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Abstract--Theoretical models of temperature-composition phase diagrams of binary A-B systems 
have traditionally been based on various approximate solutions to the same broad class of physical 
Hamiltonian--the generalized Ising model. Common to all such approaches is the description of the 
interaction energies between sites, pairs or multi-atom clusters of A and B by some fixed (volume- 
independent) parameters. Despite extensive attempts to improve on the method of solution to the statistical 
problem (quasi chemical approach, cluster variation method i.e. CVM, high-temperature expansions, 
Monte Carlo), or to increase the range of the interaction to further neighbors, numerous qualitative 
discrepancies with real phase diagrams (briefly reviewed here) remain. We show that the source of the 
difficulty is not in the satistical method or range of interaction, but rather in the physical content of the 
interaction energies used. Recognizing that all successful classical packing models of solids require a 
description of the competition between fixed-volume "chemical" energies (representable as fixed Ising 
interaction parameters) and size-mismatch "elastic" energies (not representable by fixed energies), we 
include both on the same footings in a generalized lsing-like approach. Calculating both terms from 
first-principles self-consistent band theory we show through CVM calculations on the prototype Cu-Au 
phase diagram how many of the deficienciesof the "chemical-only" Ising models can be cured. This reveals 
the dominant role of lattice relaxation in determining many of the thermodynamic properties and the 
phase diagram. 

R~nm~---Les modules th~oriques des diagrammes de phases temp6rature-composition pour les syst~mes 
binalres A-B ont ~t~ bas~s traditionnellement sur diverses solutions approch~es appartenant ~i la m~me 
et vaste classe d'hamiltoniens physiques, ie module d'Ising g6n~ralis~. Le point commun /t toutes ces 
approches est la description des ~nergies d'interaction entre sites, entre paires ou entre amas multi- 
atomiques des ~l~ments Ae t  B par des param~tresfixes (ind~pendants du volume). Malgr~ de nombreux 
essais pour am~liorer le mode de solution du probl~me statistique (approche quasi-chimique, m~thode de 
la variation des amas, d,bveloppements ~ hante teml~rature, Monte Carlo), ou pour ~tendre le domaine 
d'interaction aux seconds voisins, il demeure de nombreux d~saccords qualitatifs avec les diagrammes de 
phases r6els (nous en pr~sentons ici uric revue rapide). Nous montrons que la source des difficutt~s n'est 
pas dans la m~thode statistique ou darts le domaine d'interaction, mais qu'elle r~side plut6t darts le contenu 
des ~nergies d'interaction que l'on utilise. Reconnaissant que tousles mod61es classiques d'empilement 
valables pour les solides n~cessitent uric description de la compbtition entre les energies "chimiques" 
volume fixe (que ron peut representer par des param~tres fixes d'interaction d'Ising) et les ~nergies 
"~lastiques" de cl~saccord de mille (que ron ne peut d~crire par des ~nergies fixes), nous tenons compte 
~galement de ces deux types d'~nergie darts uric approche g~n~ralis6~ qui ressemble au mod61e d'lsing. En 
calculant les deux termes ~. partir d'une th~orie des bandes auto-coh~rente bas~e sur les premiers principes, 
nous montrons~i  l'aide de calculs r6alis~s par la m6thode de la variation des amas, dans le cas du 
diagramme de phases module Cu-Atr---comment l'on peut rem~dier aux d~fauts des modules d'Ising qui 
ne sont bas~s que sur raspect chimique. Ceci r6v~le le r61e dominant de la relaxation du r~seau pour 
d~terminer de nombreuses propri~t~s thermodynamiques ainsi que le diagramme de phases. 

Zusammenfassung~Theoretische Modelle yon Phasendiagrammen (Zusammensetzung/Temperatur) 
bin/irer A-B-Systeme werden traditionell aufgebaut auf verschiedenen N/iherungsl6sungen derselben 
breiten Klasse yon Hamilton-Gleichungen----dem verallgemeinerten lsingmodell. Alle diese N~iherungen 
haben die Beschreibung der Wechseiwirkungsenergien zwischen Gitterpl~itzen, Paaren oder Multiatom- 
clustern yon A- und B-Atomen durch einige feste (volumunabhfingige) Parameter gemeinsam. Trotz 
ausfiihrlicher Versuche, die L6sungsmethode des statistischen Problems (quasichemische N~iherung, 
Clustervariationsmethode, Hochtemperaturen~iherungen, Monte-Carlo) zu verbessern oder den Bereich 
der Wechselwirkung zu weiteren Nachbarn zu vergr6Bern, bleiben doch viele qualitative Diskrepanzen zu 
den (hier kurz dargesteliten) realen Phasendiagrammen. Wir zeigen, dab die Ursache der Schwierigkeit 
nicht in der statistiscben Methode oder im Bereich der Wechselwirkung liegt, sondern vielmehr in der 
physikalischen Bedeutung der benutzten Wechselwirkungsenergien. Aus der Erkenntnis heraus, dab alle 
erfolgreichen klassischen Packungsmodelle der Festk6rper eine Beschreibung der Konkurrenz zwischen 
"chemischen" Energien bei festem Volumen (darstellbar als feste Ising-Wechselwirkungsparameter) und 
"elastischen" Energien wegen Gr6Benfehlpassung (nicht darstellbar durch feste Energien) erfordern, 
schlieBen wir beide auf derselben Grundlage in eine verallgemeinerte Ising-artige N/iherung ein. Mit der 
Berechnung beider Terme auf der Grundlage der selbst-konsistenten Bandtheorie zeigen wir mit 
Berechnungen mittels der Clustervariationsmethode zum Prototyp des Phasendiagrammes, Cu-Au, wie 
viele der Unstimmigkeiten der "nurchemischen" lsingmodelle ausger/iumt werden k6nnen. Dieses 
Vorgehen enthfillt die wesentliche Rolle der Gitterrelaxation bei der Bestimmung der thermodynamischen 
Eigenschaften und des Phasendiagrammes. 
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I.  INTRODUCTION: THE ISING APPROACH TO 
ALLOY PHASE DIAGRAMS AND THE 

COUNTING-STATISTICS PROBLEM 

I.I. Statement of the problem 

The great diversity of structural phenomena ex- 
hibited by a binary A~B~_~ alloy of constituents A 
and B as a function of composition x and tem- 
perature T (order, disorder, miscibility gaps, spinodal 
decomposition, multiple-phase coexistence, etc.) has 
traditionally been analyzed through generalized 
nearest-neighbor Ising models with the interaction 
Hamiltonian of the type [1-4] 

ITI = JoN + J~ ~ S, + J,. ~ S, Sj 

+ J3ZSiSjSk+J, ZSiS/St, S,+ " " ,  (1) 

where N is the number of sites, each occupied either 
by A ("spin up") or by B ("spin down"), S are the 
spin variables, and Jh is the h-site interaction energy. 
Each of the distinct 2 ~ possible arrangements on 
the lattice is a "state of order" denoted a. For f.c.c. 
lattices one has 6N pairs, 8N triplets (equilateral 
triangles) and 2N quadruplets (tetrahedra). It has 
been customary [4, 5] to express/t  in f.c.c, systems in 
terms of five tetrahedra, each having a concentration 
N, and the composition A4_,B, (0 ~< n ~< 4, where 
n = 0 and n = 4 denote the end-point constituents A4 
and B4. respectively), as 

4 

t7I = ~ E.N., ( 2 )  
n = 0  

where 

~ N ,  = 2N, 
n 

and where E,, is the energy of tetrahedron of type n. 
Comparison of equations (1) and (2) shows that since 
each site is shared by eight tetrahedra and each pair 
is shared by two tetrahedra, the mapping between the 
multisite energies Jh and the tetrahedron energies E, 
is [5] 

Eo=½Jo-½J~ + 3J, , -4J3+ J4 

E l = t  1 - ~J~ 5Jo + 0 + 2J~ - J4 

E,=½Jo + O - J 2  +O + J4 

E, = ½s. + ~J. + o - 2J~ - s ,  

E4 = ½Jo + ½J, + 3J: + 4J3 + J4 

for A4; 

for A 3 B; 

for A 2 B 2 ; 

for AB3 ; 

for B4. (3) 

To fix the reference energy, one follows the con- 
ventional definition of excess thermodynamic func- 
tions (enthalpy, entropy) and defines the excess 
energy per atom AE(n) of tetrahedron A4_,B, with 
respect to equivalent amounts of its constituent solids 
A and B at equilibrium as 

4 - n E  A AE(n)=¼E,,[A,,B,_.] ~ o[ ]--4E4[B] • (4) 

From equations (3) and (4) one has 

AE(0) = 0; 

AE(I) = - 3J2 + 4J3 - 2J4: 

AE(2) = - 4 J ,  = 2o9; 

AE(3) = - 3J, - 4 J  3 - 2J4: 

AE(4) = 0; (5) 

where J0 and J~ do not appear, and where J~ is the 
only distinguishing interaction term between n = 1 
and n = 3. Defining the occupation variables r/'(' = I 
and r/~" = 0 for occupation of site i by atom B [where 
S")= 1] and r/]i)=O, r/~!= 1 for occupation bv A 
[where S")= -1], one has 

q] ' ) -  q~' = S"), q'l" + r/l(' = 1. (6) 

The multi-site correlation functions ~,,(a) for the state 
of order a are then 

1 y .  I,)., J,,, i~,,,,, (7) 
~,(a) = N, , "P ''q . . . . . . .  

where t denotes sum over the N4 tetrahedra whose 
four sites are p, q, r and s. The excess energy of the 
A-B system in a state of order a is then 

AE(a) = ~ AE(n)5,,,(cr). (8) 
n 

The well-known single-site (Bragg-Williams) approxi- 
mation refers to the choice J, = J3 = J4 = 0, where- 
as (Bethe's) pair approximation corresponds to 
J3 = J4 = 0. In the latter case, one has from (5) 

AE(1) = AE(3) = ~AE(2) =~_to 

(pairwise additive). (9) 

Generalization of (9) to multi-site interactions can be 
done by defining the non-pairwise (dimensionless) 
parameters ~ and fl from 

AE(1) = 3AE(2)(1 + ~ )  = 3o)(1 +~) .  

AE(3) _= ~AE(2)(1 + fl) = ~co (1 + fl), (10) 

where • = fl = 0 corresponds to the pair approxi- 
mation, and where co is the "pair interaction 
parameter" [1, 2]. 

1.2. The traditional source of d(~'cul O' 

Modeling alloy phase diagrams by equations 
(1)-(10) requires the specification of the energies and 
a method for determining the entropy of each phase. 
The first problem was circumvented early on by 
identifying {Jh} or AE(n) with some fixed, short 
range interactions, analogous in spirit to those used 
in the original application of (I) to magnetism [I]. 
The main effort focused then on the statistical 
methods of solution of equation (1). 

The source of difticulty there has been that both the 
excess energy [equation (8)] and the entropy depend 
on the complete set {¢(¢r)} of correlation functions 
(hence, the partition function) for which no exact 
solution exists in three dimensions. Many of the 
approximate methods of solutions are based on 
counting algorithms for the number of distinct 
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configurations of the crystal that can be constructed 
from packing a given "cluster" of sites. The size of 
the cluster and hence the number of possible modes 
of occupancy of its sites define a "topological count- 
ing range", not to be confused with the "interaction 
range" within which h atoms are physically coupled 
through a potential Jh. (Often, but not always, the 
"topological counting range" is set to be equal to the 
"interaction range".) Different approximations to the 
evaluation of the entropy are distinguished by using 
different topological counting ranges and by the 
various ways in which one attempts to correct for 
conflicting occupancies of two or more adjoining 
clusters (e.g. a configuration in which some sites 
occur simultaneously in a A-A and a B-B pair is 
conflicting). Since inclusion of conflicting con- 
figurations spuriously stabilizes ordered phases over 
disordered phases, it overestimates the critical 
order-disorder temperature To. 

Various applications of  the generalized lsing model 
to calculate the phase diagram of the classical test 
case--the all-f.c.c. Cu-Au system--are hence dis- 
tinguished by the choice of (i) the physical interaction 
range (i.e. the numer of  Js) retained (First nearest 
neighbors, second nearest neighbors, retention in the 
first nearest neighbor model of  single sites; pairs, 
etc.), (ii) the topological counting range (pair, tetra- 
hedron, tetrahedron-octahedron, etc.) and (iii) the 
algorithm used to calculate the entropy (or cor- 
relation functions) within a prescribed topological 
counting range (MC, CVM, etc.). 

Early application by Shockley [6] of  the 
Bragg-Wiiliams technique [7] (points only for both 
topological and interaction ranges) to the Cu-Au 
system revealed a phase diagram which fails to 
separate the distinct Cu3Au ~ Cuo.TsAuo.25 and the 
CuAu 3 ~ Cu0.zsAu0.75 order-disorder transitions 
from that of CuAu ~ Cu05Au0.5, described the 
latter erroneously as a second order transition, and 
in the case of ferromagnetic interactions the phase 
separation critical temperature was k T J I Z I  2 = 1.0. 
This approach produced a symmetry of the phase 
diagram about x = 0.5, unlike the data. Bethe's [8] 
use of a site-only interaction range but including pairs 
in the topological counting range and an improved 
counting algorithm (equivalent to the quasi-chemical 
approach [9]) produced similar results with the excep- 
tion of the survival of some short range order in the 
disordered phase, and that the phase separation 
critical temperature kTc/12J 2 was lower (0.9142). Li's 
[10] extension of the topological counting range to 
a tetrahedron (retaining pairs-only in the physical 
interaction range), produced for the first time a 
separation of all three distinct order-disorder transi- 
tions, but retained the unphysical feature of  sym- 
metry about x = 0.5 and the absence of joined (two- 
phase) regions between the three ordered phases. It 
has then been realized [4, 11-14] that the inherent 
deficiency of the pairs-only topological counting 
range to f.c.c, structures is its inability to describe 

frustration effects: since these structures exhibit both 
triangles and tetrahedra and since these units cannot 
accommodate only unlike adjacent atoms, the system 
is frustrated at the presence of attractive A-B inter- 
actions. Higher order (e.g. four-body) interactions 
are then required to represent a reasonable energy 
compromise. Increasing the topological counting 
range to a tetrahedron (by Van Baal [12], Kikuchi 
[13], Goiosov et al. [14]) or tetrahedron-octahedron 
[15], yet retaining the pairs-only physical interaction 
range (,/2) has showed a rather fast convergence of 
the phase diagram with respect to the counting 
statistics, revealing the three separate order~lisorder 
transitions and the two-phase coexistence regions, 
[2, 4] and in the case of ferromagnetic interaction 
the phase separation critical temperature was 
kTc/12J2 = 0.835 for tetrahedron topology (which we 
use), kTc/12J2=0.834 for tetrahedron-octahedron 
topology, compared with the accurate high- 
temperature expansion result of k T~ / 12J 2 = 0.816 (see 
[4, 16]). While unlike the observed phase diagram 
[17], the one obtained with pair-only physical inter- 
actions (J2) was still symmetric at x =0.5, it was 
quickly realized [12] that the desired asymmetry could 
be reproduced by introducing a nonzero J3 [see 
equation (5) where J3 :/: 0 makes AE(I) :;/: AE(3)], or 
equivalently, using nonzero ~t and fl in equation (10). 
The best agreement with the observed phase diagram 
of Cu-Au was obtained [18] by fitting the three 
observed critical temperatures by adjusting in 
equation (10) {co, ~t, fl}. 

1.3. The real difficulty: the physical content o f  the 
interaction energies 

This problem lay dormant for a few years, until 
it has recently been realized [20-21] that the real 
difficulty in representing actual phase diagrams 
through eqauation (1) lies in the physical content and 
interpretation of the excess cluster energies {AE(n)} 
or, equivalently the coupling constants {Jh}- While in 
the magnetic analog of the alloy problem there was 
generally no reason to believe that the interaction 
energies J depend on the magnetization, in the actual 
alloy problem, the physical interactions could depend 
on composition x, or, alternatively, on the molar 
volume V(x). In general, the two end-point elemental 
solids A and B can have different molar volumes (V A 
and V B, respectively), hence the solid alloy has 
V(x) ~ V^ ~ V B. Consequently, AE(n) of equation 
(4) is a function of volume: 

AE(n, V) = ~E.[A.B,_., V] 

4 - n  n 

4 E°[A' V A ] - 4  E4[B' VB]" (11) 

While the role of elastic energies was recognized early 
on [22], its detailed effects on the features of the phase 
diagram [or its simple separable form noted in equa- 
tions (15)-(20) below] were not generally appreciated. 
The physical content of AE(n, V) can be appreciated 

A.M 36/~-X 
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by considering the special state of order a where 
all of the N a tetrahedra have the same occupation 
number n, hence ~,,,(n) of equation (7) is just 6.,.. 
This corresponds to an ordered crystal (e.g. Ll0. 
or L12) whose repeat unit is a given (fixed) 
tetrahedron A~_,,B,,. The volume-dependent energy 
E.[A,,B~ .... V] is then simply the (T = 0) equation 
of state of this solid, and the value of AE(n, V) of 
equation (11) at the equilibrium volume V. [which 
minimizes E,,(V)] is the formation enthalpy of this 
ordered phase from its constituent elemental 
solids, i.e. 

AH (") - AE(n, V.) (12a) 

o r ,  

AH ''~ = E '" ' [A,B,_,]  - nE[A] - (4 - n)E[B]. (12b) 

Clearly, from equations (11) and (12) 

AE(n. V) = A H  ¢"J + F ( V  - V.) (13) 

where F is a general (harmonic or anharmonic) 
positive function. 

The physical content of equation (13) can be 
further appreciated by considering the formation of 
an ordered structure AM_,nB m with N A A atoms and 
N B B atoms (N = N A+ N a in total) from the con- 
stituent solids in two formal steps. First, compress or 
dilate the pure crystals A M_,.A,. from its equilibrium 
volume ~ to the volume V akin to the final structure 
(A~ .... B,,,): do the same for pure BM_,,B,,, changing 
its volume from I"~ to V. Clearly, since in both cases 
deformation of equilibrium structures is involved, this 
step requires the investment of some elastic energy 

N A  
AF[N A, N B. I'] = -~: {E0[A, V] - E0[A, VA]} 

NB 
+-~-: {En[B, V]-E4[B,  Va]}. (14) 

Second, using these "'prepared" fixed lattices, "flip" 
the necessary number of A atoms in AM_mA,, into B 
and similarly "'flip" B atoms in Bu_,,B,, into A to 
create the desired structure Au_,,B,, .  Since A is 
different chemically from B, this step might involve 
the (release or absorption) of a "substitution" or 
"'chemical" energy ~" '  associated with chemical 
events between A and B (e.g. charge transfer, 
Madelung energies, bond formation, exchange inter- 
actions, etc.). The total energy change associated with 
the chemical reaction N A A + Na B --* AuA Bx~ is hence 
the sum of the energies of the two steps, or 

AElm,  l ' ) = c c ' + A F [ N a , N a ,  V]. (15) 

From equations (12), (13) and (15) one observes that 

A H  ..... =_ ~''~ + AF[NA, NB, V ~m}] (16) 

i.e. as recognized by numerous classical models of 
crystal packing [23-25] and phase stability [25-28], 
the low-temperature stability (or even existence) 

of a crystal represents, among others, the con- 
sequence of a competition between volume-dependent 
destabilizing elastic energies AF associated with pack- 
ing of components of different sizes, and the potential 
stabilization associated with "'chemical" (often 
termed also "electrochemical", or "'electronic") 
interactions, E. 

Ferreira et al. [21] have recently shown that when 
the molar volume V at a fixed composition does not 
depend on the state of order a, then AF of equation 
(15) can be rigorously expressed in terms of the bulk 
modulus B(x )  and equilibrium volume V(x) as 

A F = ( I  - - X . )  x Z ( x ) d x  
do 

+ X ,  (1 - x ) Z ( x ) d x  - G(X,) ,  (17) 
I,') 

where 

B(x),_,rdVV= d:C 
Z ( x )  = V(x)  \ dx J dx 2 (18) 

and X, is the concentration of the B atom in A4_, B.. 
More generally, using (8), 

E(a, V) = ~ E~")~,(a) + G(x) ,  (19) 
n 

where 

If' G(x)  = (1 - x)  x ' Z ( x ' )  dx '  

f, + x ( 1 - x ' ) Z ( x ' ) d x ' .  (20) 
v 

Hence, given {AH ~"~, B(x) ,  V(x)} one can calculate 
from (17)-(20) the quantities /~'"~.G(x)} which 
completely define within this ("~-G") approach the 
interaction Hamiltonian in the presence of both 
"chemical" (E) and "'elastic" (G) energies. 

The configuration average of AE(a, V) taken for 
the disordered (D) phase gives the mixing enthalpy of 
AxB~-x i.e. 

AH~D)(x, T)  -- H~D)[A~BI _~] 

-- xH[A] - (l -- x)H[B]. 

The point we wish to make is that previous 
applications of Ising-like models [equation (1)] to 
alloy phase diagrams have interpreted the Jj, s or, 
equivalently the AE(n)s [equations (5) and (8)-(10)] 
as energies on a f ixed lattice, corresponding hence to 
C "~ of (15), and neglecting the elastic energies AF 
associated with the atomic size mismatch between the 
constituents. While cures to various failures of such 
models in describing actual phase diagrams were 
traditionally sought through improvements in the 
counting statistics beyond the tetrahedron topology 
(using, for example, tetrahedron-octahedron CVM 
[4], Monte-Carlo [19], high-temperature expansions, 
e.g. [1, 2, 4]), it is surprising that the role of atomic 
size mismatch-the single most important feature of 
all classical models of packing of atoms of different 
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sizes in solids [23-28]--was largely neglected in phase 
diagram calculations. In what follows, we describe 
the shortcomings of such traditional nearest-neighbor 
Ising approaches which are associated with the 
neglect of elastic effects (Section 2) and then offer a 
cure (Section 3). Application to the calculation of 
phase diagram of Cu-Au then follow (Sections 
3.1-3.3). 

2. QUALITATIVE EFFECTS OF 
THE ELASTIC ENERGY 

First note that equations (15) [or (19)] show which 
phenomena do not depend on the elastic term: to 
the extent that order-disorder transformations at 
a fixed composition involve but a negligible change 
in volume (hence, elastic energy), the energy 
AF[NA, Na, V] of equation (15) [or G(x) of (19)] is 
common to both the ordered and the disordered 
phase, hence by (19) only Z~,(a)E t~} distinguishes 
them. Order-disorder transition temperatures would 
then depend almost entirly on {Echo}, terms which 
were treated adequately by conventional Ising models 
of alloys [1,2,4-16]. In contrast, G(x) makes its 
presence known in multiple-phase phenomena: con- 
sider, for example, the coexistence of two phases at 
equilibrium with concentrations Xl and x2 (XI :~: x2)- 
Since in general G(x~ ) ~ G(x2), the inclusion of G(x) 
in AE(tr, V) of (19) will force 

AE[a, V(xl)] ~ AE[a, V(x2)] 

hence the equilibrium condition will shift to x~ and 
x~, altering the shape of the phase diagram. A few 
examples are noteworthy: 

(i) While, as stated above, order-disorder phenom- 
ena at fixed composition depend but on {Et"~}, the 
formation enthalpy AH ~n~ of an ordered phase de- 
pends on the balance between the "chemical" energy 
E t") and the elastic energy G(X,) [equation (19)]. 
Fitting the observed critical temperatures in E-only 
Ising models [18] will hence inevitably result in 
erroneous enthalpies. Conversely, fitting E t"} to be 
the observed formation enthaipy will result in 
erroneous critical temperatures. Indeed, interpreting 
E t:~ = - 5 . 3  kcal/g-atom obtained by Kikuchi et al. 
[18] from fitting the critical temperatures for 
Cu-Au to be the formation enthalpy AH c2} [since 
by (16) AH(n)='-E(n) if A F = 0 ] ,  one finds a 
remarkable conflict with the observed [17] 
AH t2) = - 2.1 kcal/g-atom. 

(ii) A number of semiconductor [20] and mineral 
[29] alloys show a positive mixing enthalpy AH D in 
the disordered (D) phase, yet a negative formation 
enthalpy AH t~ for some of  its related ordered 
structures. Whereas these phenomena are naturally 
explainable [20, 21] in terms of (13)--(15) [the exis- 
tence of a few clusters n in the disordered phase 
creates larger elastic energies (hence AH D > 0) than in 
a perfectly ordered phase having but a single cluster 
type where AH ~") < 0 is possible], the E-only models 

could address this phenomenon only by invoking a 
generally unmotivated mix of negative and positive 
Es [29]. 

(iii) The simultaneous occurrence, in the same 
phase diagram of size mismatched constituents 
[21, 30] of a miscibility gap (indicative of ferro- 
magnetic Js) and stable ordering (indicative of anti- 
ferromagnetic Js) is likewise explainable [21] most 
naturally in terms of equation (15) (antiferro- 
magnetically attractive E s, but positive AF on account 
of the size mismatch-induced strain), but requires 
again a postulation of both ferromagnetic and anti- 
ferromagnetic interactions in the E-only lsing models 
(e.g. [31]), a postulation which is generally not 
anchored in the known electronic structure of these 
systems. 

(iv) E-only Ising models have produced unphysi- 
cally broad single-phase regions and unphysically 
narrow two-phase regions (in, for example, [18], 
Cu-Au), whereas inclusion of AF in the Hamiltonian 
naturally cures this pathology [21]. 

(v) The phenomenon of metastable long-range 
ordered phases concomitant with a miscibility gap 
[21] (where the ordered phase has a lower free 
energy than that of the single-phase disordered 
system, yet higher than that of the two-phase 
mixture) is a natural solution [found when Etn)< 0 
but AH ~n>=E ~"~+G(X.)>0] to our Ising-like 
Hamiltonian in which strain is included. No such 
solutions exist in the nearest-neighbor E-only 
Hamiltonian. 

(vi) The incorporation of elastic effects acts to 
remove much of the ground state degeneracies 
characteristic of the E-only Hamiltonian, raising [21] 
thereby the [19] triple-point temperature (e.g. co- 
existence of the disordered + AB + AB3 phases) 
characteristic of the E-only approach. 

(vii) The observation of the insolubility of two 
elemental solids (e.g. Cu-Ag) leads in the E-only 
model to the inevitable postulation [18] of strong 
ferromagnetically repulsive Es, in conflict with the 
fact that first-principles total energy calculations [32] 
or simple electronegativity-difference arguments 
predict negative chemical energies E ~"~ (e.g. Cu3Ag, 
CuAg and CuAg3). A similar apparent conflict 
arises when one compares the value of E deduced 
from fitting critical temperatures of an A-B phase 
diagram [I 8] with the value of the dissociation energy 
E = E[AB] - E[A] - E[B] of a diatomic AB molecule 
[33]. Inclusion of elastic effects explains this effect 
,aturally as a case of E ~n~ < 0 (antiferromagnetic) but 

AF >> 0, such that elastic energies limits the solid 
solubility although at stoichiometric compositions 
E ~') < O. 

Whereas some of the shortcomings of the E-only 
Ising model in describing actual phase phenomena 
could be cured by introducing further neighbor inter- 
actions [4], by treating a sufficient number of Es as 
mathematically-disposable adjustable parameters fit 
to reproduce some selected phenomenon [18], or by 
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introducing an ad hoc composition dependence into 
the Es. our fundamental objection remains that such 
approaches have but a limited informational con- 
tent in terms of the ph.vsical insights being gained. In 
particular, such approaches do not provide a link 
between the electronic structure of the constituents 
on one hand and the phase stability and phase 
interconventions which these constituents exhibit 
when mixed, on the other hand. 

We next describe how treating "'chemical" (~) and 
"'elastic" G(x) effects on the same footings is both 
possible.and informative. 

3. TREATING CHEMICAL AND ELASTIC 
ENERGIES ON THE SAME FOOTINGS 

We represent the Cu-Au system at all states of 
order a as a mixture of five basic tetrahedral clusters 
Cu4_,,Au,, with energy functions AE(n, V). To treat 
"chemical" and "'elastic" interactions on the same 
footing, and, at the same time establish a link be- 
tween the phase diagram and the electronic structure 
we identify these AE(n, V) with the excess energy of 
ordered periodic structures Cu4_,Au, (the f.c.c. 
ground state phases [1-4]). While these basic inter- 
action energies could be modelled by various semi- 
classical approaches [23-27] of the size-mismatch 
factor, the electrochemical, or the "electronic" factor, 
we propose at the first stage to compute AE(n, V) 
self-consistently from first-principles band theory for 
the corresponding crystals. We use the f.c.c, struc- 
tures for Cu and Au, the L10 structure for CuAul, 
and the LI., structure for both Cu3Au and CuAu3. 
For each phase we hence calculate, using the local 
density formalism [34] as implemented in the general- 
potential linear augmented plane wave method [35] 
(LAPW) the five functions AE(n, V) for a full range 
of volumes V. Such self-consistent solutions to the 
band structure and total energy naturally incorporate 
both "'chemical" and "'elastic" effects (on the same 
footing) in a first-principles manner. The resulting 
excess energy curves for the ordered structures are 
depicted in Fig, t: the values at the minima give the 

0.5 

- °oi I ~ 0.3 

~ 0 .1  

uJ <w -0.1 n ¢ 
(Cu) n- 1 n:2 n=3 

-0.2 
-0.3 

3.5 316 317 318 319 410 411 4 . 2  

Lattice Parameter (~,) 
Fig. 1. Calculated excess energies AE(n, V) [equation (11)] 
for periodic Cu 4_"AuÈ solids (f.c.c. for n = 0 and 4; LI 0 for 
n = 2: Lh for n = 1, and 3). Arrows point to the equilibrium 

lattice parameters. 

equilibrium volumes V, and formation enthalpies 
AH q"'. Note that AH 4"~ are negative ( -0 .83,  -1 .45 
and -0.61 kcal/g-atom for n = 1. 2 and 3. respect- 
ively), differ considerably from the ~'") values which 
fit the phase diagram in an ~-only approach [21.32] 
( -  3.99. - 5.27 and - 3.64 kcal, g-atom, respectively). 
and that AE(n, I') show pronounced volume de- 
pendences. Nevertheless. the calculated equilibrium 
properties deviate somewhat from the measured 
results (e,g. the measured AH ~n' values arc [17.36] 
-1.71,  -2 .10  and ~ - l . 4 k c a l g - a t o m .  and the 
calculated equilibrium volumes deviate by ~ I% 
from experiment [36]). We return to this point in 
Section 3.2. The calculated AE(n. V) were fitted for 
convenience of use to a Murnaghan equation of state 
[37]. We use these {AE(n, V) I as input to solve the 
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Fig. 2. Calculated phase diagrams for the Cu-Au system in 
the tetrahedron CVM approach. Model A (Section 3.1); 
Model B (Section 3.2) and Model C (Section 3.3). Shaded 
areas denote single phase regions: dashed areas in part (a) 

denote miscibility gaps. 
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Ising problem [equations (1)-(8)] within the CVM, 
retaining a nearest-neighbor four-site physical inter- 
action range and the tetrahedron (topological) count- 
ing range. In the CVM calculation we minimize the 
free energy both with respect to the correlation 
functions ~, and with respect to volume. 

Note that whereas the notion of extracting alloy 
interaction parameters from data on ordered crystals 
is not new [20, 38], their use in Ising models was not 
attempted previously. In the following three sub- 
sections (3.1-3.3) we describe three energy models 
(denoted as A, B and C, respectively) for calculation 
of the Cu-Au phase diagrams from {AE(n, V)}. 

3.1. Model A: first principles phase diagrams 

Using {AE(n, V)} of Fig. 1 we calculated the 
tetrahedron CVM phase diagram of Cu-Au shown in 
Fig. 2(a) and the excess mixing enthalpies shown for 
T =  800K in Fig. 3 (by the dotted line), where 
comparison with the observed [17] mixing enthaipy 
(solid circles) is also given. The qualitative features of 
the observed phase diagram [17] are generally re- 
produced. However, (i) two unobserved miscibility 
gaps [dashed areas in Fig. 2(a)] are found, (ii) the 
maximum ordering temperatres are too high, and (iii) 
the excess mixing enthalpies (Fig. 3) are insufficiently 
negative. 

It is easy to identify the reasons for these quan- 
titative discrepancies with experiment: the phase 
diagram exhibits an extreme sensitivity to the details 
of the elastic energies (neglected altogether by pre- 
vious approaches), and even rather modest discrep- 
ancies between the predicted equilibrium properties 
{AH ~"), 1/",, B, } of the ordered phases and experiment 
are amplified into substantial discrepancies in the 
phase diagram. 

The next logical step is to study the extent to which 
errors in the description of the five ordered phases 

0 . 0  '~', . . . . . .  .i.""" ' ' ,~' / Ooo....o..,,'~ 
o~ -0,4 Model A t 

-0s V /7/ 
--~ -0.8 ~ , '  
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CuAu 
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Cu Atomic Fraction x Au 

Fig. 3. Calculated and measured [17] excess mixing enthalpy 
of Cu~_~Au~ at 800K. The diamond shaped symbols 
indicate the observed formation enthalpies of the ordered 

phases. 

Cu4_,Au, affect the order--disorder and two-phase 
equilibria. 

3.2. Model B: using the low-temperature experimental 
data for ordered compounds 

Instead of evaluating our Murnaghan fits to 
AE(n, V) using the first-principles calculated con- 
stants {AH ~'~, V,,B,} of the ordered phases, we 
replace these constants by the observed [17, 36] low- 
temperature values for the same ordered phases, and 
recalculate the CVM phase diagram. The objective of 
this model is to appraise the extent to which five 
ordered stoichiometric structures characterized by 
"perfectly known" structural constants (at low T) 
can reproduce the phase diagram at all temperatures 
and compositions. Note that the largest change be- 
tween model A and model B is but 0.04 A in equi- 
librium lattice constants and 0.9 kcal/g-atom in the 
formation enthalpy. The resulting phase diagram is 
shown in Fig. 2(b) and the mixing enthalpy is given 
by the solid line in Fig. 3, 

These results show (i) the spurious miscibility 
gaps of model A have disappeared, (ii) the mixing 
enthalpies are in nearly perfect agreement with 
experiment (e.g. at T = 800 K the calculated values 
at x = l / 4 ,  1/2 and 3/4 are -1.01,  -1.31 and 
-0.79kcal/g-atom compared with the measured 
values [17] of -1.06,  -1 .22  and -0 .72  kcal/g-atom, 
respectively); (iii) Unlike the E-only phase diagram of 
Kikuchi et al. [18], the single-phase regions [shaded 
areas in Fig. 2(b)] are narrow and the two-phase 
regions (clear areas) are broad, and (iv) the critical 
order/disorder temperatures are closer to experi- 
ments. Note that since CVM overestimates critical 
temperatures with respect to more accurate solutions 
(e.g. Monte-Carlo, or MC) to the same Hamiltonian 
(by TMc/Tcv M ~0.9425; see Ref. [5]), one should 
multiply the CVM temperatures by 0.9425 [5, 12, 19] 
before comparing with experiment. This yields for 
model B T~ = 942,5 K, 7", = 886 K and T3 = 697.5 K 
for the order~lisorder transitions at x = 1/4, 1/2 and 
3/4, respectively, compared with the observed values 
[17] 662, 683 and ~ 500 K, respectively. 

We conclude that the remaining discrepancies be- 
tween model B and experiment are largely associated 
with inherent physical deficiencies in using but five 
ideal clusters. This is treated next in model C. 

3.3. Model C: including lattice relaxations 

Unlike the phenomenological approaches which fit 
the phase diagram, the present approach offers the 
opportunity to analyze/ailures in terms of discern- 
ible physical factors left out from the model. For 
example, both models A and B tacitly assumed that 
the equilibrium volumes V, of the ordered clusters 
Cu4_,Au, (each embedded in an environment of 
identical clusters in the perfectly ordered phases) can 
be used to represent the alloy at all compositions x 
(where different cluster types can coexist). In reality, 
one expects that the elastic energy of the system 



2246 ZUNGER et al.: THE Cu-Au PHASE DIAGRAM 

can be reduced if the equilibrium molar volumes I,, 
of each cluster will relax (differently for each com- 
position x) to better accommodate the volume 
mismatch. Hence, the variation of the equilibrium 
volumes of the Cu4_,,Au° clusters in the alloy 
Cu~_,Au~ can be described by a general Taylor 
expansion of the form 

V.(x )  = V . (X . )  + K . [ V ( x )  - V.(X.)] + "., (21) 

where I%(X.) is the equilibrium volume of the 
stoichiometric composition X,, = n /4  of the ordered 
phase. V(x)  is the alloy volume and {K.} are some 
relaxation constants. In the harmonic elastic regime, 
these relaxations alter the excess energies by 

B. 
AE[n. V(x)] = AH'"' + ~ , ,  (1 - K,,)-" 

x [ V ( x ) -  V.(X.)]'- + " . .  (22) 

Note that K. = 0 corresponds to the unrelaxed limit 
of models A and B where V.(x )  = V . (X . )  for all x 
(analogous to the classical notion of Bragg [39] and 
Pauling [28] that to first order atoms retain their 
specific radii in different chemical environment, 
including different compositions x # X.), whereas 
K. = 1 corresponds to the "virtual lattice model", 
where all distinct V.s average in the alloy to a single 
V.(x)  = V(x) .  independent of n. 

Rather than seek a set of n-dependent relaxation 
parameters {K. }, we pose instead the following ques- 
tion: does there exist a single effective relaxation 
parameter K which when applied equally to the 
equilibrium volumes V. (x )  of the five actual ordered 
phases [equation (21)], cures all of the discrepancies 
of the calculated phase diagram of  model B relative 
to experiment? 

Model C answers that question by seeking just 
such a relaxation constant. We find K = 0.2077 for 
Cu-Au (i.e. Paulings view is only about 20% wrong 
whereas the virtual lattice model is ~80% wrong). 
The resulting phase diagram is shown in Fig. 2(c), 
and the mixing enthalpies are given in Fig. 3 by the 
solid triangles. The critical temperatures agree with 
experiment [17] to within ~1 K, and the mixing 
enthalpies deviate by less than <0.1 kcal/g-atom. 

The calculated partial molar enthalpies of solutions 
at 800 K [given by Lim AH(x, T)/x(I - x) at x ~ 0  or 
x--* 1, a numerically highly-sensitive quantity] are 
-2 .35kcal /g-a tom for Au dissolved in Cu and 
-3 .1  kcal/g-atom for Cu dissolved in Au, compared 
with the observed values [17] of - 3 . 9  and 
-2 .8kca l /g-a tom,  respectively. (In the absence of 
relaxation the partial molar enthalpies are positive, in 
qualitative conflict with experiment, whereas if strain 
energies are neglected altogether [18]. these quantities 
are substantially too negative.) The diamond-shaped 
symbols in Fig. 3 show the formation enthalpies of 
the three ordered phases, demonstrating (as argued 
before [20]) that they are invariably lower than the 
corresponding mixing enthalpies of the disordered 
phase. Figure 4 shows the normalized excess enthalpy 
[ ~ n =  A H / x ( I  - x ) ] ,  entropy [ ~ s =  A S / x ( I  - x)] 
and free energy [Qr = AF/x(I  - x)] at three tempera- 
tures, demonstrating (i) a negative excess entropy, in 
conflict with earlier data [17] but in agreement with 
more accurate recent data [40] and (ii) strong short- 
range order-induced deviations of all ~ from lin- 
earity. [It is important to note that the E-only model 
[18], fit to critical temperatures produces [21] enor- 
mous errors in the mixing enthalpies and partial 
molar enthalpies (too negative by ~400% at 
T = 800 K), clearly due to the neglect of elastic 
effects], and (iii) a reduction in the composition 
variation of  all f~ at high temperatures. 

As indicated above, in our CVM calculation we 
minimize simultaneously the free energy with respect 
to probabilities and the volume. This provides the 
predicted volume (or lattice parameter) function 
V(x, T) for each phase. In Figs 5(a-c) we present the 
behavior of the lattice parameter for compositions 
x = 0 . 2 5 ,  0.50, 0.75 near their transition tem- 
peratures. In the three cases there is a discontinuity 
when one passes the phase transition region. The 
discontinuity is larger for Cu3Au [Fig. 5(a)] and 
smaller for CuAu~ [Fig. 5(c)]. While we find the 
transition region for Cu3Au to be very narrow [less 
than 0.1 K, see Fig. 5(a)], for CuAu 3 [Fig. 5(c)] the 
transition region (shaded area) extends in a range 
of almost 40 K. The discontinuities for CuAu and 
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proving on the topological counting range (say, be- 
yond tetrahedron) or on counting algorithms, have 
solved only part of the problem. The reason for the 
failures is physical (not statistical) and involve the 
neglect of (long-range) forces which are not repre- 
sentable through an), set of fixed-interaction energies 
{c~")}. 

(ii) The inclusion of "'elastic" effects [or any other 
long-range effects attendant upon first-principles 
calculations of AE(n, V)] involves merely a reinter- 
pretation of the coupling constants in light of our 
two-step conceptual model (Section 1) which clarifies 
their physically mandated volume-dependence. 

(iii) The use of structural and elastic low- 
temperature data on only five (ground state) ordered 
phases suffices to obtain semi-quantitative phase dia- 
grams and quantitative excess thermodynamic func- 
tions over the entire temperature and composition 
range, if sufficient accuracy in the input data ( ~  0.5% 
for lattice parameters, --- 8% in formation enthalpies) 
is available. State-of-the-art first principles calcu- 
lations on ordered phases yet lack this high degree of 
accuracy. 

(iv) Quantitative reproduction of phase diagrams 
for lattice-mismatched constituents requires ( ~  20%) 
lattice relaxation which acts to better accommodate 
elastically local clusters of different sizes. 

CuAu3 are diffiicult to observe experimentally be- 
cause, in the case of CuAu there is a tetragonai 
distortion when crossing to the ordered phase while, 
for C u A u  3, the transition region is so broad and 
the volume discontinuity so small that it is unlikely 
that the internal strains could prevent the formation 
of multiphase domains, On the other hand the 
discontinuity of Cu3Au has been observed to be 
some thousandths of Angstroms, while our calculated 
result is 0.0080A, in reasonable agreement with 
experiment [41]. 

We concluded that the phase diagram of a 
lattice-mismatched system such as Cu-Au can be 
reproduced by treating "'chemical" and "elastic" 
energies simultaneously and accounting for lattice 
relaxation. Neglect of the elastic energy [18] and 
relaxation produces but the order-disorder critical 
temperatures while (i) overestimating greatly both the 
formation enthalpies of the ordered phases and the 
mixing enthalpies of the disordered phase, (ii) greatly 
overestimating (understimating) the regions of single- 
phase (two-phase coexistence). Extension of this 
work to include the Cu-Ag and Ag-Au systems will 
be published in the future [32]. 

4. CONCLUSONS 

Our results can be summarized as follows: 
(i) Attempts to cure the systematic deviation from 

experiment of the phase diagrams calculated within 
the nearest-neighbor generalized Ising model by im- 
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