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The Landau-Lifshitz theory of structural phase transitions permits identi6cation of distinct
classes of ordered ternary structures A„84 „C4{n =0-4) whose structural units are the A„84 „C
clusters spanning all possible nearest-neighbor environments in A„B,„Cpseudobinary semicon-
ductor alloys. A detailed description of how disordered bulk or epitaxial alloys may be described
as a superposition of such clusters is given. Using Landau-Lifshitz structures as examples, the
very diferent energetics of bulk-versus-epitaxial (ordered or disordered) ternary phases are de-
scribed and investigated quantitatively via a simple valence-force-Seld model and harmonic elasti-
city theory. Under epitaxial conditions on a substrate of lattice constant a„atetragonal degree of
freedom for a ternary ordered compound controls the curvature about the minimum of the energy
E(a, ), while ce11-internal structural parameters control the minimum of E and hence stability.
Stable bulk compounds when grown under epitaxial conditions may change in relative stability,
permitting artificial stabilization of desired ordered phases. Exotic ordered ternary compounds un-

stable in bulk form (and hence not found in the bulk phase diagram) may become stable when
epitaxy-induced strain is accommodated more successfuBy in the ternary than in the binary con-
stituents; the occurrence of miscibibty gaps and spinodal decomposition for disordered alloys may
be similarly suppressed under epitaxial conditions. Relaxation of cell-internal structural parame-
ters is found crucial to a quantitative theoretical description of the eathalpies of mixing of bulk- or
epitaxially-grown disordered alloys.

I. INTRODUCTION

Our current understanding of chemical trends in the
structure and stability of crystals' has been largely
directed to the vast database of bulk materials, such as
that compiled recently by Villars and Calvert. ~ Ad-
vances in epitaxia1 growth methods have pointed, how-
ever, to the possibility of equilibrium structural forms of
semiconductors which do not appear in the equilibrium
bulk phase diagrams of the same compounds. Such are,
for example, rhombohedral3" SiGe and ' ' GalnAsi, the
famatinite forms of InGa&As~ and In3GaAs&, chalcopy-
ritelike and CuAu-I-like forms of Ga2AsSb, CuAu-
I-like (tetragonal6i"} GaAlAs2 and@ ' InGaAsz (none
of which are observed in the bulk phase diagram
of Si„Gei „,In„Ga, „As, GaAs„Sb, „,and

Ga„Ali „As, respectively}, cubic epitaxial phases of
CdS and" SiC (observed at temperatures where the bulk
phase diagrams show only hexagonal phases) and the a
phase of Sn (not the normal P phase) observed to grow
on InSb(110). It has similarly been noted' that epitaxial
lattice matching to a substrate can signi6cantly perturb
the solid composition from that mandated by the bulk
equilibrium phase diagram, even permitting epitaxial
growth of an alloy inside the bulk miscibility gap region
(e.g. ,

"GaAs, „Sb„).Similar epitaxy-induced phase sta-
bilization effects were recently observed in metallurgy,
e.g., ferromagnetic fcc (not bcc) Fe grown' on Cu(111),
bcc (not fcc} Ni grown' on Fe(001), ferromagnetic fcc
(not hexagonal) Co grown' "' on Cu(001) or bcc Co
grown' ' ' on GaAs, and bcc (not fcc) Ag grown on'+"
InSb. Such epitaxy-induced structural stabilization has

been previously analyzed in terms of phenomenological
elastic continuum models of substrate strain, ' ' but
only recently' has a microscopic (atomistic) model been
advanced for the epitaxial SiGe system. In this paper
we illustrate the general physical principles of epitaxial
stabilization of tetrahedral adamantine semiconductor
crystals using a simple valence-force-field method' and
the ternary Ga„In4 „P4system as a prototypical exam-
ple. A brief description of some of this work has already
appeared. '8

II. ORDERED LANDAU-LIFSHITX ADAMANTINE
STRUCTURES

The systems we will consider consist of two isovalent
zinc-blende semiconductors AC and BC (specifically
GaP and InP) and their mixtures. These mixtures can
form, among others, a single-phase disordered alloy
A„B,„C,a two-phase (AC-rich and BC-rich) mixture,
or ternary ordered compounds A„84 „C4with n =0, 1,
2, 3, and 4. These ordered structures can be stable low-
temperature phases of the aHoy according to the general
principles outlined by Landau and Lifshitz. ' ' The
conditions for selecting such possible ground-state or-
dered phases of a face centered cubic (fcc) parent lattice
with A-B, A-C, and B-C interactions are' ' (i) the
space group of the ordered structure must be a subgroup
of that of the disordered alloy, and (ii) the possible or-
dered structure must be associated with an ordering vec-
tor located at a special k point of the parent space
group. ' These necessary conditions permit not only
selection of the ordered structures but also their
classi5cation in families associated with the same star of
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FIG. 1. Deformation energy of cubic (dashed lines) and
tetragonally distorted epitaxial (solid lines) GaP and InP, (a),
and dependence of c/a upon substrate lattice parameter a„(b).
Shaded area indicates substrate strain. The inset shows the
zinc-blende structure.

ordering vectors. There are eight such A„84 „C4sys-
tems we wish to consider: for n =0 and 4 we have the
binary end-point zinc-blende (F43m space group) com-
pounds A C and BC (inset to Fig. 1); for n =2 we have
the 50%-50% compound ABC2 with either a CuAu-I
cation (A,B) sublattice [corresponding to the ordering

co 2e2 2Q
V

4.8
0.25

~ Qs4) Q
0.23
0.22

Epitaxial Systems
CLIAM-I CHAL. COPYRITK

(d)(a)

(b) -' U (e)-

(c)/ . (t)
e ~tQQQy +~, , / -y ~~ (u. , 4.~/

4

LI SOO- I.--
600-'.

(U, r)eq]: . '-. ["e ')eq]
co ~
E + 4QQ '. .'' f( '. (U~z qo}

(Ueq t7eq).oE,(Uyq. ggj, ' '==-' '~ ', , (U g )~~ 2M ~w ~
a

Q 0 I I

5.45 5.55 5.65 5.75 5.85 5.55 5.65 5.75 5.85GaP, InP
Substrate Lattice Parameter ai (A)

FIG. 2. Variation with substrate lattice parameter of
structural parameters and deformation energies of epitaxial
chalcopyrite and CuAu-I —like GaInP2, insets show crystal
structures. Deformation energies are shown for four diS'erent
levels of relaxation: subscripts 0 and eq indicate undistorted
and fully relaxed values, respectively. Shaded areas indicate
substrate strain in the fully relaxed structures.
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FIG. 3. Variation of structural parameters and deformation

energies for epitaxial famatinite and luzonite GaIn3P& and
Ga3InP4, insets show crystal structures. Deformation energies
are shown for two levels of structural relaxation: complete re-
laxation {solid lines) and the completely unrelaxed structures
(dashed lines).

vector k, =(2m/a)(0, 0, 1), the P42m structure shown in

the inset to Fig. 2(c)] or the chalcopyrite (CP) structure~
(I42d ) [corresponding to the ordering vector k2
=(2m/a)(2, 0, 1), inset to Fig. 2(f)], whereas for n =1
and 3 we have the 25%-75% and 75%-25% compounds
A 3BC4 and AB3 C4, respectively, each appearing either
in the "luzonite" (1.) form (P43m ) [corresponding to k, ,
inset to Fig. 3(e)], or in the famatinite (F) form (I42m)
[corresponding to k2, inset to Fig. 3(c)]. Table I gives
the translation vectors and atomic coordinates for these
space groups. Most of the structures considered here ac-
tually occur in some minerals with tetrahedral coordina-
tion, ' e.g., the chalcopyrite form (CuFeSt, CuInSe2,
etc.), the luzonite form (Cu3AsS4 or Cu3VS4), and the
famatinite form (Cu3AsSe4, Cu3SbS4, Cu3SbSe4). Wurt-
zite analogs are also possible ' (e.g., Cu3AsS4 also exists
in the hexagonal "energite" form), but will not be con-
sidered here.

A. Cell-external and cell-internal structural degrees
of freedom

The structurally significant feature of these ternary
A„84 „C4phases, which distinguishes them from their
binary constituents Ac agd BC, is that, whereas the
latter have but a singje structural degree of freedom in
the zinc-blende form (the cubic lattice parameter a), the
former have, in addition to two external degrees of free-
dom (the cell dimensions a and c, where the tetragonal
ratio is denoted here as g=c/a; luzonite has g=1),
some cell-internal degrees of freedom which control the
position of the common atom C with respect to the fcc
sites occupied by A and 8. For example, in the CuAu-I
structure the two nearest-neighbor bond lengths can be
expressed as
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TABLE I. Primitive translation vectors and atomic coordinates [in Cartesian coordinates (x,y, z)]
for the Sve fcc Landau-Lifshitz structures A„84 „C4.

Structure
and space group

Primitive translation
vectors Atomic positions

Zinc blende, F43m

CuAu-I-Hke, P4m 2

a1 ——(0, 2, z)a

az ——( z, 0, —')a
a3 ——( —', —',0)a

a1 ——( —' —' 0)a

az ——( ——' —0)a1 1

a3 ——(0,0,g)a

v A
——(0,0,0)a

r~ =(-' —-)a1 1 1

rA ——(0,0,0)a

1 n
0, —, a'2'2

'FC1 ( 4 'Qu )a1 1

rc2=[ ~~, ~3, g(1 —u)]a

Chalcopyrite, I42d a1 ——(1,0,0)a rA1 ——(0,0,0)a

a, =(0, 1,0)a 0 —+ a
1

A2 & 2& 4
3 n

1 1

2'2'2 v'g1 ——( 2, —,0)a1 1 1 1 3g

Famatinite I42m

A 3BC4 or AB3C4

a1 ——(1,0,0)a

az =(0, 1,0)a

—0+ a
1

82
2

& & 4

~» —(-„-„0)aI 1

0 —+ a
1

A2

31 3n—u aC4

vc] ——(v, v, gw)a

vcz ——(1—v, 1 —v, gw)a

Luzonite, P43m

A3BC4 or AB3C4

a1 ——{1,0,0)a

az ——(0, 1,0)a

a3 ——(0,0, 1)a

—0+ a
1

A3 2& s 4

vg ——(0,0,0)a

v A1
——(0, 2, —)a1 1

1 1

~„=(-„-„0)a
vg ——(0,0,0)a

rc3 ——[ —,
—u, —, +u, rl( —,—w)]a1 1 1

rc4 [—, + u, —,
———u, g( —,

—tu) ]a1 1 1

v„=(u,u, u)a

v'cz ——(u, 1 —u, 1 —u)a

(1—u, u, 1 —u}a

rc4 ——{1—u, 1 —u, u)a

R~c=(g u +-)2 2 1 1/2

Rac = [r)'(u ——,
' )'+ —,']'"a,

u—:—,'+[R„c—Rsc]/rI a

and hence the degrees of freedom are Ia, g, u]. The
undistorted values of the structural parameters mill be
labeled with a subscript 0. For the CuAu-I-like struc-
ture go=1 and uo ———,', hence the undistorted structure
has R zc ——Rz&. In the chalcopyrite structure we have

R„=[u+(4+g )/64]' a;
Rsc —[(u ——,

' )z+(4+rl )/64]' a,
u:——,+(R„c—Rsc )/a1 2 2 2

and hence the degrees of freedom are Ia, rl, u ]; for the
undistorted chalcopyrite structure uo= —,', and go

——2. In

R~, c=[2(u —,') +q m )' a, —

R„2c——[(u —
—,')'+u +g (tu —

—,') ]' a,
(2u 2+ ~2 2)1/za

u = '+(Rac R a &, c )/2a—

(4)

the luzonite structure

R„c= [u'+2( —,
' —u)']'~'a;

Rsc =&3ua,

u = —,'+(Rsc —R~c)/2a2,

and hence, the structural degrees of freedom are Ia, u ];
for the undistorted structure uo ———,'. The famatinite
structure has two internal degrees of freedom, m and U,

producing bond lengths of the form
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w = '+—[2(Rac —R~2, c) (Rttc —Ra(, c)]/rt a

the Al —C (A2—C} bonds representing —,
' (—', } of A —C

bonds present. Hence, the degrees of freedom are

I a, g, u, w [; for the undistorted famatinite structure,
'go=2 Up= 4 and mo= s.1

B. SigniScance of cell-internal degrees of freedom
for structural stability

%'hen g=go and the C atom is at the center of the
tetrahedron formed by its A and B neighbors [i.e.,
u =uo, u =uo, and w =wo in Eqs. (1)-(4)] one has equal
bond lengths R„c=Rt(c=&3a/4. These undistorted
bond lengths are generally different from the "ideal"
bond lengths d„c=~3a„c/4and dec =~3asc /4 of the
binary zinc-blende structures AC and BC, respectively.
These difFerences, as well as the corresponding devia-
tions from ideal tetrahedral bond angles 8 =109.5', set
up a microscopic (cell-internal} strain energy proportion-
al to (8—8 ) and (R ti

—d t() . These systems must
lower the microscopic strain energy resulting from this
failure to accommodate ideal bond configurations by ad-
justing the internal degrees of freedom. The degree of
strain energy lowering rejects the availability of suitable
structural degrees of freedom, hence their crucial role in
stabilizing bulk phases. As we will see below (Sec. IV),
under pseudomorphic epitaxial conditions the cell di-
mensions parallel to the substrate are externally axed by
the substrate. Relative epitaxial stabihty is hence deter-
mined by relaxation of the remaining structural degrees
of freedom, hence their significant role in epitaxial stabil-
ity. This highlights the important difference between
binary and ternary epitaxial systems: whereas in
binaries a large epitaxial strain can be relieved only
through a tetragonal deformation or by creation of misfit
dislocations, in ternaries the system can also relax its
internal structural parameters to reduce strain energy.

III. BULK PHASES
A. Knthalpies of formation of ordered bulk phases

The enthalpy of formation' ' ' of ordered bulk
A„B4 „C4compounds in structure type I, (chalcopyrite,
CuAu-like, luzonite, famatinite) is given by the difFerence
of the total energy E' '"' of the ternary compound when
all of its degrees of freedom attain their energy-
minimizing equilibrium (eq} values, and the energy of
equivalent amounts of its binary end-point compounds,
also at equilibrium. The volume-dependent total energy
E' '"'( V) of a given ordered compound (l(., n) is obtained
by finding for each cell volume V the values of the cell-
external [lattice parameter a(V) and i)(v)] and eell-
internal degrees of freedom u, u, w [denoted collectively
as Iu(v)j] which minimize the energy. This produces
the equation of state

bH(k. , n) E(k., n)
( g B C V(&, n)

)eq 4—n 4& eq

—nE( AC, a„c)—(4—n)E(BC,asc ), (6)

where all parameters not denoted explicitly are taken at
equilibrium. Note that positive (negative)
reiiects instability (stability) of 3„B„„C„towards
disproportionation into n AC+(4 n—)BC at T =0.

In order to establish the extent to which the relaxation
of certain structural parameters lowers the strain energy,
one can repeat the above relaxation process, keeping cer-
tain variables fixed at their undistorted values. For ex-
ample, keeping u =uo and q=go produces the "unre-
laxed" deformation energy E„''"„'(V). Similarly, one can

calculate at u =u, but g=i)o the energy E'„'"'(V), or at

u =uo and ri=il, q
the energy E„''"'(V). Each of the

partially relaxed energies could be used in analogy with
Eq. (6) to define a partially relaxed formation enthalpy.
These will be used to assess the relative significance of
various structural degrees of freedom in lowering the
formation enthalpies.

B. Mixing enthalpiss and bond lengths of disordered
bulk alloys

General results

Since a disordered alloy A, B& „Ccontains a statisti-
cal mixture of several local environments, its enthalpy of
mlxlng

bH (x):H(A„B(—„C) xH(AC) ——(1 x)H(BC)—

can be approximately expressed ' as a corresponding
mixture of cluster energies hE' '"', which we take from
ordered compounds in which they exist in pure form.
(We drop for convenience the index A, ; its choice will be
specified in Sec. VII.) Denoting by V',q' the equilibrium
volume of ordered structure n, its excess energy function
(relative to equivalent amounts of AC and BC at their
equilibrium) can be written as

bE'"'(V) =bH'"'+F'(V V'"')—
where bH'"' is the value at the minimum [Eq. (6)] and
F„(V) describes the energy associated with volume de-
formations of the bulk phase (b) around the minimum.
F„(V)could be obtained by fitting the numerical data
bE("'(V) obtained from total energy calculations. For
purposes of illustration we may use the harmonic form

E""'(V)=E""'(~„B,„C„V,a(V), q(V), Iu(V)~) . F„'(V)=, ,
"

( V —V,'",')',
2 V,'q'(X„)

(9)

The formation enthalpy of the ordered phase ()(,, n) is
hence defined (per eight atoms) as

where V,'q'= V',"„'(X„)is the equilibrium volume of the
ordered structure A„84 „C4at its stoichiometric com-
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position x =X„=n/4 and 8„is the bulk modulus of or-
dered phase n .The excess energy of the disordered (D)
alloy at composition x and temperature T can be approx-
imated ' as a superposition of cluster energies as

hE( V)= g P„(x,T}bE'"'(V), (10)

where P„(x,T) (n =0—4) is the occurrence probability of
the local environment n at (x, T). To find the relation-

ship between equilibrium alloy volume and its composi-
tion x, one imposes for applied external pressure H

aaED( V)

BV . . "' BV

yielding the equilibrium alloy volume V,q(x) (including
possible deviations from Vegard's rule}. Using the har-
monic form Eq. (9) this gives

V„(x)= —11+g P„(»,T}a„gP„(x,T)[a„yV'"'(X„)], (12)

so if the parameters I8„,V~' I of the ordered phases and
the cluster probabilities P„(x,T) are known, V,q(x) can
be calculated. Substituting V,q(x) for V in Eq. (10) then
gives the mixing enthalpy of the disordered (D) alloy

hH (x, T)=DE [ V, (x)]

= y P„(x,T)SE'"'[V„(x)]. (13)

Using Eqs. (8) and (13) we obtain

aH (x, T)= y„P„(x,T)nH'"'

+ g P„(x,T)F„[V,q(x) —V',"'] .

For a perfectly ordered phase n, x =X„, V, (x )

=V,'q'(X„), and P (», T)=5 „;hence EWE(», T} be-

comes AH'"'. As discussed in Sec. &IB, for such or-
dered phases EH'"' should be computed by relaxing all
structural degrees of freedom Iu, 7}I for each ordered
phase. This is also true for the clusters describing the
disordered phase.

2. AOoy-induced cluster relaxation

It is possible that in the alloy environment certain
equilibrium properties of the clusters A„Bz „change
with respect to their values in the pure ordered corn-
pound A„B4 „C4.Replacing a given B atom by a sin-

gle A atom in the zinc-blende BC crystal, for example,
will create an AB3C cluster in addition to the B4C clus-
ters of the "host." The energy AE'" of AB3C embed-
ded in the BC medium may differ from the energy of this
cluster in the pure ordered compound AB3C4. An ex-
tremely useful means of accounting for this "alloy-
induced cluster relaxation" is to permit the equilibrium
volume V,'q'(x) of cluster n in the alloy to deviate from
its value V,'"'(X„)in the pure ordered phase (where
x =X„).To 6rst order in a Taylor expansion, the equi-
librium volume of cluster n in the alloy [V,'"' of Eq. (14)]
can be written

V,'",'(x) = V',",'(X„)+K„'[V (») —V,'",'(X„)]+

the mixing enthalpy can be written

~D(x, T)= g P„(x,T)AH'"'+h p„g,(x, T)

+K"(K —2)hb„ik(x,T),

where the term in large parentheses is the mixing enthal-

py without alloy-induced cluster relaxation (but for
which all cluster energies are minimized with respect to
the structural parameters of the ordered compound from
which they are taken}, while the last term (negative,
since K ( 1) is the correction due to alloy-induced clus-
ter relaxation.

In what follows, we will approximate P„(x,T) as the
random probabilities

P„"(x)=(„)x"(1—x) (18)

appropriate in the high-temperature limit, since observed
mixing enthalpies for semiconductor alloys are extracted
from high-temperature liquidus-solidus data. Calcula-
tions with Uariational probabilities (obtained in the clus-
ter variation method) are reported for Ga„In, „Pin
Ref. 24, but for purposes of contrasting general trends in

where K„~are relaxation constants for the bulk (b) alloy.
If K„=O(no alloy-induced cluster relaxation) V,'q'(x)
= V,'q'(X„)for all x. [This is analogous to the frequent-
ly made assumption that an atom has a characteristic
size (or molar volume} independent of its chemical envi-
ronment. ] If K„=l(complete relaxation) all clusters
have the same equilibrium volumes as the alloy, i.e.,
V,q (x)= V,q(x). (This alloy-induced cluster relaxation
is a construct for including "elective alloy medium"
efFects on cluster energies only. )

If for simplicity all K„are taken as a constant K,
V, (x) remains the same (for zero pressure II) as given
in Eq. (12). The mixing enthalpy is obtained by using
V,'q'(x} of Eq. (15) in Eq. (14). Defining, in the harmon-
ic approximation,

B„
hP„ik(x,T)= QP„(x,T)

( ) [V,q(x) —V,'"'(X„)]
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bulk versus epitaxial growth, random probabilities [Eq.
(18}] are sufficient. The observed mixing enthalpies at
high-temperature are customarily represented as

EZHD(x) =Ox(1 —x) (19)

where Q, independent of temperature in this limit, is the
"interaction parameter. " Using Eq. (17) we may write

hH (x, T}0= ' =Q)+Q2+Q3,x(1—x)
where the contribution from the bulk formation enthal-
pies is

E' '"'(a, )=E' '"'(A„B~ „C4,a„c(a,},tu(a, )I) . (25)

In analogy with the bulk case (Sec. III A), one can define
partially relaxed energies for epitaxial systems, by keep-
ing certain structural parameters fixed.

Under pseudomorphic epitaxial conditions, the prod-
ucts (AC and BC) of a disproportionation reaction are
also constrained to match a, in the directions parallel to
the substrate and will hence develop tetragonal distor-
tions. The epiraxia/ formation enthalpy of the ordered
compound (A, ,n) grown on a substrate with ai —a, is'
(per eight atoms)

0,= g P„(x)bH'"'/x(1—x),

the contribution of cluster strain is

02 ——hq„ik(x)/x(1 —x),

(21)

(22)

E(AC, i
——, )

—(4— )E(BC,
~~

——o, ) . (26)

and the alloy-induced cluster relaxation contribution is

Qi ——E (E —2)h b„ik(x) /x (1—x) .

In Sec. VII 8 we will calculate hH (x) of Eq. (17) and
assess the relative importance of its three contributions
[Eqs. (21)-(23)].

(23)

3. Bond lengths in disordered bulk alloy

In analogy with Eq. (10), the local nearest-neighbor
atomic environment in a disordered fcc alloy involves all
statistical possibilities spanned by the Landau-Lifshitz
ordered structures (A„B~ „C~):the C atom may be
coordinated by A atoms only, forming an A4C cluster
(n =4), by A&8 (n =3), A282 (n =2), ABi (n =1), or
by 8 atoms only, forming 84C (n =0). We then have
the following average bond lengths in the disordered (D)
phase:

R~c(x}=X'~cd(x. T}R~c[Vq(x)l g~'gcP. (x, T),

(24)

Rac(x)= g a)~~P„(x,T)Ra'c'[V,q(x)] g coacP„(x,T),
n ll

where R ~ [ V, (x)] is the equilibrium a—p bond length
in structure type n for unit cell volume V,q(x) and co~
is the number of a—p bonds in the structure n.

The restriction of the lattice parameter to a fixed value

a, costs strain energy. %e define this substrate strain
(ss) energy' for the compound of structure type A, as the
di8'erence between the constrained and unconstrained
("free-Qoating"} energies,

IV„=98,sa,q(a, —a,q) /2, (28)

where for the particular case of the [001]substrate orien-
tation which we consider in detail here,

(27)

(where all structural degrees of freedom not enumerated
explicitly in the equations are again taken to be their
equilibrium values for the relevant a, ).

Harmonic elasticity theory provides insight into the
very diN'erent efFects of constrained and unconstrained
growth. For a hydrostatically deformed cubic material
of equilibrium unit cell volume a, the strain energy (per
unit cell) may be written E= E(a, )q+9a8, (qa

—a,q} /
2, where the cubic bulk modulus is 8 =(C„+2Ciz }/3.
In the presence of epitaxy-induced tetragonal distortions,
however, prouided a tetragonal distortion is permitted in
the structural description of the crystal, one may mini-
mize the elastic energy with respect to tetragonal distor-
tion for Sxed epitaxial strain, finding

IV. KPITAXIAI. PHASES B,s =2o,oo/9=28(1 —C„/C„)/3, (29)

A. Knthalpies of formation of ordered epitaxial phases

'when an A„84 „C4compound is grown epitaxially
in a dislocation-free, pseudomorphic fashion on a sub-
strate (s) with lattice parameter a, perpendicular to the
growth direction, its lattice parameter a~~ parallel to the
substrate is constrained to equal a, . Its energy is hence
no longer given by Eq. (5); instead, one determines it by
fixing the lattice parameter ai ——a, (not the volume), and
relaxing all other structural parameters. Denoting epi-
taxial energies by a tilde, this gives, in analogy with Eq.
(5),

and o,oo ——C»+Cia —2C,2/C». (For other substrate
orientations 8,& will depend differently on the elastic
constants. ~

) Since for typical III-V zinc-blende com-
pounds's 8 /8, & 2 5 3(see-T. a—ble II below), this
analysis implies a pronounced reduction in curvature of
the E ' '"'(a, ) curves [Eq. (25)] about the global equilibri-
um value a, for tetragonally distorted epitaxial (as com-
pared to bulk cubic} binary structures. To the extent
that an ordered ternary compound may be described by
cubic elastic constants, this analysis will also hold for
ternary compounds. Alone among the ternary structures
we consider, luzonite lacks a tetragonal degree of free-
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TABLE II. Calculated minimum (min) energy lattice parameter (a;„)in A and deformation energy (in meV per eight atoms) for
bulk and epitaxial ordered Ga„In~ „P&compounds. Here unrelaxed refers to u =uo and g=go. q relaxation refers to u =uo and

q= g«, u relaxation refers to g=go and u =u~, and "full relaxation" refers to u«and g~. Elastic moduli 8 and S,N are in GPa.

Unrelaxed
Min of E„„(V)0~0

or E„„(V)0~0

q Relaxation
Min of E„(a}

or E„(V)
0

u Relaxation
Min of E„(a)

or E„(V)

Full relaxation
Min of E(a)

or E(V)

System ~min Emin Emin ~min a min
g~(A, „n)

g {n,A. )

(bulk)

g(n~A, )

(epitaxial)

GaP (ZB)
Ga3InP4 {L)
Ga3InP4 (F)

GaInP2 (CuAu)
GaInPp (CP)
GaIn3P4 (L)
GaIn3P4 (F)

InP (ZB)

5.450
5.539
5.539
5.636
5.636
5.746
5.746
5.866

0.0
403.6
403.6
571.7
571.7
456.9
456.9

0.0

5.4SO

5.539
5.S38
5.632
5.639
5.746
5.746
5.866

0.0
403.6
403.5
571.6
571.6
456.9
456.9

0.0

S.450
5.546
S.S46
5.648
5.649
5.756
5.757
5.866

0.0
147.4
110.5
171.5
108.1
103.7
78.6
0.0

5.4SO

5.546
5.550
5.611
5.673
5.756
5.760
5.866

0.0
147.4
110.3
161.3
104.9
103.7
78.4
0.0

92.7
89.3'
89.2
85.0
85.0
81.0'
81.0
77.1

33.0
89.0'
30.0
27.0
26.9
80.8'
23.9
20.6

'DifFerence rejects different harmonic regimes of E(a) and E( V).

(4 n)W„—[BC—,a, ] . (30)

Whereas the epitaxia1 restriction a
~~

——a, necessarily
raises the energies of AC, BC, and A„B& „C4relative to
the unrestricted (bulk) equilibrium values, it is possible
that such an epitaxial constraint raises the energy of the
binary constituents AC and BC even more than that of
A„B~ „C4(since the former structures lack internal de-
grees of freedom}, resulting in epitaxial stabilization
when bE,',""' &0. U'sing Eqs. (26) and (28), a simple
harmonic model would predict (per eight atoms) for
A„84 „C4
bE'"'(a, ) =5H'"'(a ) bH'"'—

t

g(n)a(n)(a a(n) )2
eff eq s eq

~c—
4 ~e(t awe(a. —age }

(4 n)—~ ettat)c(as aac }

For a, =a,'"' it is obvious that 5H'"' —hH'"'~0, so that
the epitaxial compound has been stabilized with respect
to its bulk counterpart. %'e will 6nd in Sec. VI C that in
fact 5H'"'(a, ) & 0 for most of the range a„c& a, & abc
for all epitaxial ternary compounds except luzonite.

Furthermore, the availability of diferent structural de-
grees of freedom in difFerent ordered compounds can

dom g, so that under epitaxial conditions the curvature
of its curve E(a, ) is expected to be described by 8 rather
than B,~.

We see that the relative stabilities of epitaxial and
bulk forms are given (per eight atoms) by the excess sub-
strate strain energy, i.e., the difference between Eq. (26)
and Eq. (6},

bE(). n)(a )
, 5H(k, n)( ) bH(A„n)

SS S S

= WI, )[A„B~„C4,a, ] nW [—A C, a]

make one more adaptable to the epitaxial constraint
than another, leading to epitaxial selectiuity between
difFerent structures [A, ] of the same composition n We.
will refer to this phenomenon as "epitaxial selection of
species, "with obvious analogies to Darwin's viewpoint.

B. Mixing enthalyies and bond lengths
of disordered epitaxial alloys

When an alloy A„B,„Cis grown epitaxially on a
substrate with lattice parameter a, parallel to the growth
direction, its excess energy is given, in analogy with the
bulk case of Eq. (10), by

bE (c,a, )= QP„(x,T)bE'"'(c, a, ), (32}

where bE(")(c,a, ) is the epitaxial excess energy function
for cluster n [with respect to its epitaxially constrained
binary constituents, as in Eq. (26)]. The equilibrium
value c,'"„'of the tetragonal dimension c for ordered
structure n grown on an [001] substrate of lattice
constant a, is determined by the condition
dbE(")(c,a, )/(3c =0. For fixed a, the harmonic approxi-
mation yields

Cfn)
(n) (n) (n)

ceq (as}=aeq („)(as aeq }
C11

Writing

bE'"'(c, a, ) =5H'"'(a, )+FP '[c —c,'"'(a, ) ]

(33}

(34)

[analogous to Eq. (9)]. A variational determination of
the epitaxial alloys equilibrium tetragonal dimension
c,q(x) [analogous to the determination of V, (x) for a
bulk alloy] may also be carried out. Since a, is fixed by

[analogous to Eq. (8) for the bulk case], in the harmonic
case per eight atoms

F„')"[ —c',"'(a, )]——,'C', ", 'a(,")(X„)[c—c',"'(a, )] (35)
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yielding, in analogy with Eq. (12}for the bulk case,

c, (a„x)=
y. P„(x,T)C',",'a,'", '

(37)

Inserting ceq(a, ,x) into Eq. (32) and using Eq. (34), we

may write the epitaxial mixing enthalpy as

5HD(a„x,T)=b,E[c,q(a„x)]
= g P„(x,T)5H'"'(a, )

+ Q P„(x,T)F„'r'[c,(x,a, )] . (38)

As described in Eqs. (15} and (17) for the bulk case,
the effects of alloy-induced cluster relaxation may be in-
cluded by the construction

(39)

(with analogous expressions for other cell dimensions for
noncubic ordered compounds). We note that even in the
epitaxially constrained alloy cluster relaxation is toward
the global alloy equilibrium lattice constant a,q(x) and
does not depend on a, . Examination of the case
a, =a,q(x) (an epitaxial alloy grown on a substrate
whose lattice constant is the equilibrium value of the
bulk alloy, so that there is no epitaxial constraint)
demonstrates that, in comparing a bulk system (relaxa-
tion constant Kb) and an epitaxial one (relaxation con-
stant K'r'} one must have K'u'=K .

Using Eq. (30), we see that Eq. (38) gives

5H (a„x,T)= g P„(x,T)Idden'"'+FP[c, q(a„x)]I

+ y P„aE,',"'(a, ) .

The discussion following Eq. (31) demonstrated that
hE,',"'(a, ) &0 is likely for at least part of the range
a„z~ a, ~ azz, so that we expect the epitaxial constraint
to lower the mixing enthalpy of the disordered alloy. To
illustrate the consequences, consider a bulk A„8

& „Cal-
loy which exhibits a miscibility gap, i.e., for which (in-
side this gap) a two-phase (AC- and BC-rich) mixture is
of lower free energy than a homogeneous single-phase
disordered alloy. %hen grown epitaxially on a substrate
lattice matched to the bulk disordered alloy, there will
be no eft'eet on the single-phase alloy. The dispropor-
tionation products (AC- and BC-rich), however, are not
lattice matched to the substrate, and the associated
strain energy raises, under epitaxial conditions, the free
energy of the two-phase system. Hence, whereas in bulk
form the two-phase system had the lowest free energy,
under epitaxial conditions the single-phase disordered al-

choice of substrate, we impose the condition of zero per-
pendicular stress,

'dbE(c, a, )

loy has lower free energy. If, in addition, an ordered
bulk compound has lower free energy than the bulk
single-phase alloy (the commonly encountered situation,
(see Sec. VII B and figures therein below}, under epitaxial
conditions such ap ordered phase will have the lowest
free energy. The average A —C and 8—C bond lengths
in the epitaxial alloys are calculated in analogy with the
bulk case of Eq. (24) with the substitution
R'&[V, (x)]~Ri~i[a„c,q(x)].

V. MODELING THE ENERGIES OF ORDERED
COMPOUNDS

In general, the enthalpy of formation hH' '"' of a
given ordered structure contains two types of contribu-
tions 6'23' "' First, if one assumes that the elastic prop-
erties of bonds in the ternary compound are unchanged
relative to those in the binary constituents, the forma-
tion enthalpy contains a contribution AE','"' due to mi-
croscopic strain (ms), reflecting the failure of the struc-
ture to accommodate the ideal bond lengths and angles
of the binary constituents. %ere these structures topo-
logically unconstrained' (i.e., they possessed sufficient
degrees of freedom to make all bond lengths and angles
ideal, as is the case for the binary zinc-blende or the
rhombohedral structures'6), we would have hE'",'"'—:0;
otherwise, LE','"'&0. The second contribution to the
enthalpy of formation of an ordered compound can be
thought of as "chemical, " incorporating actual interac-
tions (e.g., charge transfer) between AC and BC in

A„84 „C4,neglected in the previous step. The evalua-
tion of this EE,'&',"' requires a quantum-mechanical cal-
culation. Such calculations have been recently reported
for GaP-lnP, ~3 2 Si Ge o Si-C Ga/s-AIAs,
CdTe-Hg Te, and Mn Te-CdTe.

The total formation enthalpy is hence

(41)

Stable (bH' '"'&0) ordered ternary structures of the
A„84 „C4form ' usually contain atoms A and 8 from
diferent columns of the Periodic Table (e.g., chalco-
pyrite compounds A '8'"C2 ', pnictide compounds
A "8' Cz, or famatinitelike compounds A 38 "C4'). In
these heteroualent compounds one finds that hH'"'"' «0
(a few eV per mole), primarily because of strong electro-
static interactions which render hE,'h',"' strongly nega-
tive. There is a special class of A„84 „C4adamantine
compounds —those we consider in this paper —in which
the dissimilar elements A and 8 are isoualent (i.e., belong
to the same column in the periodic table). In this class
of compounds ("pseudobinaries, " e.g., A„"'84"„C4or
A„"84 „C4')there are only weak electrostatic energies;
hence 60'~'"' is about 2 orders of magnitude smaller
than in the corresponding heteroualent adamantine com-
pounds; only recently have isovalent ordered ternary
compounds been prepared (their b,H' '"' are not
known experimentally). Self-consistent total energy cal-
culations reveal rather small (negative or positive) values
for AH' '"' in such isovalent compounds, e.g. , for
GaAlAs2 in the CuAu-I-like structure ' hH' ' =+10
meV/atom-pair, for ferromagnetic CdMnTe2 (Ref. 32) in
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the same structure ddt' '= —25 meV/atom-pair, for
CdHgTez (Ref. 32} hH' '=+6. 1 meV/atom-pair, for
zinc-blende SiGe (Refs. 16 and 20) hH = + 17.8
meV/pair but for SiC in the same structure' '

hH = —659 meV/pair (+0.23, —0.58, +0.14, +0.41,
and —15.2 kcal/atom-pair, respectively). Whereas or
dered isovalent compounds have small (negative or posi-
tive) hH' '"', the corresponding disordered isovalent al-

loys are known to all have positive enthalpies of forma-
tion' EHD(x), of order 0-130 meV/atom-pair (0—3
kcal/mole).

It has previously been observed that, whereas in iso-
valent compounds the value of bH' '"' is affected both
by "strain" and chemical efFects [E . (41)], the bulk equi-
librium geometry [minimizing E' '" (V) of Eq. (5}] is de-
cided primarily by the strain energy. Since, further-
more, in this work we are interested primarily in the rel-
ative stabilities of bulk and epitaxial forms of isovalent
ternary semiconductors, we will consider, for purposes
of illustration, only the microscopic strain energy
hE~;"' in Eq. (41). We hence use Keating's' valence-
force-field (VFF) model for the deformation energy
E' "'[V,a, ri, tu]], i.e. (for the adamantine tetrahedral-
ly coordinated compounds we consider),

28b

E= g a, (r'r —d )
i 8d;

deformation energies of cubic GaP and InP (E[AC,a],
E [BC,a] of Eq. (6)) as dashed lines. When constrained
epitaxially to a~~

——a„the relevant deformation energy is
E[AC,a, ], E[BiC,a, ] of Eq. (25), depicted in Fig. 1(a) as
solid curves; the shaded area under them sho~s the sub-
strate strain energy IV„(a,) of Eq. (27). Under epitaxial
conditions the lattice parameter c changes relative to
this bulk value (where c =a, or ri=rio= 1), as shown in

Fig. 1(b). Note that ri is smaller (larger) than i}0=1 for
a, &aeq (a, &aeq). Such variations have been observed
experimentally for epitaxially grown alloys, e.g. , for
In„Ga& „Asgrown on InP.

The obvious distinction between the epitaxial and bulk
deformation energy curves in Fig. I is their curuature.
We note the following features: (i) The effective epitaxial
bulk moduli of the binary compounds [B,tr of Eq. (29)]
derived from the E[AC, a, ] curves are far smaller than
the cubic bulk moduli B (Table II). (ii) The substrate
strain W'„'"'(a,) [Eq. (28)] in epitaxial systems is decided

by the effec'tive bulk modulus B,s; this strain [shaded
areas in Fig. 1(a}] is considerably smaller than in bulk
systems. (iii) GaP has a larger substrate strain energy
than InP (since it has a larger B,rr', see Table II). This
highlights the basic asymmetry and selectivity of sub-
strate strain efFects: GaP on InP has less strain than InP
on GaP [Figs. 1(a) and 1(b)].

6nb
(1) (2) I (1) (2) 2+ g ti~ ~2~pj i J +Tdj d

8dj dj
(42)

8. Knects of structural parameters
on stability of ordered ternary compounds

where in the first sum (which runs over all distinct bonds
in the unit cell, 2n& is in number if there are n& atoms in
the basis, since each atom is fourfold coordinated) d, is
the ideal bond length (i.e., that of the binary) and a; is
the bond stretching force constant ' for bond i. Since
each atom in the cell participates in 12 bond angles, the
second sum runs over the 6nb distinct angles in the unit
cell. In the second sum P is the bond-bending force
constant for bond angle j, r"" is the vector from the
central atom along one arm of the angle, and r' ' that
for the other arm, with dj

' the ideal (binary) values.
This model has been fit to the phonon spectra of the
binary compounds' and produces very good agreement
between the calculated and observed impurity bond
lengths in isovalent alloys. Its major deficiencies —the
relative insensitivity of the results to additional Coulomb
terms' —will not affect our conclusions on the relative
stabilities of bulk versus epitaxial forms. %e use
doo, p ——2.36 A, do„p——2.541 A, ao,p

——47.32 N/m,
ai„p——43.04 N/m, (P/a)o, p

——0.221, (P/a)i„p——0.145,
and P(Ga-P-In)=7. 817 N/m. Table II gives the results
of our calculation for bulk and epitaxially constrained
Ga„In4 „P4,both for fully relaxed and for partially re™
laxed structures.

VI. ORDERED PHASES

A. Epitaxial and bulk binary compounds

Bulk-grown (free ffoating) binary zinc-blende com-
pounds naturally have ri=ri0=1. Figure l(a) depicts the

Figures 2 and 3 give the deformation energies and
equihbrium structural parameters (at each a, ) of epitaxi
al ternary systems, and Figs. 4 and 5 give analogous in-
formation for bulk systems. Note that the deformation
energy and lattice parameter at equilibrium is the same
for bulk and epitaxial systems. (This follows trivially
from the fact that a substrate with precisely a lattice
constant a, =aeq w111 exert no strain on an epitaxial
layer. )

Within the strain-only (valence-force-field) description
we use, the formation enthalpies bH'"' of all bulk or-
dered compounds are identical with the equilibrium de-
formation energies, since the strain energies of the con-
stituent binaries are zero in equilibrium; see Eq. (6). The
most important qualitative feature of the curves for bulk
ordered compounds (Figs. 4 and 5) is that the enthalpies
of all ordered compounds are positive, i.e., all are unsta-
ble with respect to decomposition into the binary con-
stituents. %'hile the complete formation enthalpies of
ordered compounds may under some circumstances be
negative when chemical efFects are included [see Sec. V
and Eq. (41)], we expect the systematic diff'erences be-
tween bulk and epitaxial constraints to be well repro-
duced within this picture. The formation enthalpies of
epitaxial compounds are discussed in Sec. VI C.

The following observations can be made on the
significance of the different cell-internal degrees of free-
dom for stabilization of ordered ternary compounds;
points (i)—(iv) apply equally to bulk and epitaxial sys-
tems at equilibrium, while point (v) contrasts bulk and
epitaxial behavior.
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FIG. 4. In analogy with Fig. 2 (see caption), structural pa-

rameters and deformation energies for bulk GaInP2.

(i) Ternary adamantine compounds A„84 „C4 for
n =1,2, 3 are naturally distorted: they exhibit their
lowest energies at distorted values of both ri and Iu )

[see, e.g., the substantial deviations of u,
„

from —,
' in

Figs. 4(b), 4(e), and 5(b}]. Interestingly, the dependence
on externally controlled cell parameters (the volume, for
bulk growth, and the substrate lattice parameter a, un-

der epitaxial conditions} of equilibrium cell-internal pa-
rameters Iu I is very weak [see, e.g, Figs. 3(b) and 5(b)j,
while that of g, since it controls cell volume, is much
stronger under epitaxial conditions [Figs. 2(a) and 3(a))
than under bulk conditions [Figs. 4(a} and 5(a)].

(ii) Whereas the degeneracy of the strain energy of
difFerent structures A, with the same stoichiometry n ap-

Bulk Systems
FANATINITE LUZONITK
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5 45 5.55 5.85 5.75 5.85 5.55 5.85 5.75 5.85

Bulk Lattice Parameter (A)

FIG. 5. In analogy with Fig. 3 (see caption}, structural pa-
rameters and deformation energies for bulk GaIn3P4 and
Ga3InP4.

parent in the unrelaxed systems [observe the equal unre-
laxed energies E„''"„' of the luzonite-famatinite (both

n =1 or 3) and CuAu-chalcopyrite (both n =2) pairs in
Table II] is removed only slightly in the r}-relaxed sys-
tems, it is removed completely in the u-relaxed systems.
Hence diferent cell-internal degrees of freedom strongly
distinguish among equal-stoichiometry structural pairs.
It is apparent from Table II and Figs. 2—5 that while de-
viations of g from qo lower the equilibrium strain energy
only marginally, relaxation of the cell-internal degrees of
freedom leads to a substantial stabilization of all ternary
systems. Moreover, the e8'ects of relaxation of the
tetragonal ratio g and cell-internal parameters (u, u,

iii, . . . ) are essentially independent. In Fig. 2, for exam-
ple, we note that in both the CuAu-I and chalcopyrite
structures relaxation of ri alone (for u =u0) results in the
Battening of the deformation energy curves with respect
to the completely unrelaxed case. Relaxation of u alone
(for ri=r4~), on the other hand, is responsible for essen-
tially all of the total strain reduction upon relaxation,
with essentially no associated fiattening of the curves
(see Table II). More generally, cell-internal parameters
(u, u, w, . . . ) control the amount of strain reduction upon
relaxation while cell dimensions (ri) control the curva-
ture of the energy deformation curves, i.e., equilibrium
elastic constants. It follows that the luzonite structure,
lacking an ri degree of freedom, shows the same effective
bulk modulus in both bulk (8) and epitaxial (8,0) forms,
whereas all other structures show a considerable reduc-
tion of 8,s relative to 8'"' ' (see Table II). (If we add
the ri degree of freedom to luzonite, we find the same
b,H' "' values as given in Table II for luzonite, but the
8',~&"' values become close to those of famatinite. )

(iii) The energy lowering upon relaxation re6ects the
flexibility offered by structural degrees of freedom avail-
able. Hence, the luzonite structure with its tao degrees
of freedom Ia, u) exhibits the smallest energy lowering
upon relaxation ( —256.2 meV and —353.2 meV for
GailnP4, and Gain&P~, respectively), whereas the chal-
copyrite structure, with its three Ia, u, ri) degrees of free-
dom has the largest energy lowering (by —466. 8 meV).

(iv) The relative orientation of the structural parame-
ters can also afFect stability: while the chalcopyrite
structure accommodates the distinct bond lengths only
slightly better than does the CuAu-I structure (since
each has two structural degrees of freedom), the
di8'erence in strain reduction between the two is mainly
due to the di8ering orientations of the u parameter in
each [see insets to Figs. 2(c) and 2(f)]. In the chalcopy-
rite structure, the strain energy may be minimized with
respect to g and u independently since they describe or-
thogonal distortions [respectively, along the z direction
and in the (x,y) plane], while in the CuAu-I structure
the two parameters have correlated e6'ects, since both
are oriented along z and are hence less effective in reduc-
ing strain. Hence, the chalcopyrite shows a larger ener-
gy lowering (—466.8 meV) relative to the CuAu-I form
( —410.4 meV).

(v) In contrast to the epitaxial case, under bulk growth
conditions (Figs. 4 and 5) one finds only a very weak
dependence of the tetragonal ratio c/a upon a(V)—
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even for structures characterized by a tetragonal unit

cell. As a rule under bulk conditions one finds

vl[a (V)]=vi(a,'q')=vio, where vio is the tetragonal ratio
for the unrelaxed structure, while for epitaxial condi-
tions vi(a, ) =vio"'ceq'(a, )/a, with c,'q'(a, ) given in Eq.
(33).

%e conclude that the availability and orientation of
cell-internal structural degrees of freedom —the hall-
mark of ternary adamantine structures ' —is the pri-
mary mechanism for strain stabilization and phase selec-
tivity (e.g. , famatinite over luzonite, chalcopyrite over
CuAu-I) in these systems. We will find below that these
degrees of freedom are responsible for delicate
differences in 8,& within competing structures of the
same composition (i.e., chalcopyrite and CuAu-I). We
turn next to the phase selectivity of epitaxial structures.

C. Stabilization anti structural selectivity
of epitaxial ternary compounchs

Calculating the epitaxial 5H' "'(a, ) of Eq. (26) within
the VFF description, we note (Fig. 6) the following
features.

(i) The most obvious feature of Fig. 6 is that the epit-
axial formation enthalpy 5H' '"'(a, } is negative over
most of the range a&,p ga, gal„p, except for luzonite
Ga3InP4, i.e., an ordered ternary compound may be
stable under epitaxial conditions even if unstable in bulk
form. For this phenomenon we will use the term epitax
ial stabilization. [The simple harmonic model of Eq. (31)
and the assumption 8',z'-(n/4)8, "e +(4 n)/48—,tt and

a,'q' =(n/4)a„c+(4 n)/4attc (c—losely obeyed in Table
II) semiquantitatively reproduces Fig. 6 for chalcopyrite
and famatinite phases (including the relative positions of
GaslnP~ and GalnsP4). More subtle features, such as
the very different behavior of CuAu-I and chalcopyrite
structures under the epitaxial constraint, are associated
with delicate deviations from the composition-weighted
values for both a,'"' and 8',s' because of the difFerent
structural parameters available. ] Epitaxial stabihzation
effects can explain the observed stability of episaxiaI
adamantine compounds with no counterparts in the
bulk. form.

(ii} Epitaxy-induced strain performs a "natural selec-
tion" between different ternary species, preferring the
"fittest" (Fig. 6): whereas the luzonite and famatinite
forms (or the CuAu-I and chalcopyrite forms) have the
same deformation energies in the unrelaxed bulk forms
(Table II), under epitaxial conditions the substrate strain
removes this degeneracy, strongly preferring (for all
values of a, ) the famatinite (u, u, vi degrees of freedom)
over the luzonite (just ' ' the u degree of freedom), or
the chalcopyrite over the CuAu-I form (for a, y 5.53 A}.
In general, phases with the smallest 8,ea,q(a, —a,q) are
favored [Eq. (28)]. This explains why rhombohedral
SiGe, with its smaller 8,6, grows epitaxially on Si in
preference to the zinc-blende phase, which is nearly as
stable in bulk form but has a larger' B,N.

(iii) No obvious condition of "lattice matching" can be
associated with the minimum of 5H' "'(a, ) in Fig. 6:

(~) (2) (3)
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FIG. 6. Enthalpies of formation for epitaxial Ga„In4 „P4
ordered compounds as a function of the substrate lattice pa-
rameter a„showing epitaxial stabilization and selectivity.

whereas the energy E' '"'( V) of the relaxed bulk
A„84 „C4system has a minimum at its a,'"' (Figs. 2
and 3}, the optimum substrate a, for 5H' '"'(a, ) (Fig. 6)
is the one that stabilizes A„8~ „C4and at the same
time destabilizes its binary constituents most. Hence, the
common approach' of attempting to match a,'"' to a,
diminishes selectivity efFects.

(iv) Figure 6 shows that the selection of a substrate
with a particular a, value can alter the relative stabilities
of two phases, hence permitting one to grow in prefer-
ence to the other (e.g., for a, & 5.53 A the chalcopyrite
becomes less stable than the CuAu form).

VII. DISORDERED TERNARY ALLOYS

The average properties of a disordered alloy —either
in bulk form or grown epitaxially —may be calculated
using the formalism of Secs. III 8 and IV B. For a ran-
dom alloy one must decide, in selecting ordered struc-
tures whose local clusters are characteristic of the ran-
dom alloy, how best to represent the alloy. The
Landau-Lifshitz structures belonging to the [100] star of
ordering vectors include the luzonite structure, which
lacks a tetragonal degree of freedom and so offers re-
duced flexibility in accommodating diferent A —C and
8—C bond lengths. We have therefore used the (2,0, 1)
ordering vector structures, i.e., famatinite for A38C4
and A8&C4 and chalcopyrite for Ai82C4 (all of which
may have vi&1) in evaluating random alloy properties.
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A. Bond lengths of bulk disord«ed alloys

Recent extended x-ray absorption fine structure (EX-
AFS) experiments showed average bond lengths
R zc (x ) and Rzz (x ) in pseudobinary adamantine alloys
very close to the corresponding ideal bond lengths d„c
and daz. This behavior has been explained by Martins
and Zunger on the basis of a structural optimization of
a valence force field. This theoretical Inodel also pre-
dicted successfully a number of alloy and impurity bond
lengths not measured at that time.

%e have calculated the concentration variation of the
alloy bond lengths of Eq. (24}, appropriate for a high-
temperature alloy. For each volume V,„(x)we use the
fully optimized (ri, , u, ) bond lengths of the ordered
structures. These are averaged with the weights of Eq.
(18), producing R„c(x)and Rgb(x} depicted in Fig. 7.
Figure 7 also shows the values of the ideal bond lengths

do,p and d i„pas dashed horizontal lines. The results of
Martins and Zunger for the dilute impurity limits
GaP:In and InP:Ga (solid circles in Fig. 7 labeled MZ}
are seen to be in good agreement with our results extra-
polated to x=0 (for Ri p) aild x =1 (foi' Ro p}. In
Fig. '7 the equilibrium bond lengths Rz"c and E.zc for
the corresponding ordered phases (zinc blende, chalcopy-
rite, famatinite) at the stoichiometric compositions
X„=n/4are shown as squares.

Our calculated alloy bond lengths clearly show a bi-
modal distribution, despite the fact that the V,q(X)
which solves Eq. (12) is extremely close, for Ga„In, „P,
to the Vegard rule value xV„C+(1—x}V&c. R„c(x)
and Rpf&(x) are considerably closer to the ideal bond
lengths d„cand d)t&, respectively, than they are to the
concentration weighted average xd„c+ (1—x )dac.
Nevertheless, alloy bond lengths do deviate from the
ideal bond lengths, causing residual strain energy and
leading to a positive mixing enthalpy lb' (x) (Fig. 8
below). Note that the bond lengths R „'"cand Rac of or-

dered structures (squares in Fig. 7) are considerably
closer to the ideal values d„cand dac (dashed lines)
than are the bond lengths R „c(X„)and Rnc(X„)of the
disordered alloy at the stoichiometric compositions X„.
This implies that the mixing enthalpy of alloys
[b,H (X„)] is larger than the formation enthalpy
(b,H' '"') of the ordered structures from which the alloy
is constructed. The variety of local environments (i.e., of
A —C and 8—C bond lengths) necessitated by disorder
in the bulk alloy does not accommodate the distinct
bond lengths at concentrations X„aswell as do the or-
dered phases which have each a single type of A —C and
8—C bond type. In recent work Patrick et al. and
Sher et al. calculated the bond lengths Ro, p(x) and
R,„p(x)for the disordered Ga, „In„Palloy. They at-
tempt to associate their "stiff P=O'* model (which exhib-
its pathological bond lengths nonmonotonic in composi-
tion [Fig. 3(b) of Ref. 35]) with that used by Srivastava
et al. and Mbaye et al. , i.e., the same description
used here, and criticize the validity of the superposition
of clusters approach on this basis. In fact, however, our
Fig. 7 shows none of the pathologies of their stiff P=O
model and closely resembles their optimal "relaxed"
model [Ref. 35, Fig. 3(a)].

8. Mixing enthalpies of bulk disordered alloy

sects of relaxation of srructurol parameters

The imperfect accommodation of distinct bond
lengths in a disordered alloy has important imphcations
for the enthalpy of mixing hH (x) of the bulk alloy.
Unfortunately, no direct measurements are available for
AHA in semiconductor alloys. Instead, these values are
extracted from fits to liquidus-solidus data assuming sim-
ple thermodynamic models, and involve a large uncer-
tainty. Given this situation, we will proceed as fol-
lows. First, we calculate the first two terms (in large
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FIG. 7. Ga—P and In—P bond lengths in bulk random al-
loy. Squares indicate ordered phase values for stoichiometric
A„84 „C4compounds; MZ indicates values predicted by Mar-
tins and Zunger in Ref. 27 from the dilute impurity model.
Dashed horizontal lines indicate bond lengths d in the binary
systems.
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FIG. 8. Mixing enthalpy bHo(x) [Eq. (13)] for the bulk ran-
dom Ga„ln, P alloy. Chain-dash line indicates unrelaxed
structural parameters, solid line fully relaxed. 0 denotes the
interaction parameter obtained by fitting the calculated lives of
the phenomenological form of Eq. (19).
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parentheses) in Eq. (17) using random probabilities and
the equation of states [Eq. (8)] for the five ordered
phases, keeping E =0 in both cases. %e then examine
the efFects of alloy-induced cluster relaxation (E &0).

In Fig. 8 we show the enthalpies of formation of or-
dered ternary compounds as diamonds, together with re-
sults for the disordered bulk alloy. In all cases we note
that the mixing enthalpy of the disordered alloy is posi-
tive, i.e., it is unstable with respect to decomposition
into the binary constituents. Using unrelaxed (UR) ener-
gies E„' "„'[ V, (x)] in the expression Eq. (13) we Snd the

upper curve in Fig. 8, approximately parabolic [as sug-
gested by the conventional experimental parametrization
of Eq. (19)] with a maximum at x =0.53 which can be St
with QU„AH+/[——x(l —x)]=2.35 eV/eight atoms or
13.5 kcal per two-atom mole, as determined by a least-
squares fit. This agrees very well with the macroscopic
model of Fedders and Muller (who found 0=13.00
kcal/mole), but is in substantial disagreement with ex-
perimentis (0=3.422 kcal/mole). (Fedders and Muller
used an empirically determined multiplicative constant
of 0.226 to bring their results for ternary III-V alloys
into better agreement with experiment. ) To understand
the discrepancy with experiment we examine the effects
of sequential structural relaxation of the ordered struc-
tures on the mixing enthalpy. We find a negligible effect
of relaxation of the tetragonal parameter ri, because of
the very weak dependence of ri on volume and its prox-
imity in all cases to the undistorted value (Figs. 4 and 5).
Relaxation of cell-internal structural parameters, on the
other hand, profoundly a8'ects the enthalpy of mixing.
The lowest curve in Fig. 8, corresponding to complete
relaxation (denoted 8 ), is almost perfectly parabolic with
a maximum at x =0.503 and an interaction parameter
Qa ——0.961 eV/eight atoms or 5.54 kcal/mole. This is

in considerably better agreement with experiment, with
the result of Martins and Zunger (0=4.56 kcal/mole)
and with the value obtained from the semiempirical
model of Stringfellow~s (3.64 kcal/mole). Since we have
neglected chemical interactions [second term in Eq. (41)]
in our strain-only model, their inclusion may lower
our calculated Qz, bringing it into better agreement
with experiment. Chen and Sher, relaxing constituent
clusters as we do, have calculated Oz assuming "the size
of the tetrahedra for all n clusters at a given alloy con-
centration takes on the corresponding virtual crystal
(i.e., Vegard rule} value, but allowing the central C atom
to relax. " Though no numerical results were given, they
concluded that "the energies are too large and would
correspond to Qz values many times the experimental
values. " Our result (Qn ——5.54 kcal/mole versus

0,„~=3.422 kcal/mole), and the similarity of both ap-
proaches, demonstrates that their calculation must have
been in error.

2. Effects of alloy induced cluster relax-ation

In the notation of Eqs. (20)-(23) we have found that
structural parameters are completely unrelaxed

0, =9.9 kcal/mole, (43)

while if ri and I u J are relaxed (R )

0& ——2.02 kcal/mole . (44)

The cluster strain contribution [Qq of Eq. (22)] is insensi-

tive to structural relaxation, yielding

QiU =3.6 kcal/mole, Qz ——3.5 kcal/mole . (45)

C. Bond lengths of epitaxial disordered alloys

In Fig. 9 we show the alloy-averaged Ga—P and In-
P bond lengths for epitaxial Ga& In„Pand those for

We may write the total interaction parameter of Eq. (20)
as

( QUR +QUR) +[( Qii QUR)+(QR QUR)]+0

(46)

The second and third terms give, respectively, the reduc-
tion in 0 due to relaxation of structural parameters and
due to alloy-induced cluster relaxation. Since our result
neglecting alloy-induced cluster relaxation 0", +Qi falls

within the large error bars for the observed 0, it is
diScult to quantitatively assess EC . In metallurgical sys-
tems, for which AH+(x, T} is measured directly and ac-
curately, a similar calculation for Cu„Au&, yielded a
modest relaxation constant of E=0.21. We can deter-
mine the range of E consistent with the experimental
value for 0 for Ga„In, ,P by equating the calculated
hH /x(1 —x) of Eq. (19) with the mean experimental
value of 3.4+2 kcal/mole. We find E"=0.37, and hence

03———2. 1%2 kcal/mole.
Since 0, "+Qi"——13.5 kcal/mole and structural re-

laxation reduces 0 by 8.0 kcal/mole, we conclude that
(i) relaxation of structural parameters in the ordered
compounds used to describe the disordered alloy (mostly
the cell-internal parameters Iu] which control the ac-
commodation of distinct A —C and 3—C bond lengths)
is the most important energy-lowering mechanism. (We
may infer that the phenomenological factor of 0.226
Fedders and Muller used to make their theoretical pre-
dictions for 0 agree with experiment accounts mainly
for structural relaxation. ) (ii) The contribution 0", of the
bulk formation enthalpies and that from alloy-induced
cluster relaxation 0& tend to cancel, making
4H (x)=hb„ik(x)=0&x(1—x) a reasonable approxima-
tion. Ferreira et al. have justified such an approxima-
tion from different considerations, which predict that
Qz -(0","+Qz )/4, i.e., that the true interaction pa-
rameter is about one-fourth that of the completely unre-
laxed (Fedders-Muller) value, in reasonable agreement
with our result (0 i +Qz ) /Qi —3.7. (iii) Alloy-
induced cluster relaxation will lower Q further, and (iv)
ordered A„84 „C4 compounds of lattice-mismatched
compounds Ac and BC have a lower formation enthalpy
ltdI'"' (diamonds in Fig. 8) than the mixing enthalpy of a
disordered alloy of the same composition, because of the
better accommodation of distinct bond lengths in the
pure compound environment (versus the variety of envi-
ronments statistically mandated in the disordered alloy).
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FIG. 9. In analogy with Fig. 7 (see caption), bond lengths
for the epitaxial random Ga„ln& „Palloy and ordered com-
pounds for substrate lattice parameters u, =a~ [5.45
(squares)], a = (co~+a,„p) /2 =5.65 k (asterisks), and

Qi p 5.868 A (solid circles).

ordered epitaxial compounds at the stoichiometric com-
positions for the same substrate lattice parameters. '

As in the bulk case of Fig. 7, the epitaxial disordered
alloy shows a bimodal bond length distribution. Ga—p
and In—P bond lengths for bulk ordered compounds are
monotonic across the sequence n =0-4; under epitaxial
conditions [at fixed a„but at c~'(a, ); see Eq. (33)] they
are also monotonic across this series (squares in Fig. 9
for fixed substrate), except for R(Ga—P) for a, =ao p
and for R(in—P) for a, =a i„p. This is yet another mani-
festation of the extreme selectivity between ordered
structures associated with epitaxial growth and a
re6ection of the difFering numbers of structural parame-
ters available to each (2,0, 1} structure (for Sxed a„one
for the binaries, three for famatinite, two for chalcopy-
rite). These fluctuations are not apparent in the bond
lengths for the alloy. The ideal bond Ga—P and In—P
bond lengths are shown as horizontal dashed lines. It is
apparent, as in the bulk case, that Ga—P and In—P
bond lengths in the disordered alloy lie farther from the
ideal values than the corresponding bond lengths in epit-
axial ordered Ga„In4 „P4compounds, except for Ga—P
bond lengths for a, =a&,p and for In—P bond lengths
for a, =a&„p.

D. Mixing eathalyies of eyitexkal disordered alloys

Finally, we show in Figs. 10(a) and 10(b) the epitaxial
mixing enthalpy 5H (x,a, ) of Eq. (38) measured with
respect to strained binary compounds (i.e., with ai —a, }.
For convenience in evaluating c~(x), shown in Fig.
10(c), we have used a harmonic approximation in
describing all cluster properties. Compared with the
bulk value b.H (x) of Fig. 8 (positive for all x's), we

0.25 0.50 0.75
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Epitaxial Alloy Tetragonal Distortion

Concentration x

0.75

InP

FIG. 10. Mixing enthalpy of epitaxial Ga& „In„Prandom

alloy with respect to strained disproportionation products [Eq.
(38)], (a) and (b), and epitaxy-induced alloy tetragonal distor-
tion, e~(a„x)/a„(c).Contour levels in (b) are in eV/eight
atoms, where the solid diagonal bne depicts the average (Ve-
gard) lattice parameter a (x) of the alloy.
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note two important features, one qualitative and one
quantitative.

(i) the epitaxial mixing enthalpy can be negative,
hence even the disordered alloy may become stable under
epitaxial conditions. %hen the substrate lattice parame-
ter a, is close to that of Gap, the epitaxial alloy is unsta-
ble [5H (x) & 0], qualitatively like its bulk alloy counter-
part. For a, near ax„p,however, the entire composition
range becomes stable. This rejects the fact that an epit-
axial system, unlike its bulk counterpart, becomes more
stable as the disproportionation products (AC+BC) are
more strained. If one alloy constituent (here GaP) is
significantly stifFer (compare the bulk moduli in Table II)
than the other (InP), selecting a substrate with a, very
different from its own natural a„c}leads to a substantial
strain of the disproportionation product AC, thus stabil-
izing the alloy against disproportionation.

(ii) Of two important quantitative features of Fig. 10,
we note first that, (a) values of 5H (a„x)in Fig. 10(b)
are much smaller than corresponding values of ~D(x)
in Fig. 8. As an example, we note that along the "Ve-
gard rule" line readily accessible experimentally [diago-
nal line in Fig. 10(b)] 5H is no larger than about 70
meV per eight atoms across the entire composition range
for epitaxial Ga„In, „P,while for the bulk alloy PHD
(lower curves in Fig. 8) it can be as high as 250 meV per
eight atoms across this range. This large reduction of
the mixing enthalpy implies that the miscibility gap tem-
perature of epitaxial alloys will be reduced relative to
that of bulk alloys. ' Secondly, (b) despite the stabiliza-
tion of the disordered alloy by epitaxial growth, ordered
compounds remain yet more stable, since the "ordering
energy"

5H~"~(u„X„)5H (~„X„)—
depends relatively weakly on a, and is strictly negative
for famatinite Ga31nP4 and GaIn3P4 and chalcopyrite
GazlnzP4. Thus provided 5H'"'(a, ) & 0, the ordered
phases will be more stable than the disordered.

This result implies a novel approach to material en-
gineering of pseudomorphic epitaxial ordered or disor-
dered systems, best illustrated by a particular example.
Suppose a 50%-50% alloy is grown epitaxially on a sub-
strate with a, . The solid diagonal line in Fig. 10(b) de-

picts the average (Vegard) alloy lattice parameter a (x).
The common practice in crystal growth is to select a
substrate whose a, best matches the alloy lattice parame-
ter aeq(x) at the chosen composition [a (0.5) in our
particular example]. Figure 10(c) shows that this choice
guarantees no average epitaxy-induced strain in the alloy
[c,q(a„x)/a,= 1]. Figure 10(b) shows, however, that
5HD(0. 5,a, } could be further lowered if a, were selected
to be larger than a, (0.5), provided the growth is still

pseudomorphic. In actuality, the lattice mismatch
~
a, —aeq(x)

~
sets up a strain energy which would in-

duce misfit dislocations beyond a critical mismatch; only
layers of a limited thickness Ii &h, [a, —a~(x)] could
then be grown dislocation-free. This suggests that, if
one were content with such thin layers, there would be a
definite thermodynamic advantage to select a large

mismatch
~
a, —a,q(x)

~

.
The preceding discussion of stability of alloys has uti-

lized the random probabilities P„'"'(x}[Eq. (18)]. More
refined calculations indicate that substantial nonran-
domness can exist. %e therefore wish to point out that
generation of misfit dislocations is not the sole mecha-
nism for relieving substrate-epilayer strain. The epitaxi-
al alloy could, alternatively, reduce this strain by
enhancing the occurrence probabilities P'"'(x, T) (in ex-
cess of those granted by random distributions) of the
fittest species n at a given x [i.e., those that, according to
Figs. 2 and 3, are least strained at this a (x)], and con-
versely, reducing P'"'(x, T} of the most strained species.
This mechanism of "natural selection of species" will
have to be included in more traditional models of mis6t
dislocations to obtain better approximations to the
critical layer thickness Ii, of disordered epitaxial alloys.

VIG. SUMMARY AND CONCLUSIONS

The Landau-Lifshitz theory of structural phase transi-
tions permits identification of likely candidates for or-
dered ternary structures in the phase diagrams of
A„B& „Cpseudobinary alloys. %e have presented in
detail a prescription for how disordered alloys may be
quantitatively described as a temperature- and
composition-dependent superposition of local tetrahedral
environments found within the ordered phases. The
structural properties of bulk and epitaxial disordered
Ga„In, „Palloys were determined variationally and the
enthalpy of formation and bond lengths for bulk and ep-
itaxial alloys were examined.

Our conclusions are as follows.
(i) The hallmark of ordered ternary adamantine

A„84 „C4compounds is the existence of cell-internal
structural parameters (which control the A —C and
B—C bond lengths and angles), in addition to the
usual, cell dimensions. Different A„84 „C4structures
are distinguished by the number and orientation of the
cell-internal degrees of freedom [Eqs. (1)-(4)]. The bulk
binary (AC and BC) zinc-blende constituents have only
one degree of freedom (the cubic lattice parameter).

(ii) Ordered compounds nevertheless cannot make all
bond angles exactly tetrahedral and all bond lengths
equal their binary values. ' This imperfect accommoda-
tions results in "frozen-in" microscopic strain energy.

(iii) Even under bulk conditions, A„B4 „C~ com-
pounds having the same stoichiometry but dift'erent crys-
tal structures (e.g., the famatinite-luzonite pair for
A3BC~, or the chalcopyrite-CuAu-I pair for ABC2)
have distinctly different microscopic strain energies, due
to the different number and orientations of cell-internal
degrees of freedom (bH'"' in Table II). Although the
strain energies within each pair are identical when the
structural parameters are unrelaxed, relaxation of these
degrees of freedom stabihzes, e.g., famatinite (with two
cell-internal degrees of freedom) over luzonite (a single
cell-internal degree of freedom), and chalcopyrite (two
orientationally independent degrees of freedom) over the
CuAu-I —like structure (two directionally correlated de-
grees of freedom).
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(iv) Under pseudomorphic epitaxial growth conditions,
one degree of freedom —the cell dimension parallel to
the substrate —is externally fixed. This results in "sub-

strate strain energy" [Eq. (27)]. Relative epitaxial sta-

bility of di8'erent structures is then determined by the
ability of the system to lower its strain through relaxa-
tion of the remaining degrees of freedom. %bile binary
AC or BC compounds can do so only by tetragonally de-
forming (Fig. 1), ternary systems can also utilize their
cell-internal degrees of freedom to lower their epitaxy-
induced strain energies (Figs. 2 and 3).

(v) Epitaxial pseudomorphic growth of an ordered
compound on a substrate with lattice parameter a, re-
sults in considerably (latter E(a, ) curves (Figs. 2 and 3)
relative to the E(a) curve for bulk growth (Figs. 4 and
5). This elastic softening (by a factor 8,6/8 where 8,(r

depends on the substrate orientation and 8 is the bulk
modulus) reflects the availability of a tetragonal degree
of freedom. Since diferent compounds have diferent
3 ff values, one can be epitaxially stabilized over another
even if both have the same equilibrium lattice constant
("epitaxial selectivity" ). Hence, rhombohedral SiGe
with its smaller 8,& grows epitaxially on Si in an ordered
fashion, whereas the zinc-blende phase of SiGe, with its
larger B,z, does not. '

(vi) While the epitaxial restriction a1 ——a, necessarily
raises the energies of AC, BC, and A„B4 „C&relative to
the equilibrium values, it frequently occurs, because of

(iv) and (v) above, that the epitaxial constraint destabi-
lizes the binary constituents Ac and BC even more than
that of A„84 „C4.Consequently, an ordered epitaxial
compound (Fig. 6) can be stable even if it was unstable in
bulk form, hence epitaxial stabilization. Epitaxial phases
with no bulk counterparts may hence exist. Further-
more, substrate strain performs a natural selection be-
tween ternary species, preferring the fittest (the one
whose cell-internal degrees of freedom make it most
adaptable to the substrate). Thus, e.g., chalcopyrite is
favored epitaxially over CuAu-I (Fig. 6).

(vii) The mixing enthalpy of bulk isovalent disordered
alloys A„B, ,C is expected generally to be positive (Fig.
8) even if formation enthalpies of the ordered
A„84 „C4compounds are slightly negative. 2 This is

so, for appreciable lattice mismatch between the constit-
uents, because the uariety of local atomic environments
necessitated by disorder does not accommodate the dis-
tinct bond lengths and bond angles as well as do the or-
dered phases, which have each a single type of local
bond configuration (Fig. 7). In contrast, the epitaxial
constraint stabilizes disordered alloys (thus depressing
miscibility gap temperatures) and may even make the
mixing enthalpy negative for some substrates.

(viii) Ordered compounds are nonetheless stabilized
more by the epitaxial constraint than are disordered al-
loys.
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