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Stability and electronic structure of ultrathin [001] (GaAs) (AlAs) superlattices
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The general issues of stability towards disproportionation or disordering of (AC) (BC) super-
lattices are addressed by simple model calculations based on detailed first-principles results for the
(GaAs), (AlAs), [001]-orientation alternate-monolayer superlattice. Valence-force-Seld (VFF) cal-
culations permit isolation of strain-related contributions to the superlattice formation energy and a
simple electrostatic energy model highlights the importance of charge transfer in stabihzing or
destabilizing such ordered phases. We predict that bulk {GaAs)&(A1As)& is in fact unstable with

respect to disproportionation into zinc-blende constituents because of insu5cient Ga-Al charge
transfer. Epitaxial growth on GaAs or AlAs simply makes this structure less unstable. A simple
semiquantitative model for [001] (AC},(BC), extracted from detailed self-consistent calculations
makes clear the competition between (destabilizing) strain effects and {potentially stabilizing)

charge transfer effects. %e extract trends for thicker superlattices with the aid of VFF calcula-
tions and generalizations of the electrostatic model. %e find that unstable thin superlattices be-

come (per bond) less unstable as the repeat period increases, while stable ones become less stable

per bond. Kinetic factors or surface effects must be invoked to explain the spontaneous oc-
currence of (GaAs) (AlAs) structures. The electronic structure of (GaAs)l(AlAs)l is analyzed in

detail and interpreted in terms of simple distortions and band folding of the virtual-crystal-

approximation band structure.

I. INTRQDUCTION

Recent perfection' of atomic-scale control over nu-

cleation and growth using modern crystal-growth tech-
niques such as molecular-beam and liquid-phase epitaxy
and chemical-vapor deposition has made possible labora-
tory synthesis of ultrathin-layer structures ( AC) (BC)„,
consisting of m layers of the binary compound AC alter-
nating with n of BC along a speci6ed growth direction.
Like ordinary bulk compounds, experimentally-
synthesized ultrathin superlattices of compound semi-
conductors, including the extreme case of alternate
monolayer structures, e.g., (GaAs), (A1As), (Refs. 2 and

3), (GaSb)~(AISb), (Ref. 4), (GaAs},(InAs}, (Refs. 5 and

6), (GaAs) i(InAs)i and (GaAs)i{lnAs) i (Ref. 7),
(GaAs), (GaSb), (Ref. 8), and (GaP)„(InP)„(Ref.9}, ex-

hibit a high degree of crystalline order, ' exceedingly
small room-temperature interlayer diffusion
coeScients, " maximum order at s particular growth
temperature [e.g., -840 K for' (GaAs), (A1As), ], and an
order-disorder transformation above a critical tempera-
ture [e.g., ' 820-880 K for (GaAs), (AlAs)i]. These ex-
perimental manifestations of order are highlighted by
the recent observation that (GaAs) i(A1As)

„

(InAs), (GaAs}i+( InAs)i(GaAs), ,
" (InAs), (GaAs)

„

(GaAs), (GaSb), (Ref. 8), and (InP)„(Gap)„(Ref.9) all
grow spontaneously as an ordered compound
A„B4 „C&(1(n &3) even under continuous growth
conditions, without artificially imposing s layer-by-layer
structure, and that (GaAs), (InAs), (Refs. 5 and 6),
(GaSb), (A1Sb), (Ref. 4), and (GaAs), (GaSb), (Ref. 8)
form ordered structures even though the analogous disor-

dered alloys Ga„In, „As, Ga„A1, „Sb, and

Ga„As, „Sb„areknown to have a miscibility gap. Al-
though superlattices sre routinely fabricated and used in
devices, it has generally not been known whether they
are thermodynamically stable, or represent instead meta-
stable states (made accessible, for instance, by a non-
equilibrium growth technique) separated by large activa-
tion barriers from lower-energy configurations.

Consider the issues of stability with respect to dispro
portionation into the constituents ( AC) (BC)„
~rn ( AC)+n (BC) and with respect to disordering
(&C) (BC)„~&„B,,C. It is convenient to define the
formation enthalpy of a perfectly ordered compound

B„C+„in structure a per 2(rn +n ) atoms as its en-

ergy E [A~B„C+„]relative to that of equivalent
amounts of its binary constituents at their respective
equilibria:

bH [A~B„C+„]=E[A~B„C+„]rnE[AC]—
nE[BC] . —

For a disordered (D) A„B,„Calloy of composition x
one similarly defines the mixing enthalpy

bH {x}=E[A„B,„C]xE[ AC] —(1 x—)E[BC] . —

The Gibbs free energy of formation of the perfectly or-
dered phase is then

bG [A B„C+„]=6,H [A B„C+„]—TES, (3)

where b,S is the difference in (electronic plus vibration-
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al) entropy between the ordered phase and the binary
constituents, awhile the disordered alloy has a free energy
of formation

bG (x, T)=AH (x)—TM (x), (4)

where ES (x} includes electronic and vibrational as well
as con6gurational' contributions. In what follows we
will examine the stability of perfectly ordered superlat-
tices, using the notation (rn, n) to denote the
(&C) (BC)„ordered (0) superlattice (rather than the
structure label a). The following are the possibilities at
T =0.

(I) Ordered superlattice stable: dH (rn, n) &0 (i.e.,
stable with respect to disproportionation) and hH (m, n)
&hH (x ) (stable with respect to disordering}, where
x =m/(m+n). There are two subcases: (a) b,H (x )

&0. This is the case for most compound-forming metal-
lurgical systems (e.g., ' Cu-Au), as well as for ternary
A„84 „C4 nonisovalent semiconductor compounds,
e.g., chalcopyrites. ' (b) EHD(x ) &0. All isovalent
pseudobinary semiconductor alloys A„B,,C have' '~ (x) &0 whether or not they order at lower tempera-
tures. However, ddED(x )&0 and bH (m, n) &0 has
been predicted for' ' SiC, ferromagnetic '

(CdTe), (MnTe)„epitaxial' SiGe (grown on Si), and pos-
siblyi for (GaP)i(InP), . In either case Ia or Ib the or-
dered phase is absolutely stable at low enough tempera-
ture; as the temperature rises, the alloy entropy b,S (x)
increases faster than' ES (x) and an order-disorder
transition can occur.

(II} Ordered superlattice metastable: 0 & b H (m, n )

& dH (x). The disordered alloy can develop a miscibili-
ty gap at finite temperature, and it is then possible that
the superlattice is more stable than the single- hase
disordered alloy ' (and is observable) b,G & EG, but
may be less stable than a two-phase (AC- and BC-rich)
disordered alloy (hence, it will disappear given enough
time or annealing). This is likely to be the case ' 3 for
systems showing superlattice ordering inside the misci-
bility gap, e.g., (GaAs) ~(GaSb) „and has been
predicted~4 ~4 for Ag-Au

(III) Ordered superlattice unstable: btl (m, n )
&b.H (x }. In this case the superlattice will not order
at any temperature, since even at T =0 the disordered
alloy has a smaller enthalpy. Since bS &AS because
of configurational entropy, ' in this case the alloy is fur-
ther stabilized as the temperature is increased. Srivasta-
va et al. have shown that this situation does not occur
for isovalent semiconductor alloys with an appreciable
lattice mismatch between constituents A C and BC
(where bH &0) since ordered phases accommodate the
associated strain better than do disordered phases, hence
hH g hH . For small 1attiee mismatch, however,
hH & hH p 0 is possible.

The exceedingly low atomic diffusion constants of cold
(i.e., room-temperature) semiconductors" suggest that
the mere existence of ordered superlattices can be con-
sistent with any of the above, since activation barriers to
phase transformations may be insurmountable on labora-
tory time scales.

The thermodynamic properties of perhaps the best-

studied superlattice, (GaAs) (A1As)„,exhibit a delicate

energy balance between strain destabilization and poten-
tial stabilization by charge transfer: it has a lattice
mismatch Aa—:a&]A, —a&,A,

——0.0009 A at its growth
temperature —800 K (hence, an ordered phase would
offer but a small reduction in strain energy), yet Ga and
Al difFer in electronegativity (hence, charge transfer
could stabilize it). This delicacy is highhghted by the
disparate views on the stability of the alternating mono-
layer (GaAs)i(A1As), superlattice. Kuan et a1., 3 who ob-
served the ordered superlattice in continuous growth,
characterized it as the equilibrium state of Ga„A1, „As,
as did Petroff, who suggested the layer-by-layer grown
superlattice represents the low-energy equilibrium phase.
On the other hand, Phillips suggested that this phase is
intrinsically unstable but is stabilized due to pinning by
oxygen impurities, and Ourmazd and Bean speculated
it was stable only due to the extrinsic effect of substrate
strain.

Theoretical estimates of the formation enthalpy
b,H (1, 1) of the monolayer superlattice [Eq. (1)] similar-
ly range (referring all energies to a primitive cell of four
atoms) between predicted stability (—1.5 meV, from
empirical tight binding; —20 meV, in a Hartree-Fock
cluster calculation after optimization of bond lengths ')
and instability (+ 15.5, +35, and +21.2 meV, 34 all
using self-consistent pseudopotentials; and -0 using
low-order perturbation theory about the uniform elec-
tron gas3 }.

%e have performed 6rst-principles pseudopotential
and all-electron total-energy calculations for
(GaAs), (A1As), in the [001] orientation and suggest this
system to belong to class III above (unstable at T =0
with respect to disordering, and unstable with respect to
disproportionation). We examine the dependence of
semiconductor superlattice stability on (i) the properties
of the AC and BC constituents, (ii) superlattice structur-
al parameters, (iii) the mode of growth (bulk or epitaxi-
al}, and (iv} superlattice thickness. We also present a
simple conceptual picture by which trends for systems
other than (GaAs},(A1As}, may be understood, and sim-

ple models which semiquantitatively describe the 6rst-
principles results. We also examine the changes in elec-
tronic band structure in going from the zinc-blende con-
stituents to the ordered (GaAs), (A1As), superlattice by
way of a fictitious Gao sA10 sAs virtual-crystal alloy. A
brief description of these results has appeared.

II. STRU&mURK AND FORMATION KNTHALPY
GF THE [001]GRIENTATIGN
{AC)&{BC~) SUPKRLATTICK

An underlying theme below will be that (AC)„(BC)„
superlattices for small n's share a great deal in common
with more fainiliar ordered ternary compounds. The
chalcopyritelike ABC2 structure, for example, is iden-
tical to an ( AC)z(BC)z superlattice in the (2,0,1) orienta-
tion. Similarly, in the (GaAs), (A1As), [001]-orientation
superlattice ' shown in Fig. 1(a) [space group P4m2)
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Al

ever, of distortions of bond angles from the ideal
tetrahedral value 109.5 . Conversely, one could achieve
ideal bond angles at the expense of bond-length distor-
tions. Unlike for zine-blende or CuPt binary structures,
it is impossible' in the lattice-mismatched (AC), (BC),
superlattice of Fig. 1(a) to simultaneously preserve
"ideal" d ~c and d~& bond lengths and perfect
tetrahedral bond angles. The equilibrium structure
hence represents a compromise with finite strain energy.

d2

cl g

As

B. Formation enthalyy and the role of strain energy

The formation enthalpy [or, at zero pressure, the ener-
gy, Eq. (1)] of bulk (AC},(BC), is simply its energy at
equilibrium relative to equivalent amounts of its zinc-
blende constituents at their respective equilibria, i.e.,
(per four atoms) with structural parameters explicitly
displayed,

l
CIQ

(2,2)

bH (1,1)=E[(AC)i(BC)(,a,q, u,q, r),qj

E[AC, a „—c ] E[BC,—use ], (7)

FIG. 1. {a) Two stacked unit cells of the [001]-orientation
(AC)[(8C)& superlattice; (b) structural parameters of simple
model (Sec. VIII A) for ( AC) (BC) illustrated for m =2.

the cation sublattice forms a compound identical to the
CuAu-I phase observed in metallurgy. ' ' In the context
of the phase diagram for an A, B& „Calloy, this is a
member of the face-centered-cubic (fcc) Landau-Lifshitz
structures and (together with chalcopyrite ' and'
L 1, CuPt structures) is thus a likely candidate for an or-
dered structure around x = —,'.

A tetragonal primitive cell and cell-internal atomic
displacement parameters are hallmarks of most observed
ternary adamantine phases. ' In addition to the cell
dimensions c and a, for which we define the tetragonal
ratio rl=—c/a, the P4m2 structure is characterized by
the anion displacement parameter u which measures, in
units of c, the A-C interplanar spacing along the c axis:

u =—,+(R„c—Rsc)/r) a2 2 2 2

Here R&& and Rzc are, respectively, the A-C and 8-C
bond lengths in this structure,

R„c——a[—,'+il u ]', Rsc ——a[—,'+rl (u ——,') j'~

For i) = 1 and u = —,
' we recover R „c=Rs~ = &3a /4, the

same relationship as in a cubic zinc-blende structure;
this bond length generally di8'ers from the ideal bond
lengths of the~ure binary compounds d„c——(&3/4)azc
and dsoc=(v 3/4)asc of the binary constituents with
equilibrium lattice constants a~c and azc. This failure
to accommodate ideal bond configurations results in mi-
croscopic strain. ' ' ' Obviously one can accommodate
any desired R„cand Rsc (for example, d„cand dsc) by
suitable choice of a and u [Eq. (6}]at the expense, how-

where all structural parameters adopt energy-minimizing
(eq) values. Most superlattices are grown as an epitaxial
layer on a thick substrate. Provided the thickness of the
layer does not exceed the critical thickness for nu-
cleation of misfit dislocations, ' this situation corre-
sponds to the constraint that superlattice dimensions
parallel to the substrate-epilayer interface, denoted here
with the subscript ~~, coincide with substrate cell dimen-
sions (i.e., the epitaxial layer is "registered" or "pseu-
domorphic"). On a substrate (s) of lattice constant a„
the epitaxial formation enthalpy becomes' '

5H ( 1, 1;a, ) = E[( AC) (iBC)~, a
i
——a, ]

E[A C, a
~(

———a, ] E[BC, a
)
——a, ]—,

where all structural parameters except a~~ adjust to mini-
mize the energy of each of the three phases. We may
define the "substrate stabilization" energy b,Ess as

5E ss(a, ) =5H (1,1;a, )—bH (1, 1) .

For AEss g0, the epitaxial constraint destabilizes the
epitaxially-grown superlattice less than it does its binary
constituents, so that the epitaxial system is more stable
(or less unstable) than its bulk-grown counterpart. We
will examine the stability of bulk and epitaxial superlat-
tices by calculating from first principles the quantities in
Eqs. (7)—(9), minimizing the energies with respect to the
structural parameters [a, u, r) j [Eqs. (5) and (6)].

III. METHOD QF CALCUI. ATION

A. Hamiltonian and convergence

We have calculated for the (GaAs}i(AlAs)i superlat-
tice b H {1, 1 ) of Eq. (7); 5H ( 1, 1;a, ) [Eq. {8}]was cal-
culated for a, =aG,A, and a, =aAIA, . We use the first-
prineiples pseudopotential total-energy method within
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TABLE I. Nonrelativistic (NR) and semirelativistic tSR)
all-electron atomic orbital eigenvalues s„c~(eU) and orbital ra-
dii (r„,},and (r„r} (a.u. ) for Ga, Al, and As using the local-
density approach with Ceperley-Alder (Ref. 43) exchange-
correlation potentials.

—8.93
—9.17

Ga
2.37
2.33

—2.77
—2.74

3.37
3.37

—7.81
—7.84

Al
2.55
2.53

—2.80
—2.79

3.44
3.44

As
1.97
1.93

—5.38
—5.35

2.55
2.55

the local-density-functional formalism and the Ceperley-
Alder exchange-correlation functional as parametrized
by Perdew and Zunger. The proximity (-15 eV) of
the Ga 4s and 3d levels on the scale of a typical III-V
compound valence-band width, and the frozen-core ap-
proximation underlying the pseudopotential description,
might raise questions about its reliability for systems
containing Ga. %'e have therefore, as a check on the
pseudopotential results, performed independent calcula-
tions for certain geometries in an aB-electron approach,
using the general-potential linear augmented-plane-wave
(LAPW) method. In this method all states are treated
self-consistently with no frozen-core approximation; the
Hedin-Lundqvist exchange-correlation functional was
used in the LAPW work.

In Table I we show nonrelativistic and semirelativistic
all-electron atomic orbital energies and radii (r„I) for
Al, Ga, and As. We note that semirelativistic calcula-
tions result in a considerable lowering of s orbital ener-
gies of Ga and As (together with a contraction, as mea-
sured by (r„,)). We have hence used semirelativistic
pseudopotentials (Fig. 2} in our calculation, generated by
the prescription by Kerker, which by construction pre-
cisely reproduce the all-electron atomic valence orbital
energies and radii. For these nonsingular pseudopoten-
tials we have used a plane-wave basis with a fixed
kinetic-energy cutoff of 16 Ry, corresponding to -310
basis functions for zinc-blende GaAs and A1As, and
-620 basis functions for (GaAs), (A1As), .

Given the delicate energetics of (GaAs), (A1As), , high
precision is required to reliably evaluate stability.
hH (1,1) is the difference between energies for ordered
phases of similar ground-state charge densities and elec-
tronic properties. Hence, if the superlattice and its
binary constituents are treated equivalently, we expect
systematic errors associated with the use of the local-
density approximation will largely cancel in b,Ho(1, 1),
leaving convergence errors as the principal source of er-
ror. Three distinct convergence criteria need to be con-
trolled: (i) convergence with respect to the basis set size,
(ii) adequate and consistent sampling of the Brillouin

2.0I,

As

1.0—

CO

-'t.0-

-2.0-

-3.0-

0.0 1.0 2.0 3.0
r (a.u. )

FIG. 2. Semirelativistic first-principles nonlocal pseudopo-
tentials used in plane-wave basis calculations for I =0, 1 for
Ga, Al, and As.

zone in evaluating charge densities and total energies,
and (iii) the degree of self-consistency in the electronic
potentials, We have examined convergence as follows.
(i) Basis functions: We use variationally equivalent basis
sets for the superlattice and its binary constituents by
selecting equal kinetic-energy cutouts in reciprocal space.
At the average theoretical lattice constant of GaAs and
A1As for the relaxed superlattice, the formation enthalpy
AHo(1, 1) changes [for the Brillouin-zone sampling de-
scribed in (ii) below] by only 1.8 meV per four atoms
(while the energy of the superlattice changes by -48
meV) as the kinetic-energy cutoff for the plane-wave

basis is changed from 16 to 18 Ry. (ii) Brillouin zone-
(BZ) sampling: For both pseudopotential and LAPW
calculations the two k points obtained by folding the two
conventional Chadi-Cohen fcc special k points into the
smaller superlattice Brillouin zone were used, guarantee-
ing total energies of identical precision for the superlat-
tice and its zinc-blende constituents. At a =5.52 A we
examined the variation in b,H (1,1} as the special k
points used for sampling were changed to a diferent set
equivalent to 12 points evenly spaced along the z direc-
tion [obtained via unfolding of one special k point in the
tetragonal Brillouin zone of a (6,6) superlattice].
hH (1,1) changed by only -0.6 meV per four atoms
although the superlattice energy changed by 112.5 meV.
(iii) Self consistenc-y: The energy uncertainty in b,H (1,1)
associated with deviation from perfect self-consistency
we estimate to be less than 0.5 meV per four atoms.

All of these convergence errors (S2 meV) are much
smaller than the physically relevant values of EH
(-10's of meV per four atoms; see below).
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8. Superlattiee structural parameters

Since the total energy of the superlattice is a function
of the three parameters a, i), and u [Eq. (7)], many self-
consistent 6rst-principles calculations ~ould be required
to precisely 6nd its equilibrium geometry. %'e have in-
stead chosen to use Keating's valence-force-field (VFF)
method to establish geometries to be studied self-
consistently within the local-density method. %hile the
ualue of 5H (1,1) obtained by first-principles calcula-
tions will be difFerent from the VFF value, ' the
structural parameters will be very similar. For semi-
conductors, the VFF method provides a natural bridge
between continuum elasticity theory and a microscopic
structural description, and permits identification of the
strain contributions to formation energies. It is expected
to be quite accurate since use of VFF predictions for
atomic coordinates will lead to errors in the total energy
(VFF or first principles) that are only of second order in
the (small) errors in the coordinates. For GaAs and
AlAs we have used the force constants tabulated by
Martin; St to experimental phonon spectra, they repro-
duce very well bulk elastic properties and, e.g., observed
bond lengths for dilute isovalent impurities in semicon-
ductor hosts. ' %e have, however, used the equilibrium
bond lengths R„cand Rsc predicted by our first-

principles calculations.

IV. FIRST-PRINCIPLES RESULTS FOR GaAs,
A1As, (GaAs), (A1As)i, AND Gao. sAlo. 5As

A. Zine-blende GaAs and AlAs

The calculated equilibrium properties of zinc-blende-
structure GaAs and AlAs are summarized in Table II
where they are compared with experiment and with
other first-principles calculations. ' ' We note (i)
the AlAs bond is stronger (has a larger cohesive energy),
though slightly longer, than the GaAs bond; (ii) elastic
properties, here the bulk modulus, are reasonably well
reproduced by the calculations; and (iii) the small lattice

0
mismatch between these materials (-0.01 A extrapolat-
ed to 0 K) is considerably exaggerated by the first-
principles calculations: ha =0.087 and —0.029 A for
the pseudopotential and LAP%' methods, respectively.

The strain energy "frozen into" the unrelaxed
(AC), (BC), superlattice scales as Ba(ha), where a is
the average lattice constant of AC and BC (close to the
equilibrium lattice parameter we 6nd for the superlat-
tice), ha is the lattice mismatch, and B is the average
bulk modulus of AC and BC. Hence pseudopotential
calculations for the unrelaxed (GaAs)i(A1As), structure
may overestimate strain efFects by a factor -100 and the
LAPW calculations by —10. However, the accommoda-
tion (via relaxation of i) and u} of the two distinct bond
lengths will be sufficient to remove -60-70% of this
spurious strain energy [see Appendix A and Sec. VIA,
Eq. (20)].

B. (GaAs), (AlAs), superlattice

We examine bH (1,1) under three distinct structural
situations, results for which are sho~n in Table III; all
energies are per four atoms i.e, , per ABC& formula unit.
First (model I), given the extremely small experimental
lattice mismatch ba (Table II), we neglect lattice distor-
tions (u+ —,', rial) that would result from a finite ha,
and take a,q to be the average of the calculated lattice
parameters (Table II), i.e., a, =a =(ao,~, +a~i~, }/2
=5.560 A. The pseudopotential method (first line of
Table III) yields hH (1,1)=+25.0 meV; the LAPW
method gives (at the theoretical average lattice constant
a=5.676 A} hH (1,1)=+12.5 meV. This difference
rejects almost entirely the larger lattice mismatch in the
pseudopotential (PS) results. (Scaling the strain contri-
bution DEvD (see Sec. VA) by [(baL~pw/
(ba )ps] =(0.029/ 0.087), and adding bEcE would find

for the unrelaxed superlattice bH = 12.3 meV, in excel-
lent agreement with the LAP%' result given the radically
difFerent computational approach and the difFerent
exchange-correlation potentials used. )

TABLE II. Calculated pseudopotential (PS), all-electron LAP%, and experimental (Expt. ) equilib-

rium lattice parameters (a, extrapo1ated to T =0 K), bulk moduli (8) and cohesive energies {E,) for

zinc-blende GaAs and AlAs, compared ~ith results of other calculations. NC; norm-conserving

pseudopotential; SR: semirelativistic; NR: nonrelativistic; CA: Ceperley-Alder exchange-correlation

(XC)' HL: Hedin-Lundquist XC; F: Signer XC; E denotes plane-wave basis kinetic-energy cutoff.

a (A)
GaAs

8 (GPa) E, {eV/atom) a (A)
A1As

8 {GPa) E, {eV/atom)

ps
LAP%'

b

d

Expt.

5.517
5.690
5.609
5.655
5.570
5.617
5.58
5.642'

78.0
76.2

72.0
72.5
81

4.14
3.88

3.7

331

5.604
5.661
5.725
5.670
5.641
5.670
5.61
5.652'

73.4
76.1

73.4
74.1

86

4.39
4.33

4.26

3.81"

'Reference 34 (NC, SR, CA XC, E—13 Ry).
Reference 32 {NC, SR).

'Reference 56 (NC, NR, HL XC, E =12 Ry).
Reference 57 (NC, NR, fV XC, E & 10 Ry).

'Reference 33 (NC, SR, C& XC, p —12 Ry).
Reference 53.
~Reference 54.
"Reference 55.
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TABLE III. Calculated pseudopotential bulk and epitaxial formation enthalpies of (GaAs) «(AlAs)«.

See text in Sec. IV 8.
hH (1,1) Conditions

II
IIIa
IIIb

5.560

5.560 1.000

1.015
0.985

0.246

0.246

0.246

+ 21.3

+ 14.44'

+ 15.92'

a, unrelaxed

a, relaxed bulk

a &,A„epitaxial
a A«A, , epi. taxial

'5H (a, ) for epitaxial cases (IIIa and IIIb).

The non-negligible lattice mismatch present in the
theoretical calculations for GaAs and A1As (Table II)
suggests that, in order to realistically appraise superlat-
tice stability, the different Ga—As and Al—As bond
lengths should be accommodated within the structural
description. In model II (second line of Table II) we
therefore evaluate bH (1,1) at the relaxed
(a,„,g,q, u,q) values (5.560, 1.000, 0.246), found using
valence-force-6eld results and the theoretical binary
bond lengths. The net pseudopotential formation enthal-

py (second line in Table III) bH (1,1}=+21.3 meV
difFers from the all-electron result hH (1, 1)= +9.5

meV, evaluated at (5.676, 1.000, 0.252). The larger
strain energy (due to the larger b,a) in the pseudopoten-
tial case accounts for about half of the discrepancy; the
remainder is probably attributable to the freezing of core
d electrons in the pseudopotential description. The -4-
meV relaxation (found using the pseudopotential
method) is relatively small.

In model III we evaluate, using the pseudo otential
method, the epitaxial formation enthalpy 5H (1, 1;a, )

[Eq. (8)] using (GaAs (IIIa) and AIAs (IIIb) as substrates
(last two lines of Table III). Using VFF predictions for
ri (for tetragonally-distorted GaAs and A1As} and for ri
and u [for (GaAs), (A1As), ], we find 5H (1,1;ao,~, )

=+14.4 meV while 5Ho(1, 1;a„,~, }=+15.9 meV.
AEss [Eq. (9)] is hence, respectively, —6.9 and —5.4
meV per four atoms for (GaAs), (A1As), on GaAs and
A1As as substrates. (These values of course reflect the
large theoretical ha; we find b,Ess S0. 1 meV per four
atoms using the experimental ha. ) Hence the conclusion
that this (bulk or epitaxial) superlattice is unstable with
respect to GaAs + A1As remains unmodi6ed, in con-
trast with the speculation of Ref. 29. %e next estimate
the relative stabilities of a disordered Gao 5Alo &As alloy
and the ordered (GaAs), (AlAs), superlattice.

C. The random alloy and order-disorder transformations

The virtual-crystal approximation (VCA) formed the
basis of much early theoretical work on substitutionally-
disordered A„8,„Cpseudobinary alloys. It replaces
the microscopically inhornogeneous distribution of A
and 8 atoms with a lattice of identical Sctitious atoms
whose properties (e.g. , pseudopotentials Uz, ) represent a

composition average of A and 8. Using the same nu-
merical parameters described in Sec. III A for the binary
compounds, we performed self-consistent calculations
for such a zinc-blende Gao 5Alo 5As alloy near its expect-

ed equilibrium lattice constant, (ao,~, +a~A, )/2. We
find b,H (x = —,

'
) =+428 meV per four atoms, a massive

destabilization of the disordered phase with respect to ei-
ther the phase-separated zinc-blende constituents or to
the ordered bulk [bH (1,1}]or epitaxial [5H (1,1;a, )]
superlattice. While in reasonable agreement with Oshi-

yama and Saito (who find b,H =352 meV per four
atoms), this energy poorly represents a disordered alloy
since the total energy depends in a nonlinear way on the
bare crystal potential (which is linearly averaged in a
VCA calculation). Real disordered alloys are better de
scribed as a superposition of the 6ve nearest-neighbor
environments available in a tetrahedrally-coordinated
compound (see Sec. VI and Appendix 8). A more physi-
cally reasonable 6rst-principles estimate of the formation
energy of the random alloy has been given by Kunc and
Batra, who find from a calculation for a partially-
disordered unit cell tliat 6H for Gap 5Alp gAs lies about
60 meV per four atoms above ddf of the ordered (1,1)
superlattice. Insofar as electronic and vibrational contri-
butions to the entropy are expected to be very similar'
for the disordered alloy, the ordered superlattice, and
the binary constituents, we retain only the
configurational contributions to bS for the disordered
alloy and set AS =0. Taking the configurational contri-
bution to the entropy b,S of the x =0.5 random alloy
to be 2kii ln2 per two cations' (four atoms), we estimate
the rnaximurn ordering temperature of the superlattice
as

T =[AH (x =0.5)—hH (1,1)]/(ES —bS

=229'C .

Conversely, using an upper limit for T of 550'C
gleaned from the experimental work of Holonyak et al. '

[who found Zn diffusion catalyzed disordering of
(GaAs} (AIAs)„at T~ 550'C] we infer [using our value
bH (1,1)=21 meV] bH (x =0.5) to lie about 98 meV
per four atoms above b,H (1,1). This yields
hH (x =0.5)=119 meV =1.37 kcal/1-cation mole, or
an "interaction parameter" Q=45H (x =

2
}=5.5

kcal/1-cation mole. This is considerably larger than ex-
perirnent ' and would predict a miscibility gap for this
system at low enough temperatures. However, this esti-
mate of 0 presents an upper hmit for two reasons: (i)
there is probably some local ordering (clustering) in the
disordered alloy, ' ' reducing its entropy d6', and (ii)
there is considerable disorder in the (experimental) or-
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dered superlattice, increasing its entropy bS . Each
effect reduces the entropy change AS —AS upon dis-
ordering, reducing the calculated Q.

We conclude from the pseudopotential calculations
described above that the energetic hierarchy for the
(GaAs), (A1As)i-random alloy system at T=0 K (for

0~5H (1,1;a, ) SbH (1,1) &bH (x = —,') . (10a)

i.e., this system belongs to class II described in the In-
troduction. However, using the description of Appendix
8 [Eq. (81)] and the LAPW results,
bE'"'(Ga„A1~ „As4)=+8.7, + 11.5, + 8.4 for
n =1,2, 3, respectively (in meV per four atoms, all evalu-
ated at the average experimental lattice constant), we
find 0=4bH (x = —,}=8.6 meV=0. 4 kcal per 1-cation

mole, in better agreement with experiment. Since the
superlattice (n =2) is of higher energy bE' ' than a mix-
ture bH (x= —,') including other n's, we predict the
more reasonable stability order

0 & bHD(x = —,
'

) & bH (1,1), (10b)

A. Conceptual decomposition of superlattice
formation enthalpy

Although hH for a given ordered phase determines
thermodynamic stability at T=O K, its value alone pro-
vides no insight into (i) how successfully the two distinct
AC and BC bond lengths are accommodated, (ii) the na-
ture of charge transfer attendant upon formation of the
superlattice, and (iii) trends across a class of ternary or-
dered compounds of the same structure. For this reason
we next describe a decomposition which permits isola-
tion of these distinct physical trends.

In this process we imagine formation of an ordered
phase to occur in three conceptual steps. ' ' ' First, (i)
compress (or dilate) the constituents AC and BC to the
co111mon lattice constarlt 0

q
of the ordered ternary

i.e., class III of the Introduction.
Note that the maximum ordering temperature

T & 550'C observed by Holonyak and co-workers' for
these superlattices is below the growth temperatures
(600-800'C) used by Kuan et al. , who have observed
partial ordering. This supports our conclusion that the
stable thermodynamic state of the superlattice at growth
temperatures is disordered, and hence the partial order-
ing observed may be metastable (we thank J. Van
Vechten for discussion of this point). Note further that
the positive value of bH suggests that a miscibility gap
(MG) may exist at finite temperatures TMo [where
d bG /dx of Eq. (4) changes sign]. 8ublik and
Leikin "estimated TM~ =12Q'C, whereas Balzarotti et
al. ' ' estimated TM& -90'C. These are well below con-
ventional growth temperatures. The fact that spontane-
ous ordering is observed above both TMo and To hence
suggests to us that this ordering is not mandated by bulk
thermodynamics.

V. ANALYSIS OF THE SUPKRLATTICK
FORMATION ENTHALPY

bEcE =E[(AC), (BC),,a, , rt = 1,u =—,
' ]

E[AC—,a,q] E[BC—,a,q] . (12)

This quantity measures the energy associated with
charge redistribution during formation of the (unrelaxed}
superlattice, refiecting "charge exchange" (CE). Each C
atom is now coordinated by two A and two 8 atoms at
equal distances. Since this need not be an equilibrium
geometry, in the final step (iii), the geometry is relaxed
to accommodate, to the extent possible via g and u, dis-
tinct AC and BC bond lengths and ideal tetrahedral
bonds. This structural relaxation (S) step permits a
reduction in energy

be ——E[(AC)i(BC)i, a, , ii, , u, ]
—E[(AC},(BC),,a, ,ri= l, u = —,']

—:AEsR+EE„,. (13)

The energy bEs itself includes (i) strain relief (SR) bEsR
upon relaxing g and u without charge redistribution,
and (ii) a "residual" chemical energy bE„,due to what-
ever additional charge rearrangements are facilitated by
changing atomic coordinates during relaxation. The first
two lines of Eq. (13) are directly computable by first-
principles calculations; the decomposition in the last line
represents derived terms which provide physical insight
and chemical trends. Within the valence-force-Seld
description we use to evaluate bEsR for (AC),(BC)„
A—C and 8—C bond parameters are "frozen" at their
binary values. Labeling by FE such a "frozen-electron"
VFF calculation and using the definition of bEs [Eq.
(13)] in terms of first-principles [self-consistent (SC)] cal-
culations, we may write

bEsa =EFE[a q ii q
u q] EFE[a q

il= 1

arid

~res {Esc[aeq& leq&ueq] EFE[aeq& leq&ueq]I

—IEsc[a„,i) = l, u =-,']
EFE[a, , rt= l, u =——,']I .

(14a)

(14b)

Each term in curly brackets in Eq. (14b), since it
represents an electronic relaxation energy for fixed

phase, generally intermediate between those, a„cand
abc, of AC and BC. This step ("volume deformation, "
VD} requires an energy inuestment

bEvD ——IE[AC,a, ] E[—AC, abc)]
+ IE[BC,a,q] E—[BC,attc]I .

Since deformation of equilibrium structures is involved,
bEvD & 0. Second, (ii) assemble the prepared
(compressed or dilated) AC and BC units to form the or-
dered structure without relaxing the structural parame-
ters (i.e., retain u = —,

' and ri= 1). This step can be imag-
ined as the average of the energy change in converting
one A atom into B in a ( AC), (AC), unit cell and one B
into A in a (BC),(BC}i unit cell, and entails an energy
change



STABILITY AND ELECTRONIC STRUCTURE OF ULTRATHIN. . . 1349

Energies

We have calculated the terms of Eq. (15) as follows:
bE„&, bECE, and EEs were each obtained directly from
the defining equations [Eqs. (11)-(13)] using first-
principles pseudopotential calculations with a G,A,
=5.517 A, a~i~, ——5.604 A (Table II), and a, =(ao,A,.

+a&i~, )/2=5. 5604 A. bEs is found at the equihbrium
geometry a, =5.5605 A, ri=1.000, and u =0.246 (pre-
dicted by VFF calculations with first-principles GaAs
and A1As bond lengths). We find per four atoms

AEvo ——+ 14.25 meV,

EcE =+10.71 meV (16)

hEg ———3.62 meV .

(The LAPW value for hE&E is 11.3 meV. ) The VFF cal-
culations also predict bE&„,the strain energy relieved
upon relaxation from (ri= 1, u =0.25) to (ri,q, u,q)
without charge transfer (since binary elastic constants
are used in VFF); b,E„,is by definition [Eq. (13)]
5E~ —b Esa. We find

AEsR = —7.80 meV

EEres +4e 1 8 meV

These results show the following.
(i) The superlattice is unstable relative to its constitu-

ents [b,H (1,1)&0] since the positive net strain energy
b.EMs ——+6.45 meV is not compensated by a negative
chemical energy: AE,h,

——+14.89 meV. In contrast,
compound-forming semiconductor alloys [e.g. ,

' Si
+C~SiC, or ' ferromagnetic CdTe+MnTe~
(CdTe), (MnTe), ] show a negative hE,„,larger in mag-
nitude than AEMs.

(ii) b,EMs is likely overestimated within the local-
density calculations presented here: The relatively large
theoretical lattice mismatch Aa between GaAs and A1As
means that excess strain is "frozen into" (GaAs), (A1As)

„

GaAs, and AlAs at a, . Simulating the very small ex-
perimental b a by setting AEMs -0, we still find
bH (1,1)=DE,h, ——+14.89 meV ~0. We note that
this value is very close to that of Bylander and Klein-

geometry, must be negative, but b,E„,may be negative
or positive. ' Collecting all terms in Eqs. (11)—(13), we

may write

bH (1 1)=(bEvD+bEsR )+(bEcE+bE. s ):—b EMs+ b&.h, (15)
where the terms in parentheses correspond to those
identified on the right-hand side. The largely indepen-
dent effects of the lattice-Inismatch between AC and BC
compounds [microscopic strain (MS)] and
electronegativity-related charge transfer [chemical
(chem)] have now been isolated in, respectively, the
terms b,EMs and ~&,h, above. Simple approximate ex-
pressions for the terms in Eq. (15) are given in Sec. VI.

8. Decomposed energies and charge densities
within the conceptual model

man, who found ha =0 but bH (1,1)=15.5 meV.
(iii) The chemical contributions b,EcE —10.71 meV

and bE„„=4.18 meV are of the same sign and add,
whereas the microscopic strain contributions b,Evo and

EEsR largely cance/. It is hence obvious that the insta-
bility of (GaAs), (AlAs) i is chemical in origin.
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FIG. 3. Valence-charge-density redistribution along bonds

associated with physical decomposition of superlattice forma-

tion into (a) volume deformation (VD), (b) charge exchange

(CE), and (c) structural relaxation (S).

2. Charge densities

To understand the microscopic origins of this instabil-
ity we examine the valence charge redistributions associ-
ated with each step described above, defined in analogy
with Eqs. (11)-(13) above. In Fig. 3(a) we show the
charge redistribution bpvD along bonds for GaAs (in the
upper half frame) and for A1As (in the lower frame). Di-
lation (compression) of GaAs (A1As) to a, =a has essen-
tially equal and opposite eiTects on the two constituents.
As the Ga—As length increases, overlap between atoms
is reduced, inducing a How of valence charge from the
bond back onto the atoms; for AlAs the bond length is
reduced, permitting charge to Aow onto the Al—As
bond. This distortion of equilibrium structures costs

Evo ——+ 14.25 meV.
In Fig. 3(b) we show bpcE (solid line) as the difFerence

between densities along Ga—As and Al—As bonds in
the unrelaxed superlattice and along the corresponding
bonds in the zinc-blende materials, all at the same lattice
constant. (The interfacial As atom experiences a
diferent environment in the two zinc-blende phases,
hence the discontinuity in hpcE there. ) Charge is depos-
ited on the Al—As bond at the expense of the Ga—As
bond during this step, which is associated with a large
positive change in energy (bE&E ——+ 10.71 meV).

Figure 3(b) shows (dashed line) Aps, the charge redis-
tribution upon relaxing the superlattice. We note that,
as in (GaP)i(InP)i, relaxation reuerses the direction of
charge transfer with respect to the CE step given above.
Failure to relax the superlattice in the presence of a sub-
stantial ba could therefore lead to incorrect conclusions
about the direction of net charge transfer in the superlat-
tice. Similarly, we conclude that, when performing
first-principles calculations for a superlattice, it is impor-
tant to know the theoretical equilibrium bond lengths of
the constituents (and not to simply take superlattice
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FIG. 4. Net charge density redistribution (with respect to

equilibrium binary compounds) along bonds after volume de-
formation (VD, dotted line), charge exchange (VD + CE,
dashed line), and net (VD + CE+- S, solid line).

Batra et al., which found an opposite charge transfer,
with Pickett et al. using empirical pseudopotentials
[who found charge transfer for the (110) GaAs jA1As in-
terface to be negligible], and with Caruthers and Lin-
Chung, who found no charge transfer for (001)
(GaAs) i(A1As) i using the empirical pseudopotential
method.

Pietsch recently used a simple model of overlapping
two-electron molecules to simulate cubic GaAs and
A1As and Ga2A12As clusters in a chalcopyrite structure
(with a nearest-neighbor environment identical to that in
the CuAu-I-like structure used in our calculations and
observed by Kuan et al. ). He then extracted efFective
site and bond charges including electronegativity- and
strain-induced charge transfer. He found, as we do,
charge transfer from the AlAs to the GaAs bond; his re-
sults suggest that reduction of bonding charge is mostly
associated with structural effects, while cation charges
are mostly determined by electronegativity difkrences.

C. Fourier decomposition of superlattice charge density

bond lengths to be the experimental values ) in order to
determine dehcate charge transfer effects.

In Fig. 4 we show charge density redistributions mea-
sured with respect to the equilibrium cubic compounds
prevailing after each of the steps given above: hpvD
[dotted line, repeated for completeness from Fig. 3(a)],
hpvD+ bpcE (dashed line), and the net hp =dyvD
+ b pcE+ bps. Comparing the charge density of
(GaAs)i(A1As), to those of GaAs and A1As where all
three systems are kept at the same lattice constant (i.e.,
bpvo+bpcE) we find excess density along the superlat-
tice Al—As bond and a deficit of charge along the super-
lattice Ga—As bond. (However, au&ay from the bond
direction, an opposite trend exists. ) This agrees with
predictions of other calculations which maintain a fixed
lattice, e.g., Massidda et al. (who used the experimental
lattice constants). The electrostatic origin of the driving
force for relaxation of the anion displacement parameter
u is apparent from this charge rearrangement
bpvo+hpcE. The net de6cit of electronic charge along
the unrelaxed Ga—As bond (and corresponding excess
along the Al—As bond) causes a distortion of the As
anion toward Ga and away from Al, permitting each
bond length to approach its equilibrium value. The net
result of superlattice formation (solid line) is an accumu-
lation of charge on the Ga—As bond and a depletion on
the Al—As bond by roughly the same magnitude. This
transfer of charge from a more stable to a less stable
bond (see cohesive energies in Table II) is the proximate
cause for the instability of (GaAs), (A1As), . This charge
Aow is in accord with the more attractive l =0 pseudo-
potential of Ga with respect to Al (Fig. 2) and the more
negative s orbital energy of Ga relative to Al (Table I).
It also agrees with a very recent measurement of the
Al nuclear magnetic resonance chemical shift in
Al Ga, As disordered alloys, which indicates charge
transfer from the Al site to Ga as Ga content is in-
creased. Our results for the fully relaxed charge density
rearrangement hp difTer from the recent prediction of

The proximity to l of the equilibrium tetragonal dis-
tortion parameter ri for (GaAs) i(AlAs), (Table III)
makes possible an interesting decomposition of the
Fourier components of ground-state properties (e.g., the

{gl
.2' ~-—~—--. 2

(aN

FIG. 5. Decomposition of ground-state valence charge den-
sity at a =5.560 A for unrelaxed [UR, q= 1, u = 4]
(GaAs)&(AlAs)& into (a) zinc-blende-like (ZB) and (b) strictly su-
perlattice (non-ZB) contributions.
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valence charge density or the crystal pseudopotential).
For g= 1 the reciprocal lattice consists of vectors Fizz
present for an fcc real-space lattice (e.g., GaAs or A1As),
responsible for the dominant features of the x-ray
di8raction pattern, and the remainder, denoted G„,„za,
unique to the superlattice geometry and giving rise to
the diff'raction signature ("satellite spots") of the super-
lattice. In Fig. 5 this decomposition is shown pictorially
at a =a for the unrelaxed (UR) lattice (i) =1 and u = —,

'
)

in a [011]plane through the interface. As expected,
pza [Fig. 5(a)] does not distinguish between Ga and
Al —it is virtually indistinguishable from the self-
consistent charge density for the hypothetical
Gao &Alo 5As virtual-crystal zinc-blende structure at the
same lattice constant. However, p„","„za[Fig. 5(b)] exhib-
its perfect antisymmetry with respect to interchange of
Ga and Al. The non-ZB potential is responsible for de-
positing charge on the Ga site at the expense of the Al
site and for augmenting the Al—As bond charge at the
expense of the Ga—As bond charge. In Fig. 6(a) we
show pzz and p„",„zaplotted along bonds for relaxed
(RI.) (GaAs), (A1As), using a common scale, emphasizing
the small magnitude (-4%) of the non-ZB components.
Relaxation [Fig. 6(b), solid line] accentuates the size of
p„,„za[with respect to the unrelaxed p„,„.zii, Fig. 6(b),
dashed line] as the Ga—As and Al—As bonds are made
more unlike, while leaving the Ga and Al sites un-
changed. This also agrees with analysis of Pietsch6 de-
scribed above.

VI. SIMPLE MODKI. FOR FORMATION
ENTHALPY GF [001] ( AC}i(8C}i

In this section we develop simple analytic expressions
for the dominant contributions AEvo, EEcE, and hE&&
to the net formation enthalpy bH (1,1) of the perfectly
ordered ( AC) i(BC), [001]-orientation superlattice.
These expressions can be used to assess trends in stabili-
ty energies.

A. Elastic energies

I
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Bulk
AIAs40-

N Q 1.00
N

O,SI

I 30$
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Using observations based on valence-force-f]Ield calcu-
lations, useful closed-form approximations may be de-
rived for the elastic contributions b,EvD and (5Es„[Eqs.
(11)and (14a}]to the superlattice formation enthalpy. In
the harmonic regime all strain energies vary quadratical-
ly about their equilibrium (eq) values. For a pure cubic
binary phase with two atoms per primitive cell (of
volume V=a /4 for a fcc Bravais lattice) we find

E(o)=E(a,q)+ ,'(d E/d—V ), (V —V,q)

=E(a,q )+—98a,q(a —(2,„)
per primitive cell, where 8 is the cubic material bulk
modulus. The zinc-blende structure is perfectly strain-
free at the equilibrium lattice parameter, hence for it
E(a,q)=0. Grown epitaxially, the cubic material tetrag-
onally distorts so that for every value of a

~~

——a, (Sec. II)
the tetragonal dimension e minimizes the elastic energy
density. Under these conditions one finds (Appendix A
and Ref. 40) the same form as Eq. (18) but with 8 re-
placed by 8 ', where for the [001] orientation
8'/8 =—', (1—C,2/C» ). Typically for III-V zinc-blende
semiconductors 8/8' =2.5-3. Using Eq. (18), we find
that 8 EvD of Eq. (11)fo«„=a=-,'(~ „c+uiic} is

b,EvD = )9, Ba(ha )—
where 8 is the average cubic bulk modulus and

FIG. 6. (a) Zinc-blende-like (ZB) and non-ZB ground-state
valence charge densities along bonds in relaxed (RL)
(GaAs}&(AlAs)&, (b) non-ZB component for relaxed (RL, solid
line) and unrelaxed (UR, dashed line) (GaAs), (AlAs), at a =a.

FIG. 7. Strain energies within VFF description for cubic
GaAs and A1As and unrelaxed (GaAs)&(AlAs)& (UR, g&1„
u& —„'),dashed lines, and epitaxial (epi) GaAs and A1As and

fully relaxed (RL, qeq~ ggeq) (GaAs) l(A1As) 1 ~
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bEMs - ,', aB'(b—a)

8"=—', 8(1—C,2/Cll) .

(21a)

(21b)

8. Chemical energies:
Ordered superlattice versus disordered alloy

We model AEcE for both the superlattice and the
disordered alloy using a simple electrostatic energy ap-
proach including both interatomic (Madelung energy,
"Madelung") and intra-atomic (on-site "OS") Coulomb
effects. We will take i) = 1 and u = —,

' (hence,
R „z——Rsc ——R) for convenience in describing the super-
lattice, and will assume A and 8 atoms to have nonover-
lapping spherical charge distributions with charges Q„
and Q~ (and charge difference bQ=Q„—Qg ), respec-
tively, in the (AC}i(BC)l [001]-orientation superlattice,
in general different from their charges q„and qg (and
difFerence bq =q„—qg) in the isolated zinc-blende com-
pounds AC and BC. We assume the anions C have the
charge needed to neutralize their A and 8 nearest neigh-
bors and, for conservation of cation charge,
Q„+Qg——q„+qs. [Indeed, we find the net LAPW
charge on the anion sublattice to be approximately con-
stant in forming ( AC) l(BC), from AC and BC.] Any in-

teratomic charge transfer must occur at the expense of
depletion or addition of on-site atomic charge. Follow-
ing van Schilfgaarde et al. , we take the dependence of
the electrostatic energy of atom type o; on its net charge
qto be

E (q)=E (0)—s q+ —,'U q + .

where E (0) is the total energy of the neutral atom, s is
the single-particle eigenvalue of the highest occupied
valence orbital, and U is the Mott-Hubbard Coulomb

Aa =age —age.
To estimate AEsR we note that within our VFF strain

only calculations

E [( A C),(BC),,a„ri,q, u, q ] E—[ AC, a, ] E—[BC,a, ]=0

for all a, and

E[(AC),(BC)„a,ii= 1,u =—,']=E[AC,a]+E[BC,a]

for all a [see Fig. 7, Appendix A, and Fig. 3 in Ref.
40(b)]. We can thus express the strain energy for the
(unrelaxed or relaxed) ternary as a sum of those for the
(cubic or tetragonally-distorted) binaries (characterized
respectively by 8 and 8') at a, =a. Since the strain re-
lief energy bEsR is given by Eq. (14a} and a, =a, we
6nd

bEs„=—,', a(ba ) (8*—8 )

with 8' the average of the binary elastic moduli 8' and
8 the average binary bulk modulus. Since we expect
8 /8 ' to be -2.5-3, b,EsR is negative; relaxation
reduces the strain in the superlattice by 60-70%%ui. Note
that EEMs ——EEvD+AEsR does not depend on 8 and is
positive de6nite:

and the excess on-site Coulomb energy (for convenience
taking b,Q/bq =1; see Appendix 8) is (per four atoms)

bE (1,1)—=Eos[( AC)l(BC)i] Eos[AC] —Eos[BC]
= —Uc(bQ) /4 . (24)

In Eq. (23), a =1.63S055 and a""=1.594367 are
Madelung constants for the zinc-blende structure and
the cation sublattice in ABCz, respectively. It is obvious
that in order for bEM,d„„„(1,1) to be negative, forma-
tion of the superlattice must amplify g the relative cation
charge disparity b, Q /bq by a factor of at least
(Sa /&6a"")'~ =1.S3. In contrast, bEos(1, 1)
favors compound formation (i.e., is negative) for all
b Q&0.

Equations exactly analogous to Eqs. (23) and (24) may
be written for the random alloy (see Appendix 8}. We
and"

bEM d l (X)=3bEM d l (1 1)X(1 X)

for any value of the ratio b,Q/bq, and

bEos(x) =3 bEos(1, 1)x(1—x)

for b,Q/b. q =1. This shows that for x =0.5,

~EcE =-' ~EcE

and for the case b,Q =b.q, per four atoms,

(25)

(27a)

bE = —'(bQ) ' —U /4CE —4 R
(27b)

The relatiUe excess Madelung energies of the ordered
superlattice and the disordered alloy of the same compo-
sition obviously depend on the ratio b,Q/b, q: if
b,EM,d„„„g(1,1}&0, the ordered phase A„84 „C4 is
more stable than the disordered phase for any
x =x„=n/4. If b,EM,d„„„(1,1)~0 [as we find below
for (GaAs), (AlAs), ], the Madelung formation energy of
the random alloy lies belo~ than for the ordered phase.
In contrast, the on-site Coulomb term stabilizes the or-
dered phase over the disordered phase for all
b,Q =bq&0.

van Schilfgaarde et al. calculated AEM, d,l„„g,in-
correctly omitting a factor of —,

' in one of their Madelung

energy. Combining interatomic and intra-atomic
Coulomb effects, we may write for either the ordered (0}
superlattice or the disordered (D) alloy

~ECE —~EMadelung +~Eos

~here the excess Madelung energy of the ordered struc-
ture is found to be (per four atoms)

bE M.d.l-g (1 1}=—EM.d.l..g [(~C}l(BC}i]

EMadelung [~C] EMadelung [BC]

=[(bq) /R]

x [a l2 —(&6/16)a""(bQ/bq ) ],

(23)
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terms" for the disordered phase (see Appendix B). They
erroneously predicted a substantial stabiIization of
4EM~,~„„+4E~sover AEMd, &„„&+AEos.Using their
values for GaAs/AIAs, i.e., Uc =9.49 eV,
EQ /2 =0.02e, and the experimental average
GaAs/AlAs bond length [but with the corrected expres-
sion, or Eq. (25)] shows the random alloy to have an
energy comparable (within a fraction of a meV} to that
of the ordered superlattice, including both Madelung
and an-site terms. Since the formation energy for either
phase is positive, each is unstable with respect to decom-
position into the zinc-blende constituents. This simple
estimate shows that, due to the effective cancellation be-
tween on-site and long-range Coulomb efFects, the elec-
trostatic energy does not distinguish the ordered super-
lattice from the disordered alloy (in contrast with the
conclusion of Ref. 69) unless strong charge transfer
(EQ —hq) occurs. The factor which stabilizes the or-
dered superlattice relative to the disordered alloy in lat-
tice mismatched systems is the strain energy, since2

&EMs»EMs «r
I
«

I
».

—0.25Uc(EQ/e ) (29)

in eV per four atoms, where a =(a„c+asc)/2 and
~a=aac —awe are cn A, the average binary elastic
modulus S' is in GPa [Eq. (21b)], and Uc is the anion
(atom C) Coulomb integral in eV. Here we have taken,
in accord with the results of Sec. IV, the equilibrium lat-
tice constant of the superlattice to be a, the average of
those of its zinc-blende constituents.

%'e can evaluate the elastic energy terms of Eqs.
(19)-(21) by taking 8 '(GaAs) =28.09 GPa and
8'(AIAs)=29. 89 GPa from our VFF results [or, using
Eq. (21b), 8'(GaAs)=28. 1 GPa and 8*(AIAs)=29. 5

GPa], and a =5.560 A from Table II. Using the
theoretical (exaggerated) « =0.087 A from Table II, we
find per four atoms

AEvD ——+ 12. 1 meV,

AEsR ———7.8 meV,

AEMs ——+4.3 meV .

(30)

The similarity of these results to those calculated from
the Iirst-principles total energies [Eqs. (16)—(17)] sup-
ports the model we use. Clearly, using the experimental

C. Analytic exyreslion for ( AC) &(BC)&
formation enthalyy

Using the results of the previous two sections, we may
now estimate the total formation enthalpy of [001]-
orientation (AC), (BC), from simple model calculations,
and compare them with the results of first-principles cal-
culations. Neglecting the relatively small term b,E„„we
may write the components of b,H (1,1)=AEMs+LEcE,
using Eqs. (21), (23), and (24} as

hE Ms =bEvoD+ EEs„-0003 51. 18'a (4a ), (28)

&Eca =EEM,d,)„„s(1,1)+b Eos(1, 1)

=27.24(hq/e)i[1 —0. 29 8(bQ /hq) ]/a

Aa &0.01 A one finds AEMs -0.
bEkadei&&s can be calculated using 8 =(&3/4)a

=2.45 A and bq=+0. 07e, bQ=+0. 06e (obtained by
integrating the charges within the muon-tin spheres in
the I.APW calculation). bEos is estimated using the
atomic value UA, =9.49 eV and the estimated aver-

age b,Q = b,q =0.04e. This yields

EEM d ~
21 meV

AEo& ——3.8 meV,

EcE =1 2 eV

(31)

compared with b,EcE -10.71 ineV [Eq. (16)] obtained by
direct pseudopotential total-energy calculations or with

AECE ——11.3 rneV obtained as the chemical energy in the
LAP% calculation.

Equations (28) and (29) explicitly display the competi-
tion between destabilizing lattice mismatch eFects and
potentially stabilizing charge-transfer effects (provided
b,Q /b, q is suacient). The expectation that charge
transfer will be correlated with electronegativity
diFerences bg =X~ —g~ suggests that superlattices
(AC), (BC)& with large bg are more likely to be stabi-
lized by LE,b, . However, orbital radii analyses suggest
that a large hX is often associated with substantial ha.
Hence rigorous predictions on stability trends appear
diScult to make, since charge transfer and strain effects
have competing yet correlated efFects,

VII. KLKCTRGNIC STRUCTURE
OF (GaAs) i(AlAs),

The electronic structure of an ordered compound may
be radically diFerent from that of its constituents, lead-
ing to possible direct-gap ordered compounds derived
from indirect-gap components. 73 74 Considerable
theoretical attention has recently been given to the
electronic band structure of (GaAs) (A1As) . For thick
superlattices, Kronig-Penney-type models are quite satis-
factory in interpreting experimentally-observed electron-
ic properties of these systems. ' Such models are based
on the assumption of a transition between material prop-
erties characteristic of AC and those of BC which is
abrupt on the scale of the quantum-well-layer thickness.
For small (m, m), however, the scale of variation of the
electronic potential is an appreciable fraction of the lay-
er thickness, and microscopic calculations are required
to understand electronic properties. %e will examine
how the electronic structure of (GaAs), (A1As), is related
to those of GaAs and AIAs in three steps: (i) form a
Gao 5AIO5As zinc-blende (fcc) random alloy and model
its properties by the VCA; (ii) fold the VCA bands into
the smaller Brillouin zone appropriate to the doubled
unit cell of the ordered (GaAs), (AIAs), superlattice, and
(iii) switch on the ordering potential V„d
=—V[(GaAs) &(A1As) &]

—VvcA which carries the VCA al-

loy into the ordered superlattice.
(i) VCR step. In comparing the electronic structure of

the equilibrium VCA Gao 5A10 5As alloy with those of
their constituents at their equilibria, there are two
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FIG. 8. Conduction-band eigenvalues at I, L, and X points
of the face-centered-cubic Brillouin zone at a =5.56 A for
GaAs, A1As, 6ctitious Ga05Alo 5As VCA alloy, and unrelaxed
{GaAs)&(A1As), .

effects: (a} deformation potential-induced shifts in the
constituents as GaAs (AlAs) is dilated (compressed) to a
and (b) averaging the states of AC and BC both at Ã (the
dominant contribution). We show in Fig. 8 conduction
bands for GaAs and A1As [Fig. 8(a)], and the VCA
Gao 5A10 sAs alloy [Fig. 8(b)] at high-symmetry points of
the fcc Brillouin zone, all calculated self-consistently at
the average theoretical lattice constant, a =5.56 A. We
find that the VCA conduction bands at I, X, and L all
fall below the average of those GaAs and A1As (at a or
their respective equilibrium a}, and that the VCA com-
pound is an indirect-gap material at X&„bothobserva-
tions in qualitative agreement with experimental
data. The VCA optical bowing coeScient b for a
band eigenvalue e of Ga„A1, „Asis defined by

evc~=xe„c+(1—x)eric —bx(1 —x) .

These are given in Table IV, together with the experi-
mental values, ' and other calculations. Clearly,
the VCA underestimates the bowing.

(ii) Band-folding step. Each point in the smaller
tetragonal Brillouin zone (BZ) of the superlattice corre-
sponds ' ' to two distinct fcc BZ points; we label su-
perlattice points with an overbar. The folding relations
are I j,~I )„X),~I ~+M5„X3,+ F), +M), +M2„
and L„~A„+84,. Folding hence produces extra de-

generacies at M and R without shifting the band ener-
gies relative to the VCA. It also produces two new
pseudodirect states I 4(X„)and I', (Xs, ), where we indi-
cate in parentheses the fcc states which are folded in.

(iii) Ordering step. Finally, the ordering potential V„d
shown in Fig. 9(a) will (a) lift the degeneracy between
states whose spatial distribution is along or perpendicu-
lar to the superlattice stacking direction, and (b) split
states with cation s character into a lower GaAs-like and
an upper A1As-like state, reflecting the more attractive
Ga 1=0 pseudopotential (see Fig. 2}. States with no s
character about the cation sites are only weakly split by
V„dsince the ( = I pseudopotential of Al is only slightly
more attractive than that of Ga. V„d will lead to a
repulsion between states of the same symmetry, e.g.,
I „(X3,) and I"„(I„),and is also responsible for the
redistribution of valence charge density [Fig. 9(b)] with
respect to the VCA that gives rise to superlattice spots
in the x-ray diffraction pattern.

Figure 8(c) shows the way band eigenvalues of the
tetragonal BZ for unrelaxed (GaAs)i(A1As)i evolve from
those of GaAs, A1As, and the VCA Gao 5Alo 5As alloy
all at a. [The superlattice eigenvalues shown change by
less than 0.01 eV upon relaxation of the structural pa-
rameters g and u; the only exception —labeled I 4

—is
the quantum confined state described below. ] The
lowest conduction band at the X point of the VCA alloy,
X„,derives from the corresponding GaAs and A1As X&,
points. Having chosen the origin at the anion site, X&,
has sd character on the anion and pd character on the
cation, while the reverse is true for X3, . Because of the
great similarity of the I = 1 pseudopotentials for Ga and
Al (Fig. 2), the X„states for GaAs, A1As, and the VCA
alloy are close. In going to the superlattice [Figs.
10(a)-10(c)] the VCA X„state splits into a lower

TABLE IV. Bowing parameters, in eV, for the Ga„A1& „Asalloy and the ordered GaAlAs2 compound. PS denotes pseudopo-
tential; LAP%', linearized augmented plane wave; TB, tight binding; CPA, coherent potential approximation.

Disordered alloy
VCA CPA
TB' TB' Expt.

Ordered GaAlAs2 (&,„d)
Present Present Ref.

(ps) (LAP%') 32

b(I 1, )

b(X), )

b(LI, )

0.00
0.06
0.08

0.03
0.00
0.01

0.16
0.12
0.14

0.37b

0 15'-0 245
0.05S'

0.97
0.01
1.90

0.78
0.05
2.10

0.74
—0.05'

1.81

'Reference 84.
"Reference 81.
'References 82 and 83.
b [I 4(X„})= —0.08 (PS, present).
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not p character, and exhibits the usual antibonding s
character; its splitting samples only the difFerence in Ga
and Al I =0 pseudopotentials. The next-highest energy
VCA state L, &, has both cation s and p character. In-
terestingly, the superlattice compatibility relations re-
quire this state to split into an Rl, state [consisting of
Ga s and p, orbitals and Al (p„+p~) orbitals] and a
complementary R 4, state. This is evident in Figs.
10(g)—10(i); the splitting

~
e(R~ ) —e(R„)

~

is the largest
of all conduction bands sho~n because it samples the
difFerence in both the s- and p-wave pseudopotentials for
Ga and Al. One result of this ampli6cation of cation
difference is that (GaAs)I(AIAS), is indirect by way of the

R (L„)point (whereas the VCA alloy is indirect via

X„).Finally, the VCA X&, state, with strong cation s
character, is split [Figs. 10(j)-10(1)]into states M„and
M2, with cation-centered lobes.

The preceding discussion shows that the states of or-
dered GaAJAsz difFer from those of the disordered

Gao&A105As alloy. This can be quantized by de6ning
"optical bowing parameters" for the ordered (ord) phase
GaAlAs2 as

-0.7S
-0.5 . :;
-0.25

b„d(I„)=4[a(I„)—e(I"„(I'I,))],
b,„d(X„)=4[a(X1, )—S(MS, (XI, ))],
b„d(L„)=4[K(L„)—e(R „(L„)}],

(32)

FIG. 9. (a} Perturbation in potential in Ry„and (b) the den-

sity response it induces (in electrons per zinc-blende cell), due
to ordering of the VCA alloy.

doubly-degenerate M5, state [Fig. 10(b), composed of Ga
and Al p„and p orbitals] and an upper singly degen-
erate state I"~, [Fig. 10(c), composed of Ga and Al p, or-
bitals]. As perturbation theory would suggest, the M5,
state has strong Ga and A1 character with a slight excess
of Al character because the A1As X„statelies lower in

energy, re6ecting the slightly more attractive / =1 Al
pseudopotential. The upper state I ~, [Fig. 10(c)] lies
above either of the constituent XI, points. Because of
its strong anion character and the fact that the Ga and
Al p, orbitals sample the superlattice repeat distance, it
is this state which is most sensitive to the Ga-As-Al
interplanar spacings and the structural parameters u and

g which control the anion position.
For the remaining VCA conduction bands shown in

Fig. 10 the interpretation of the splitting of VCA states
by the non-VCA components of the superlattice poten-
tial closely follows the relative amounts of cation s and p
character of the VCA state: all are split into lower,
GaAs-like, and upper, AlAs-like, states. The total pseu-
dopotential splittings for the VCA conduction-band
states I „[I„(XI,) —I"„(I„)],XI, [M~, —M„],and
L „[R4,—R„]are 0.93, 0.96, and 0.99 CV, respectively
(the corresponding LAP%' figures are 1.14, 0.96, and 1.0
cV). [Tllc syII1IIlctfy-Induced fcpulsloll bctwccll states
I"„(X„)alld I „(I„)ls so stfollg tllat wc dcscflbc
them as a complementary pair: see Figs. 10(e)-10(f).] In
the zinc-blende VCA alloy the I &, state has cation s but

where E denotes the composition-weighted average of the
corresponding zinc-blende gaps of GaAs and A1As at
their equilibrium lattice parameters. Table IV shows the
bowing parameters for the ordered phase, where they are
compared with those of the disordered alloy. Clearly the
I"„(I'„),Ms, (X„),and R 1,(L„)states of the ordered
phase are substantially lower in energy than the corre-
sponding VCA states of Ga05Alo5As, leading to far
larger bowing parameters in the ordered phase. This in-
crease in bowing (reduction in gap) is the hallmark of or-
dering of an alloy, and has been observed in
Ga„In, „P(Ref. 9) and Ga„In, „As(Ref. 5).

Bernard and Zunger have suggested that for alloys
of constituents Ac and Bc which difFer considerably in
lattice parameter and electronegativities, the experimen-
tal alloy bowing b,„p,cannot be described adequately by
the VCA. In general, b,„~,can be thought to consist of
an "ordered" part b„d,calculable, e.g., from the proper-
ties of ABC2, plus a disorder part bdjs,

(33}

The sum of b„d and bd;, can be usefully approximated
by considering an average alloy gap calculated from a
weighted superposition of the band gaps of all local envi-
ronments appearing in the alloy (see Appendix B). They
reproduced the observed band gaps of zinc chal-
cogenides and concluded that, while for alloys with
lattice-matched constituents the disorder contribution
bd;, can be large, for alloys of lattice mismatched constit-
uents

~ b„d
~

&&
~ bd;, ~, and hence b,„,could be

modeled approximately by b,„d. Here, our results (Table
IV) for the lattice-matched system Ga„A1, „Asindeed
suggest that bd;, -(b,„z, b,„d) is large; in agreeme—nt



D. M. %POOD, S.-H. WEI, AND ALEX ZUNGER 37

{GaAa)& (AIAI)&

{Ga-like)

J,k)
NqC

(QgAa) & (AIAs}q

(AI -like )

j o

rg

,t
i

j / I

-8

+3

(IC

'4 .~ (c)
,
i'4c,

0

FIG. 10. Conduction-band wave-function amplitudes (in electrons per volume a'/4) for unrelaxed (GaAs)~(A1As)
&

at a =5.56 A

at high-symmetry Brillouin-zone points. (e) and (f) derive, respectively, from zinc-blende I"
&, and X3, states.

with Ref. 86, disorder effects tend to reduce the magni-
tude of the bowing parameters deduced from the ordered
phase.

VIII. COMPARISON OF CALCULATED ELECTRONIC
STRUCTURE KITH EXPERIMENT

Recently, four experimental studies of the spectra
of ultrathin (GaAs)„(A1As)„have appeared. We com-

pare here our predictions with experiment and discuss
some predicted, but so far unobserved, transitions. For
comparison with experiment, theoretical superlat tice
band energies need to be corrected for LDA error. %'e

note [Figs. 8 and 10] that R „andMi, are GaAs I.„-
and X&, -like, respectively, while M ~, and I 4, (both de-

rived from X„)exhibit mixed GaAs and A1As character
with some emphasis on AIAs. I „(I„)[Fig. 10(e)] we

find to be predominantly GaAs I ],-like. %e may thus
approximately correct for LDA errors by using the cor-
responding corrections for bulk GaAs at L &, and X3,
(for R&, and Mi, ), the averaged corrections for bulk
GaAs and A1As at X„(forM5, and I 4, ) and for GaAs
at I „(forI „).This yields (using our relaxed LAPW
results) corrections of 1.0„1.29, 0.79, 0.79, and 0.76 eV
for 8 &„I &„M5„I z„and M]„respectively. The un-

corrected LDA results (0.88, 0.85, 1.30, 1.41, and 1.31
eV, respectively) become, after correction, 1.88, 2.14,
2.09, 2.20, and 2.07 eV at T=0 K, all measured with
respect to the valence-band maximum EvaM. (Although
both LDA corrections and LDA band energies obtained
with the pseudopotential method diff'er from LAP& re-
sults, the corrected transition energies are nearly identi-
cal for both methods. ) Analogous corrections for the
VCA alloy (using pseudopotential results) predict the
states L ], at 2.42 eV, 1 &, at 2.24 eV, and X&, at 2.10 eV,
all with respect to EvBM.

Based on our corrected band energies for
(GaAs), (A1As)& we now discuss its spectrum, referring
all state energies to FIBM.

(i) Direct band gap. We predict the I'„~I„(I„)
direct gap ("Eo transition") at 2.14 eV, i.e., 0.10 eV
below the calculated direct transition for the
Gao 5A105As disordered alloy and 0.185 eV below the
average of the Eo energies (at 0 K) for the binaries. This
suppression is due to downward repulsion of the
I „(I"„)state by the I „(X&,) state above it. Since
I „(1„)is largely localized on the GaAs sublattice [Fig.
10(e)], confinement efFects raise its energy substantially
relative to bulk GaAs [Eo(GaAs) =1.52 eV]. [As the su-

perlattice period n increases we expect the energy of this
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transition to approach that for bulk GaAs. ] Experimen-
tally, the most prominent photoluminescence excita-
tion peak is at 2.12 eV (at 1.7 K) for the shortest-period
superlattice studied (n =3}. Reffectance measurements
(at room temperature) place this Eo transition at -2.08
eV for n = 1, while Raman scattering experiments
place it at 2.15 eV. We predict two additional (weak)
pseudodirect transitions, I „—+I 4, (X„)at -2.20 eV
(i.e., above the disordered alloy I „~Xi,transition at
-2.10 eV) and another at -2.83 eV for I",~I „(Xi).

(ii) Indirect transitions at M. We find two X-derived

states below I „(Ii, ): M5, (X„)at 2.09 eV [an "x-y"
planar state with maximum wave-function amplitude in
the interstitial volume between cations, Fig. 10(b)) and
M„(X3,} at -2.07 eV [with maximum wave-function
amplitude in the interstitial volume between the anions;
Fig. 10(k)]. This delocalized character suggests small
confinement e8'ects on the energies; in fact, we find these
states close to the average of the calculated X], energies
for GaAs and A1As (-2.10 eV) or the disordered bulk
al/oy energy at X„[calculated: 2.10+0.05 eV, observed
2.077 eV (Ref. 87)]. Experimentally, the lowest-energy
photoluminescence peak was found at 2.01 eV (n -3)
(Ref. 90); 1.931 eV (Ref. 87, n =1); or -2.05 eV (Ref.
80, n =1). The superlattice transition was found 0.15
eV below the disordered alloy transition. [These data
imply that deviations from perfect superlattice order
raise the energy of this transition. ] We attribute the
lowest emissions for n =3 to the forbidden
Ms, (X)~I

„

transition; this emission exhibits a long
lifetime and nonexponential decay characteristic of in-
direct excitons. The three phonon sidebands observed
at lower energy exhibit both GaAs and A1As character,
consistent with the somewhat delocalized ("interstitial" )

wave functions at Mz, . The emission at 1.931 eV for
n = 1 could come from the R „(L„)state (calculated at
1.88 eV). This is also near the weak Raman line at
1,93 eV. The additional higher energy slow emission ob-
served at 2.05 eV (n =3) was attributed to the pseu-
dodirect I 4, (Xi, ) state (denoted X,). For the case n =1
studied here, we find that I 4, (X„)is higher in energy
(2.20 eV). Its energy for n =3 will drop, placing it
indeed just above M5, .

Direct excitations into M&, and M&, are possible from
the corresponding valence states M2„, M5„and M4,
(=EvBM —2. 5 eV), which are all folded from Xs„and
are close to the calculated average of the X&, states of
GaAs and AIAs. We expect the M, ~M, ("Ez") transi-
tions (calculated at 4.6+0.2 eV) to occur near the aver-
age energy of the E2 transitions of GaAs and A1As
(-4.6 eV). Indeed, the superlattice E2 transition was
measured in reflectance at -4.97 eV and showed negli-
gible confinement eff'ects (dependence on period}, con-
sistent with the delocalized and mixed nature of the cal-
culated wave functions.

(iii) Transitions at R We pred. ict the conduction-band
minimum of (GaAs), (A1As), to be at the GaAs-like
R „(L„)state (1.88 eV) near the corresponding state in
bulk GaAs (1.81 eV). Forbidden (weak) R „~I,emis-
sion could occur. The A1As-like R~,(L„)state is at

2.93 eV, near the bulk AIAs Li, state (-3 eV). Direct
transitions into 8&, and R4, are possible from the I.3„-
derived valence-band states (in order of increasing ener-
gy) Rz„R4„,R,„,and R~, centered at EvaM —(1.1

+0.1) eV. We hence expect the allowed R, ~R i, tran-
sition (denoted EGi') to occur at -3.0+0. 1 eV, near the
bulk GaAs value (-3.04 eV}, and the R4„~R4,transi-
tion (Ei') at -4.1+0.1 eV, near the bulk AIAs value
(-4.0 eV). For n =1, the E, ' transition was observed
at 3.2 eV, but E, ' was not seen. Since R „(R4,) are
strongly localized on the GaAs (AIAs) sublattice [Figs.
10(h) and 10(j)], we expect significant confinement efects,
and an approach of E, ' and E

&

' to the respective bulk

values of GaAs and A1As, as the superlattice period in-
creases. For n =2, R4, is lowered in energy and R&, is
raised with respect to n =1; their energy approaches
the aUerage of E, ' and E, ' (just as in the alloy}, hence,
the 8 &, ~R

„

transition energy for n =2 is expected to
be above that of n =1 (an increase of 0.1 eV was ob-
served ).

IX. TRENDS IN STASII.ITY FOR THICKER
MODEL [001]SUPERLATTICES

%e finally examine simple models suggested by
valence-force-f][eld calculations and generalizations of the
electrostatic energy calculation of Sec. VI to extract
the trends to be expected. Recent work, by Van de
Walle and Martin ' for Si„oe„andby Bylander and
Kleinman, ' and Oshiyama and Saito, for
(GaAs) (AlAs), indicates that extremely rapidly, as a
function of superlattice thickness, AC and BC layers
away from the interface in (AC) (BC) greatly resem-
ble their bulk counterparts as far as their ground-state
charge densities and self-consistent electronic potentials
are concerned. This conclusion is supported by, e.g., the
very weak dependence of optical properties and Raman
scattering data on m.

A. Valence-force-Seld calculations

Motivated by these observations, we first describe re-
sults of a simple structural model for (AC) (BC) in
which we distinguish A -C and 8-C interlayer spacings
at the A -C -8 interface from those in the
"bulk:" do ——(c/4m)(1+a), dz ——(c/4m)(1 —e),
d, =(c/4m)(1+5), d2 ——(c/4m)(1 —5), where do and
d ~ are, respectively, the Ga-As and Al-As interlayer
spacings away from the interface and d, and dz are the
corresponding interfacial values. The notation is illus-
trated for the case m =2 in Fig. 1(b). Minimizing the
VFF strain energy with respect to c and 5, we find for
m =1,2, 3 that (i) the equilibrium lattice constant is close
to the average zinc-blende value, and (ii) successively
more strain is frozen into thicker superlattices, with vir-
tually all distortion occurring at the interfaces.

An extremely simple interpretation explains quantita-
tively the trends for m =1,2, 3 VFF results for a, =a. In
an (AC) (BC) [001]-orientation unit cell, there are
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m —1 layers of As atoms each coordinated by four Ga
atoms and m —1 coordinated by four Al atoms, and two
interfacial layers of As atoms coordinated by two Ga
and two Al atoms. Since such layers are characteristic,

I

respectively, of (epitaxially-constrained) GaAs, A1As,
and (GaAs), (A1As), , we may write (to the extent that a
given layer is coupled only to its neighboring layers) per
four atoms

EMs[(GaAs) (A1As), a )]= IEMs[GaAs, a ]+EMs[A1As, a ]I+—EMs[(GaAs), (A1As)i, a ], (34)

where all energies on the right-hand side are per cation-
anion pair. This model would predict, using the VFF re-
sults for tetragonally-distorted GaAs and A1As and
(GaAs), (A1As), at a, that

EM~&[(GaAs) (AIAs), a )]=4.320—0.279/m

(in meV per four atoms); a least-squares fit of the form
a +h /m directly to the VFF results for m = 1,2, 3 yields
EvMs" —4.318—0.276/m. Thus an extremely simple
model accounts very well for actual VFF calculations.
Identical calculations (in which we take each binary to
be at its equilibrium lattice constant, ignoring the small
b,a for real GaAs/A1As) may be made for the micro-
scopic strain (MS} contribution to the formation energy
of (GaAs) (AlAs), yielding (per four atoms)

b,EMs lm =AEoMs[(GaAs), (AIAs), ]/m =2o /m,

(35}

where we have identi6ed the interfacial energy o, using
the fact that the (1,1) superlattice primitive cell consists
entirely of two interfaces.

8. Electrostatic Madelung energy model

The VFF results above, together with the first-
principles results ' ' ' strongly support a picture in
which only the regions near the interfaces in the
(AC) (BC) superlattice differ from their bulk counter-
parts. Taking, therefore, Q„=q„andQs+qs only for
interfacial sites, we find for large m that
b EM,d„„„s(m,m ) can be written (per four atoms) as

b E,M)d„„s/m=(bq) /mR [A —B(bQ/hq+C) ]

with R an AC or BC bond length and A =2.034,
8 =0.7722, and C=0.3694. This expression predicts
that, for large m, b,Q/bq must exceed 1.54 for the
(m, m) superlattice to be stable. This may be written in
the form (per four atoms) bE&E[(AC) (BC) ]=2o /m;
for b,Q/hq =1 it predicts o =0.293(hq) /R, while Eq.
(23) for m =1 yields o =0.287(b.q) /R, corroborating
the scaling form hE (m, m)=EE (1,1)/m of Eq. (35).

C. Stability and growth of thicker superlattices

Having found the form bH (m, m) =2cr/m
=b,H (1,1)/m per bond to emerge from two extremely
different model calculations for superlattice stability-
one emphasizing strain eff'ects (and yielding b,EMs) and
the other Madelung charge transfer effects (and yielding
approximately EEcE )—we next examine its implications

for superlattice growth. For o «0 the A -C-8 interface
is stable with respect to —,'[A-C-A+B-C-B]. Since
hH (m, m) per bond scales as 1/m, however, in thermo-
dynamic equilibrium if o &0 there is no energy incentive
for a thin superlattice to grow thicker because the thicker
system is less stable per bond. On the other hand [as we
found above for [001] (GaAs), (A1As), ], if o ~0 a thin su
perlattice mill grour thicker since a thick superlattice is
less unstable per bond than a thin one. It is therefore
clear that kinetics must be crucial in determining growth
of thick, stable (or thin, unstable) superlattices like
(GaAs) (A1As)

X. SUMMARY AND CONCLUSIONS

We have presented above both first-principles (pseudo-
potentials and all-electron) results which suggest that
(GaAs), (AlAs), grown in the [001] orientation is unsta-
ble both with respect to disproportionation into its zinc-
blende constituents, and (Sec. IV C) with respect to dis-
ordering. We have shown that (i) semiconductor super-
lattices ( AC) (BC) exhibit, in general, a delicate com-
petition between potentially stabilizing charge transfer
(electronegativity-related) effects and destabilizing strain
effects associated with imperfect accommodation of the
distinct AC and BC bond lengths, which largely preserve
their identities in the superlattice. As a consequence, (ii}
as for other ternary compounds, in theoretically assess-
ing delicate stability and charge-transfer questions, all
structural parameters must be relaxed if a mismatch

~ R„c—Rsc
~

(theoretical or experimental) exists; (iii)
simple models based on continuum elasticity theory and
electrostatic energies (Sec. VI) are extremely useful in
isolating the largely independent effects of strain and
charge transfer; (iv) the electronic structure of the
(AC), (BC), superlattice may differ radically from those
of AC and BC and a fictitious virtual crystal alloy; and
(v) the issue of stability of ( AC) (BC) was discussed
using both simple electrostatic energy models (which
focus on charge-transfer efFects) and valence-force-field
models (which focus on strain eff'ects) and a simple pic-
ture of stability which has as its keystone a knowledge of
the interfacial energy emerged.

Many impure, disordered, or artificially ordered
semiconductor systems are manifestly metastable in the
temperature and composition ranges in which they are
routinely characterized and utilized. Such are the inter-
stitial Mg impurity in silicon (metastable at the inter-
stitial, stable in the substitutional site at room tempera-
ture), the disordered GaAs Sb, „alloy (grown in the
range of thermodynamic immiscibility of GaAs and
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GaSb), and ordered (III-V), „(IV&)„alloys (although

judged by their equilibrium phase diagrams to spinodally
decompose). Such metastable systems come to exist
through kinetic rather than thermodynamic control, e.g. ,
in nonequilibrium growth techniques ' or by quench-
ing. They owe their long laboratory lifetimes and
thermal stability to the existence of large activation bar-
riers, small thermodynamic driving forces, and exceed-
ingly low di8'usion coemcients at laboratory tempera-
tures. %e suggest that this is the case for
(GaAs},(AlAs), . The driving force for the ordering in

GaA1As2 observed at -970 K remains unclear. It is

possible that a surface-controlled mechanism is at work.
Indeed, deposition of Al on the GaAs(110) surface above
-800 K produces a segregation efrect, ~hereby the Al
is exchanged with the surface Ga to produce a GaAs
layer on top of A1As. Such fluctuating segregration se-

quences may produce long-range order.

APPENDIX A: VAI.KNCK-FORCE-FIELD
ESTIMATES OF MICROSCOPIC STRAIN

ENERGY TERMS

In Fig. 7 we show valence-force-field predictions for
the deformation energies of cubic GaAs, cubic AlAs,
and unrelaxed (r) = 1, u = —,

'
) (GaAs) &(A1As)

~
(dashed

lines). We note that all three virtually coincide at
a =a =(ao,A, +a„~A,)/2. This circumstance permits us

to express the strain energy of the unrelaxed superlattice
in terms of a superposition of those of the binary com-
pounds (each characterized by its bulk modulus B).
Shown as solid lines are curves for the binary com-
pounds subject to tetragonal deformation due to the epit-
axial (epi) constraint. We note that they, in turn, coin-
cide with the curve for the fully-relaxed superlattice,
permitting expression of the fully-relaxed superlattice de-
formation energy in terms of a superposition of binary
curves [each characterized by the elastic modulus B' of
Eq. (21)].

More generally, the elastic properties of a given or-
dered ternary phase (e.g., the strain reduction upon re-
laxation) depend in detail on the specific structural de-
grees of freedom available to that phase. While the
analysis above was motivated by our study of
(GaAs} &(A1As)

„

it has general validity for [001]
{A C), (BC)

&
since the large Aa present in our first-

principles calculation for GaAs and A1As "simulates"
the case of a physical system with large Aa, and the re-
marks above are based on the properties of the structures
we have adopted for {AC), (BC), and only very weakly
on properties of AC or Bc.

APPENDIX 8: CLUSTER SUPERPOSITION
DESCRIPTION OF RANDOM ALLOYS

%e adopt a description of the random disordered
alloy which has proven useful for understanding
structural and energetic properties of A 8& C in terms
of those of ordered stoichiometric phases A„84 „C4.
In this picture the alloy is treated as a superposition of
the clusters A„B4 „C(n =0—4) spanning aH possible
nearest-neighbor environments in the alloy:

aE'(x)= g r'"'(xg E'"'. (81)

bEM, d,)„„g(x)=36EM,d„„„(1,1)x (1—x),
5EM~de~~~g (x~ ) =45E Madel&~ ( 1, 1 )x„(1 —x„), (82)

where x„=n/4 for n =0, 1,2, 3,4.
The treatment of the random alloy by van Schilf-

gaarde, Chen, and Sher is based on a direct lattice sum
with truncation of the electrostatic energy sums at
nearest neighbors for cation-cation, anion-cation, and
anion-anion interactions and use of the binomial
coeScients P'"'(x) to evaluate the site probabilities and
conditional probabilities which arise in this approach.
In their calculation a prefactor of —,

' was incorrectly om-
itted from their anion-anion lattice sum. Correcting
for this, their result (given for b,g=bq) is per four
atoms

EEM,d,)„„g( x = —,
'

) =0.434( b,g ) /R, (83)

compared with our result [Eq. (82), where bEM,d„„„
(1,1) is given by Eq. (23)], evaluated for bg =b,q:

bEM, d,)„„g(x= —,')= .0341(b g)/R . (84)

Comparing (83) with (84) shows that the Madelung en-
ergy of a random alloy can be calculated either by a su-
perposition of local clusters [Eq. (84)] or by direct lattice
sums [Eq. (83)].

van Schilfgaarde et al. observed that, "most alloy
calculations are carried out in a cluster approximation,
which divides the lattice into clusters and assigns an en-
ergy to each cluster that is taken to be independent of
the surrounding clusters. . ." and speculate that, "be-
cause the Coulomb interaction is long ranged on the
scale of a bond length, small clusters may in fact depend
strongly on the surroundings. Virtually all present-day
calculations embedded clusters in either a virtual crystal
or a supercell to obtain cluster energies. This work indi-
cates that in many cases such an approximation may be

For purposes of illustration and comparison with Ref.
69, we use the cluster probabilities appropriate to a per-
fectly random alloy, i.e., P'"'(x)=(4)x"(1—x) ". Ig-
noring volume dependence of cluster-formation energies
(appropriate to lattice-matched clusters), the cluster-
formation energies hE'"' become fixed numbers (zero for
the clusters n =0 and n =4). We evaluate the excess
Madelung energy for clusters n =1,2, 3 using ordered
structures predicted by the Landau-Lifshitz theory of
structural phase transitions for the fcc alloy phases of in-
terest. ' We have already evaluated EEM','d„„„[Eq.
(23)] for ( AC), (BC)&,

' for n = 1 and 3 we use the Luzon-
ite A38C4 and A83C4 structures, respectively. %'e 6nd,
performing calculations identical to those for
( AC), (BC), (with a bond length R common to all struc-
tures) that ~EM d I g ~EM d l g g EM d I g

relations are valid for any b,g, but assume the same Ag
for all ordered phases, although this is not likely to be
valid for real systems. Performing the sum in Eq. (81),
we find ' per four atoms
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quite poor, particularly for small clusters. The smallest
cluster size that is reasonably configuration independent
has not yet been determined. " %e note that the ex-
tremely close agreement between the effective Madelung
constant for a disordered alloy obtained via a
superposition-of-clusters approach and their truncation
of the Madelung energy [Eqs. (83) and (84)] shows that
this speculation is incorrect.

Analogous superposition procedures may be carried
out for on-site Coulomb contributions for the disordered
alloy (and give results identical to those of van Schilf-
gaarde et al.). For each atom a in each cluster the
Coulomb energy varies as

E,(q) =E,(0)—e,q + —,
' U, q + ' ' '

%hen evaluating the on-site Coulomb contribution to
the formation energy of a cluster, the terms in E,(0)

disappear since there are as many A, 8, and C atoms in
the cluster as in equivalent amounts of AC and BC;
those in c cancel similarly. The net on-site contributions
to the formation energy per cation-anion pair are ex-

tremely simple for bQ=bq: bEos=bEos=0 bEos
=bEos ———3'(bQ) /32, and bEos ———Uc(bQ) /8.
Summing these cluster on-site energies weighted with the
binomial coeScients for composition x =—,', one finds for
the random alloy Eos ———3Uc(bQ) /32, which agrees
with the results of van Schilfgaarde et al. , except for the
much simpler notation resulting from evaluating forma-
tion energies rather than energies referred to the virtual
crystal. Thus

bEos(x) =3 bEos(1, 1)x (1—x),
bE(')s'(x„)=4 bEos(1, 1)x„(1—x„) .
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