X,2 are localized (the oppo-
site of what might be expected from a single-well-type
Kronig-Penney mode13 }. This is understandable, howev-
er, in terms of the different barrier heights (Fig. 2 and
Table II) and appropriate effective masses of the strain-
split X, and X,I bands, discussed in Sec. IV C.



SVERRE FROYEN, D. M. %000, AND ALEX ZUNGER

(g) I= foldino States,
n=4 (b~ Non-foldino Ittes,

n=4

Sl Awoy O
substrate aubatrat» IMbetrate

SI
aubatrate

Nloy Qe
,
substrate IMbatraty i

L '.

l
shkÃ%%%%l

%%+ g;,

I
Lc

Lc2 /

Lci

"vi,P

-0.5

FIG. 10. Energy levels (in eV) of (a) quantum-con5ned longi-
tudinal states and (b) extended transverse states of a Si4Ge~ su-

perlattice matched epitaxially to Si, a Sio &Geo & alloy, and Ge
substrates. Dashed regions indicate the extent of downward
dispersion of a band from the symmetry point. The zero of en-

ergy is taken as the average of the I tI&, I ~~2, and I ~ states.
Note the change in order of the crystal-Seld-split states I ~~I 2

and I „asthe substrate lattice constant is changed.

tice OQ Ge. Results for these calculations arc shown in

Figs. 9 and 10.
We observe that as the substrate lattice constant in-

creases (i.e., the c/ai ratio decreases) the X, {or b, )

states shift up in energy with respect to the I -folding
states at X (or h, ) (Fig. 9). For ai ——a this shift is al-

ready suScient to place the previous minimum at 5, '"

close to X j~, above the lowest conduction band at X'„.
The superlattice remains indirect, however, because of
the 0.1-eV downward dispersion away from I in the [001]
direction. The magnitude of this dispersion can be re-
duced by increasing n F.or n=6 it is already only 0.01
eV and for superlattices with n —10-12 it should vanish
completely as the minimum of the alloy's first conduction
band at 0.83k' folds to I'. The growth of Si„Ge„onan
x=0.5 alloy substrate should be facilitated by the smaller
strain in the layers (2%) relative to the situation with a Si
substrate (4% strain). An added advantage is that, since
the average strain for Si„Ge„/Si05Geo &

is zero, there is
no limit on the total thickness of the superlattice; the
growth of optical thicknesses should be possible. Notice
also from Fig. 10 that increasing the substrate lattice pa-
rameter leads to an interchange in the order of the I'„
and I ~~ valence-band states and, hence, to a reversal of
the sign of the crystal-field splitting.

We summarize thc csscntial cFccts of strain and
con6nement on the electronic structure of strained
Si„oe„in Fig. 11, depicting the potential wells, energy
levels, and wave functions of the near-edge states for
Si4Ge4 on a Si substrate [11(a)]and a Ge substrate [11(b)].

First, if quantum-confjnement CFects could be neglect-
ed (e.g., for a thick superlattice), the energy levels near
the band edges would be given simply by the bulk band
edges. The thick solid horizontal lines of Fig. 11 indicate
these potential energies. These show that in the presence
of strain the band OS'sets can be radically diFerent for the
1. and ii states. For a Si substrate, the valence-band max-
imum ( I 1 ) is Ge-like, while the conduction-band
minimum (X ~~ ) is on the Si sublattice; hence the system is
a "type-II" superlattice. For a Ge substrate [Fig. 11{b)],
the altered sign of the strain causes the I i band edge to
be above the I ~~ band edge, and, hkewise, the
conduction-band edges for X", and Xi appear in a re-
verse order relative to the Si substrate, with X i below
X ~~. Again, the system is a "type-II" superlattice, with
the valence-band maximum ( I'„) on Ge and the
conduction-band minimum (X, ) on Si.

When the superlattice is made thin, the energy levels
are no longer given by the bulk band edges. The dashed
horizontal lines in Fig. 11 show the calculated energy lev-
els (n =4) within these potential wells and the shaded re-
gions indicate the weight of the wave functions on the
sublattice. Wave-function amplitudes averaged over the
(001) plane are shown in Fig. 12. For the Si substrate, we
find that the energy level I ~~ is 0.34 CV lower than the
bulk I ~ level. Despite the large barrier height, this state
is delocalized on both sublattices (with a somewhat larger
amplitude on the Ge side). The conduction-band
minimum is indirect at 5, '"; its wave-function amplitude
is delocalized on both sublattices, with a slightly larger
amplitude on the Si side. Hence, while for /arge repeat
periods Si„Ge„/Siwould be judged to be a strong "type-
II superlattice, " for small repeat periods we find only a
weak "type-II" behavior, with substantial delocalization
on both sublattices.

For a thin superlattice grown on Ge [Fig. 11(b)], we
find that although the wave-function amplitudes are very
similar to the corresponding states on an Si substrate
[e.g., compare I, or X, in Figs. 11(a) and 11(b)], the or
der of these states is changed. The valence-band max-
imum is at I „(delocalized with a sbghtly greater em-
phasis on the Si sublattice) and the conduction-band
minimum is close to X, (strongly localized on the Si sub-
lattice). The gap separating these states (-0.86 eV) is
the minimum direct band gap, slightly larger than the in-
direct band gap. Quantum-confinement eff'ects lead to
the lowering of I „relative to the bulk value I (Ge) and
to the increase of X, relative to the bulk value X (Si).
Hence, the direct band gap I „~X,in the thin superlat-
tice is larger than expected from the thick superlattice
(Eg -0.5 eV). The system is a weak "type-I" superlat-
tice.

Our Srst-principles calculations of the evolution of the
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splitting of the sixfold degeneracy of the X, valleys into a
lower-energy X,~~ state and a higher-energy X, state.
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Sio 5Geo s/Si alloy can be well described as an average of
the corresponding states of bulk Si and tetragonally dis-
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no direct transition below -2 eV.
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FIG&. 11. Calculated band offsets for the Si-Ge interface
(thick solid hnes) and the corresponding Si4Ge4 superlattice en-

ergy levels (dashed line) for selected states. Results are shown
for (a) Si and (b) Ge substrates. The shaded regions indicate the
weight of the wave functions on the Si and Ge sublattices.
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FIG. 12. (001) planar-averaged wave functions for selected
states in the Si4ge4 superlattice on a Si substrate.
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(iv) Organizing the atoms of the epitaxial Sin 5Geo 5/Si
random alloy into the ordered pattern of a Si„Ge„/Sisu-
perlattice leads to the usual band folding and band cou-
pling. Since the higher-energy state [see (ii) above] X
folds into I but XIt does not, such superlattices grown on
a Si substrate have an indirect band gap.

(v) Nevertheless, folding creates pseudodirect-band-gap
states of X, type which give rise to new direct transitions
belo~ 2 eV, a region in which no direct transitions exist
in the equivalent disordered alloy. While small, the oscil-
lator strengths of these transitions are nonetheless 6nite
because of hybridization and atomic relaxations. Two of
these transition energies ( A and C at 1.27 and 2.6 eV, re-
spectively) compare well with the observed transitions
(after approximately correcting for the I.DA error). The
intermediate transition (8, at 1.75 eV) has no counterpart
in the observed spectra. The lowest observed transition
at 0.76 eV is not a pseudodirect transition; it is likely that
this is the indirect transition I ~~

(vi) Whereas the lowest-energy folded states X „and
X,2 are localized on the Si sublattice, the yet lower
indirect-band-gap states (Z, '", X ~', ) are delocalized on
both the Si and Ge sublattices. This results from strain-

induced changes in conduction-band ofFsets and difFering
efFective masses. The valence band is similarly extended
on both sublattices. Si„Ge„/Siis hence a "type-II" su-
perlattice, with holes on Si and Ge (but more on Ge) and
electrons on the Si sublattice.

(vii) The absence of a fourfold inversion axis along
[001] for even-n superlattices creates two inequivalent L
points (L and L '). The L, as well as the X ~~ states exhib-
it a periodicity of four monolayers, ~hereas the I. ,' states
retain their single-layer periodicity. Commensurability
conditions of the four-layer periodicity of I., and X,~ with
the thickness n of the superlattice leads to an oscillating
dependence of their energies on n. This should be observ-
able in direct, L„~L„andX ~„~X~ transitions.

(viii) The main reason for the occurrence of a low-lying
indirect band gap in Si„Ge„/Siwas found to be the posi-
tive superlattice tetragonal deformation (c/a~~ & 1). Cal-
culations for substrates with a larger lattice parameter
(e.g. , a Sin 5Geo ~ alloy) show smaller tetragonal deforma-
tions and consequently a reversal of the order of the fold-
ing X, state with the nonfolding X,l state. We predict
that Si6Ge6/Sio 5Geo 5 will show a nearly direct band gap
(only -0.01 eV above the indirect band gap).
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