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Band structure, crystal conformation, and hydrogen bond 
potentials for solid HF 
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The electronic structure of hydrogen fluoride chains is calculated using the small-peri odic-cluster 
approach by representing some high-symmetry points in the Brillouin zone of the infinite solid by the 
one-electron energies of a finite periodic structure. The LCAO representation is used for the crystal 
orbitals, and a self-consistent calculation is performed. Problems regarding the convergence of the 
band structure as a function of the number of K-grid points used to construct the Hartree--Fock 
elements, the number of interacting neighbors, and the approach to self-consistency in the iteration 
cycle are examined. Band energies, ionization potential, cohesive energy, charge, and electrostatic 
potential distribution are computed. The adequacy of other methods currently used to investigate 
electronic and structural problems in hydrogen-bonded solids is discussed in view of the results 
obtained. The crystal structure is optimized, and the stability of the crystal against unit cell 
deformations and atom displacements is examined. Potentials for either collective or single proton 
movements are computed and discussed in view of the experimental vibrational force constants. 

I. INTRODUCTION 

The electronic and structural properties of hydrogen 
bonds in solids are usually treated by one of the follow­
ing approaches: 

(a) The perfect lattice is treated by a tight binding 
model, considering the crystalline potential as a super­
position of unperturbed isolated molecule electrostatic 
potentials. 1,2 

(b) The elementary A-H ••. B hydrogen bond moiety 
in the solid is considered by calculating various proper­
ties of isolated dimers. This has been treated by either 
electrostatic models of point-charge interaction3- 5 and 
charge-distribution interactions, 6,7 or by quantum-me­
chanical models based on valence-bond representations,8,9 
charge-transfer theories10,l1 or self-consistent molecu­
lar-orbital (SCF_MO)12-15 techniques. 

(c) To account for charge-redistribution effects ex­
perienced by molecules in hydrogen-bonded solids and 
to obtain a quasibandlike picture of the one-electron en­
ergy levelS, truncated-crystal approaches have been 
used. In these representations, highly -truncated clus­
ters (trimers, pentamers, and hexamers) are considered 
by various linear combinations of atomic orbitals (LCAO) 
techniques, 18-18 and the convergence behavior of the elec­
tronic properties is examined as a function of the clus­
ter size. 

(d) Conformational and lattice -dynamical aspects of 
hydrogen-bonded solids have been treated via semiem­
pirical atom-atom or bond-bond pair potentials19- 24 us­
ing extensive parametrization to obtain the experimental 
bond lengths, cohesive energy, and, in some cases, vi­
brational frequencies. 

The non-self-consistent tight-binding approach (a) has 
the advantage of describing the true extended periodic 
character of the charge distribution and the electronic 
states of the crystal; however, it neglects both the po-

larization effects experienced by each molecule in its 
hydrogen-bonded crystalline environment and the charge 
redistribution in the solid relative to the isolated mole­
cule. Investigation of the polarization energies of pairs 
of molecules forming moderate to strong hydrogen bonds 
in solids indicates that these corrections may be of the 
same order of magnitude as the total H -bond energy. 2S 
SCF-MO calculations of various polymers of hydrogen­
bonded molecules, on the other hand, have demonstrated 
that the molecular charge distribution might be changed 
by as much as 30% -50% relative to the isolated molecu­
lar values, 17,18,26,27 these charge-redistribution effects 
having a predominant influence on the electronic proper­
ties of the hydrogen-bonded system. Also, the tight­
binding model, relying heavily on the translational sym­
metry of the lattice, is inadequate for treating the stabil­
ity of a given solid structure against displacements of 
atoms from their ideal lattice sites and for obtaining po­
tentials for proton motion. 

In approach (b), a relatively small number of atoms 
is treated via ab initio methods to give accurate results 
regarding charge distributions, conformations, hydro­
gen-bond potentials, and interaction energies. However, 
the relevance of this approach is limited mainly to iso­
lated dimers in the gas phase, while molecular pairs 
both in solids and in biological macromolecules are 
usually strongly coupled to their environment. The 
treatment of the fully coupled solid systems by ab initio 
methods is presently difficult to implement in practke 
owing to computation-effort considerations. 

The truncated-crystal approach (c) presents a system­
atic method of accounting for the deficiencies in the iso­
lated-dimer picture but sacrifices the accuracy of the 
one-electron methods employed, to some extent, byap­
plying semiempirical rather than ab initio LCAO tech­
niques. Truncated-crystal methods were shown to be 
successful when applied to predominantly covalent bonded 
structures, like diamond, 28,29 graphite, 30 and boron ni-
t 'd 30 rl e, where the perturbations exerted by the cluster 
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1714 Alex Zunger: Band structure for solid H F 

surfaces do not propagate too deeply into the bulk. Simi­
lar calculations on hydrogen-bonded solids, 17.18 on the 
other hand, reveal substantial charge inhomogenities in­
side the cluster due to the large electron delocalization 
and charge-redistribution effects, characterizing the 
hydrogen-bonded systems. Owing to these strong per­
turbations, lattice periodicity could not be simulated, 
and the atomic charges and electronic eigenvalues ob­
tained were not correlated with corresponding properties 
in a regular periodic structure. 

The phenomenological atom-atom potential approach 
(d) has the advantage of representing structural proper­
ties and potentials for proton movements in infinite­
periodic structures, thereby correlating various hydro­
gen-bond properties of many' solids. Its applicability is, 
however, limited by the availability of sufficient experi­
mental data to determine the values of the adjustable 
parameters, and thus only the most common O-H· . ·0 
and N-H· . ·O=C bonds were considered. Owing to the 
absence of sufficient experimental data to parametrize 
the intramolecular force field, the phenomenological 
atom-atom methods that were directly applied to hydro­
gen-bonded solids21

- 24 considered the hydrogen-bond 
formation as a purely intermolecular process, with the 
molecules in the solid held rigidly, usually in their gas­
phase conformation. This approximation seems ques­
tionable in view of the significant intramolecular rear­
rangements that have been shown to occur upon hydrogen­
bond formation in solids as determined in neutron-dif­
fraction studies, nuclear magnetic resonance (NMR), 
and in vibrational analysis.31- 33 Since, in this model, the 
elementary pair interaction is assumed to depend only 
on the atomic pOSitions, keeping the potential param­
eters fixed for all distances, many-body effects are ne­
glected. On the other hand, quantum-mechanical treat­
ments,34 allowing for different polarizations of the pro­
tons at different positions, indicate a rather pronounced 
collective effect of all protons on the potential between 
a given atom pair. 

Recently, we proposed a method for self-consistently 
treating the electronic structure of both perfect periodic 
solids35 and point defect problems. 36 The method is 
based on the representation of some high-symmetry 
pOints in the Brillouin zone (BZ) of the solid by the one­
electron spectrum of small periodic clusters of atoms, 
USing LCAO representation. Edge effects are complete­
ly suppressed by employing periodic boundary conditions, 
and a self -consistent procedure is used to modify the 
isolated molecule potential in the crystalline environ­
ment. The cluster wavefunctions are not explicitly con­
strained to be periodic, but rather, their transformation 
properties are determined by the arrangement of the 

cluster atoms, permitting both a periodiC solution (when 
the atoms are periodically arranged) and a defect-super­
lattice solution (when a defect is placed at the center of 
a large Born Von Karman cell). 

In this paper and in Ref. 37, the method is applied to 
hydrogen bonds in solids. We treat the band structure, 
hydrogen-bond potentials, and ionic-defect structures in 
solid HF. Approaches (a)-{d) are discussed with refer­
ence to this method. 

II. METHOD OF CALCULATION 

A. Small periodic cluster (SPC) approach 

The method will first be illustrated on a one-dimen­
sional crystal. Extensions to more than one dimension 
are straightforward35

•
36 and will be mentioned later. 

Consider a one-dimensional chain of arbitrary con­
formation (linear, zigzag, etc.) made up of atoms of 
either identical or different chemical species (molecu­
lar chain) with atomic orbitals x,,{r - R,,) centered on 
each site n, where /J. = 1 ... a denotes the atomic basis 
function (Is, 2s, 2px, 2py, 2P.). The interaction radius 
(maximum separation between two atoms for which the 
interaction potential is still considered nonzero) is de­
noted by Re. The lattice is divided into Born Von Karman 
(BVK) cells (Fig. 1), each containing either an even (2N) 
or odd (2N + 1) number of atoms. In the LeAO represen­
tation, the electronic wavefunction of one such cell is 
given (e. g., for an odd number of atoms) by 

~~ 1/JJ=~ ~ C"nJX,,(r-Rn), j =1 .•• a(2N+l), 

where C "ni are the LCAO expansion coefficients. We 
wish to find the eigenvector coefficients {C unJ} and the 
energy eigenvalues E J for the electronic secular equa­
tions describing this cell, in the field of all other simi­
lar BVK cells in the crystal with no edge effects, i. e., 
an array in which any atomic species on a given sublat­
tice experiences a field identical with that of all other 
atoms on equivalent sites. This may be accomplished 
by extending the BVK cell by atoms labelled 1 ••. N on 
one side, and atoms (N + 2). 0 • (2N + 1) on the other side 
(Fig. 1) and considering the electronic eigenvalue prob­
lems of the central BVK cell, where the interaction be­
tween any given pair of atoms, either intracell or inter­
cell, is taken to be that of the pair joined by the shortest 
path, subjected to the condition that Rc:S I Rn - Rm I, where 
(n - m) = N + 1. For a one-dimensional lattice of 2N + I 
atoms, interactions up to N neighbors can thus be con­
sidered. 

The variational equations for the (2N + I)-atom cluster 
are given by 

O>-I __ '_'_'-<~ •• N 
o 

FIG. 1. Central unit cell 
(rectangular frame) and the 
atoms outside it used to ob­
tain periodic connections. 
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Alex Zunger: Band structure for solid HF 1715 

j = 1. .. a(2N+ 1), (2) 

and the matrix elements expressed in the atomic basis 
set, are 

F "".~m =<Xi'(r - Rn) \ F\ x~(r - R m», 
S i'n.~m = <X i'(r - Rn) \ x~(r - Rm» 

for I Rn -Rml?Re, and F i'n.~m =S"n,~m = 0 for I Rn -Rml 

(3a) 

(3b) 

> Re, where F is the one-electron Hartree-Fock opera­
tor. 

Since the matrix elements F i'n,~m and Si'n,~m are de­
termined, for a given basis set, by the positions and 
mutual orientation of the atoms in the cluster (the clus­
ter's symmetry group), the geometrical periodicity that 
we have imposed on the interactions could be convenient­
ly constructed by defining an interatom distance matrix 
n<~) and three interatom direction-cosine matrices with 
respect to arbitrary x, y, and z directions: El~L E1~L 
and E~;l. T} denotes the maximal interaction order Rei 
I bl, where b is a primitive unit cell vector. D(~) is ex­
pressed in terms of the unit cell parameters, while El~l, 
EI;l, and E~;: are expressed in terms of the molecular 
orientations in the unit cell. These four matrices de­
fine the interaction geometry of a pseudomolecule con­
sisting of 2N + 1 (or 2N) atoms. They are built to be 
periodic and with the symmetry properties of the inves­
tigated solid structure formed by translating the central 
BVK cell. For example, a seven-atom one-dimensional 
linear chain with a nearest neighbor distance I b I that 
is directed along the x direction has the interaction­
geometry matrices (for three-orders of interaction) 

0 1 2 3 

1 0 1 2 

2 1 0 1 

D(S)= Ibl. 3 2 1 0 1 2 3 E(3)-
(%) -

1 0 1 2 

2 1 0 1 

3 2 1 0 

0 

impurity involves the change of the central (N + 1) row 
and the (N + 1) column in the F and 5 matrices, replacing 
them by the matrix elements describing the interaction 
of the impurity atom with the rest of the 2N atoms. The 
eigenvalue problem thus generated corresponds to a 
superlattice of impurities, where the separation between 
nearest impurity sites is larger than Rc and thus no di­
rect impurity-impurity interaction is present. The su­
perlattice picture should not place a severe restriction 
in comparing the results with experimental data for a 
low concentration of defects, since in most cases the 
isolated impurity limit could be approached to a good 
approximation by increasing the BVK cell Size, thereby 
increasing the impurity-impurity distance. 

0 

while E~I and El:l are identically zero. The elements 
in the upper right and lower left corners of D(S) denote 
the distances between atoms in the central BVK cell and 
those outside it which are used to establish the required 
periodicity, while the other elements denote the Simple 
intracell distances. The elements of the Hartree-Fock 
energy and overlap matrices are constructed from the 
corresponding elements of these interaction-geometry 
matrices using a given basis set. 

Several possible more general applications of the 
model are 

(1) For general nonlinear structures, the E(il ) ma­
trices are expressed in terms of the angles defining the 
molecular orientation with respect to arbitrary x, y, 
and z directions (such as the chain angles, etc). These 
matrices are then built according to the given unit-cell 
symmetry group. 

(2) For a unit cell with more than one atomic species, 
the FjJ.n,~m elements in Eq. (3) are expressed by the 
proper atomic orbitals belonging to the different atoms, 
and with the same interaction geometry matrices D(~) 
and E(~). 

(3) The same method can also be used for two and 
three dimensional structures, now extending the central 
BVK cell in the x as well as in the y and z directions, 
in order to obtain periodiCity in two or three dimenSions, 
respectively. 35 The same restrictions on the number of 
atoms placed outside the cell and the maximum interac­
tion range for a given size of the central BVK cell are 
used. 

(4) The eigenvalue problem for a defect structure is 
Similarly constructed. S6 A model for a substitutional 

1 
0 

0 (4) 

0 
-1 

0 

0 

(5) Since the number of the variational equations (2) 

was not reduced by impOSing translational symmetry re­
qUirements (Bloch conditions) on the wavefunction in Eq. 
(1), it is possible to treat large deviations from trans­
lational symmetry (also in the dilute superlattice repre­
sentation) by this method. Hence, the problems of re­
laxation of atomic positions (around a substitutional de­
fect site or in the perfect lattice where stability of a 
given structure is examined against atom displacement) 
are treated within the model by changing one row and 
one column in the D(fI) and E(f/) matrices and generating 
the corresponding new F and 5 matrices which now re­
flect a local change in geometry. 

J. Chem. Phys., Vol. 63, No.5, 1 September 1975 
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1716 Alex Zunger: Band structure for solid HF 

The difference between the defect and local relaxation 
problems on one hand and the perfect lattice problem on 
the other lies in the fact that in the latter case the eigen­
values EJ = E,.,p(Y = 1, .. , (fh; P = o· . . 2N/h) can be classi­
fied according to the wave vector Kp in the BZ generated 
from the primitive unit cell of the solid investigated. 
This can be done by recognizing that for a perfect peri­
odic arrangement of the atoms, 

E",p=E,,(Kp), wherep=0,1 ... , (2N/h), 

Cl'nJ == Cl-1n,,,p = Cl-1y(Kp)eIXp.Bn, (5) 

211" 
Kp = (2N+ 1)b' p. 

Therefore, in the solution of Eqs. (1)-(3) for a perfect 
lattice, one obtains a finite subset of the full eigenvalue 
spectrum of the infinite solid under investigation. The 
size of this subset is determined only by the number of 
primitive unit cells inside the central BVK cell (2N + 1)/h, 
where h denotes the number of molecules in a primitive 
unit cell. The eigenvalues obtained correspond to wave 
vectors Kp that are evenly spread in the BZ [Eq. (5) J. 

Owing to the periodicity of the structure, surface ef­
fects and charge inhomogeneity, which characterize 
truncated-crystal models, 17a,18 are completely eliminat­
ed. The fact that the band structure Ey(Kp) is evaluated 
only at a discrete set of (2N + 1)/h points in the BZ is an 
inherent limitation of the model, and thus density of 
state functions could be considered only in the form of 
a histogram. However, for a managable cluster size 
(2N-20-40 atoms), most of the high-symmetry points 
in the BZ that are relevant in discussing optical proper­
ties of the solid could easily be obtained. 

The matrix elements of the Hartree-Fock operator 
are given by 

x [(J..lnXm I J..l' sX' t) - ~(J..lnx' t I XmJ..l' s)], 

where the core part is given by 

(6) 

(7) 
and the two-electron matrix elements are 

(J..lnXm I J..l' sX' t) 

= < x,.(r1 - Rn)X~ (r1 - R",) I~I XI" (r2 - ~)X~' (r2 - Rt» . r 12 

(8) 

The subscript on the electronic coordinate rj numbers 
the electron and Z A is the nuclear charge of atom A. 
The elements P"'s'~'t of the charge-density matrix are 
given by the eigenvector expansion coefficients C"'sJ 
== C"'s,.P in one of the following two forms: 

(9) 

or, in the K representation for a perfect periodic struc­
ture, 

"oce 
P,.'Sl't = 2 ( )" q.,.. (Kp)Cl',.t (Kp) exp[iKp' (R. - Rt)]dKp , 

JKp~ 
(10) 

where (foce denotes the number of occupied bands in the 
ground state. It is obvious that the F,.n,~m matrix ele­
ments depend not only on the pair J..ln, Xm but also on all 
occupied bands extending over all the atoms [Eqs. (6) 
and (9)] or alternatively on all occupied bands at all the 
Kp .values spanning the BZ [Eqs. (6) and (10) J. This 
makes the problem a self-consistent one and necessi­
tates the recompilation of the crystal potential matrix 
elements Fl'n,~m on the basis of the calculated band struc­
ture [Eq. (9) or (10) 1 at each iteration. One therefore 
guesses the elements of the charge-density matrix (for 
predominantly covalent structures, the neutral free­
atom charge distribution is used, while for ionic and 
metallic solids the free-ionic charge distribution is 
used), computes the Hartree-Fock matrix elements [Eq. 
(6)] by evaluating the two-electron integrals [Eq. (8)1 
and the core Hamiltonian elements [Eq. (7)1, calculates 
the overlap matrix elements [Eq. (3b) 1, and solves Eq. 
(2) for the expansion coefficients. The charge-density 
m~trix is then recalculated for (foce occupied bands (in 
metals, this necessitates the calculation of the Fermi 
energy for each iteration to determine the occupied lev­
els), and this is used to construct a refined F matrix. 
The process is terminated either when the difference in 
the charge-density matrix in two successive iterations 
is within a certain tolerance level or when the eigen­
value spectrum reaches convergence within a prescribed 
limit. During iteration, only the P matrix is varied by 
successive diagonalization of Eq. (2), while other quan­
tities [Eq. (7), Eq. (8), and Eq. (3b) 1 are stored. The 
energy spectrum of the system is specified by E,.(Kp) for 
each band Y in a perfect periodic structure or by E,.,p 
for any arbitrary defect structure. 

The total electronic energy is given by 

(lla) 

and the nuclear energy by 

_ ""ZAZB 
Enue - L.J R • 

A<B AB 

(llb) 

The total energy is obtained by adding the nuclear-nu­
clear interactions to the total electronic energy. Sta­
bilization energies are calculated as the difference be­
tween total energy per atom (or molecule) and the energy 
of an isolated atom (or molecule). The crystal equilib­
rium conformation is obtained by minimizing the total 
energy with respect to both the unit cell parameters and 
the atomic positions inside the unit cell. Force con­
stants are obtained by performing appropriate numerical 
derivatives of the total energy, in the vicini~ of the 
equilibrium conformation, with respect to dynamical 
displacement coordinates in the crystal. 

The charge-density matrix obtained in the last itera­
tion is subjected to an electron population analysis38 to 
obtain net and orbital atomic charges. Exchange terms 
appearing in Eq. (6) are directly evaluated as in molec­
ular calculations without using statistical local Xa ex-
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Alex Zunger: Band structure for solid H F 1717 

change. 39 Self-consistent charge redistribution is al­
lowed for the intermolecular and intramolecular regions, 
while in both the molecular tight binding scheme recent­
ly suggested1 and in the self-consistent augmented­
plane-wave (APW) method, 40 only the intramolecular 
and atomic sphere regions, respectively, are self-con­
sistently treated. Spherical averaging of the potential 
within each molecule1 is unnecessary in the SPC method, 
and the directionality of the chemical bonds in the mo­
lecular crystal is automatically preserved. 

The convergence problems that have to be studied in 
this scheme are 

(a) Number of grid points in K space used to reeval­
uate the charge density matrix [Eq. (9)] in a given iter­
ation; 

(b) Number of neighbors included in the evaluation of 
the F .. n.>.m and S .. n.).m elements [the value of Rc in Eq. 
(3) J; 

(c) Number of self-consistency iterations used to con­
verge either the density matrix or the band structure. 
Owing tq computational difficulties with larger basis 
sets, the convergence of the sum in Eq. (1) as a func­
tion of the number of basis orbitals used will not be ex­
amined, and a valence basis set will be used throughout. 

It should be mentioned that the two convergence prob­
lems (a) and (b) could be reduced to one in this scheme 
by taking the largest interaction radius R. permitted for 
a given size of the central BVK cell. In this way, the 
number of interactions and the number of K values used 
are determined uniquely by the cluster size. 

Other self-consistent schemes for energy-band calcu­
lations employing a reciprocal-space rather than a di­
rect real-space representation have been attempted in 
recent years, within the APW approach,40 the orthogo­
nalized-plane-wave (OPW) approach, 41 and the tight-bind­
ing .approach. 39 However, none of these methods have 
previously been applied to both perfect lattices and de­
fect problems, these being treated at different levels of 
approximations. Point defect properties have been 
treated either with various perturbative schemes based 
on the zero order lattice periodic states42 or by the lo­
cal orbitals surrounding the defect site, neglecting the 
rest of the lattice. 43 The first approach, being pertur­
bative, fails to treat lattice relaxations around the defect 
site that introduce marked changes in the electronic 
structure. Only limited information regarding the 
charge distribution around the defect site has been ob­
tained by this method. The second approach, consider­
ing only the local environment of the defect, does not 
account for the coupling of the defect with the bulk crys­
tal through delocalization effects and fails to relate the 
defect levels with the edges of the crystal bands. Effec­
tive-mass approximations, on the other hand, are usu­
ally not suitable for deep defect levels with large inter­
action radii, encountered in many insulator and semi­
conductor defect studies. 

B. Choice of the LCAO approximation 

Since there are indications that the properties of the 
hydrogen bond in solid HF are determined not only by 

short range but also by considerably long range forces, 34 
even a one-dimensional model for the solid would in­
volve solutions of eigenvalue problems for clusters of 
20-40 atoms in the SPC approach. Such calculations 
are presently difficult to implement at the ab initio level, 
even with minimal basis sets, and one is forced to con­
sider some form of approximate LCAO schemes for 
evaluating the various terms in Eq. (6). 

Extended Huckel calculations have been carried out 
on some hydrogen-bonded systems. 44 Since considerable 
charge transfer is involved in HF aggregates, 17.18 such 
a non-self-consistent LCAO scheme could not be used. 45 
The CNDO/INDO methods48 using a valence basis set of 
Slater orbitals (Is for hydrogen and 2s and 2p for fluo­
rine) have been shown to reasonably reproduce ab initio 
calculated and experimentally measured properties of 
both the isolated HF molecule and linear dimers of HF. 
The results of such calculations are summarized in 
Tables I and n, respectively. 

It is evident that charge distribution and one-electron 
energy levels of the monomer are favorably described 
by the INDO method, while the dimer interaction energy 
seems to be overestimated. IntermoleCular orbital 
overlap and configuration interaction, which are neglect­
ed in this scheme, are probably responsible for this 
shortcoming. 31J> The over-all agreement between INDO 

TABLE I. Calculated and experimental properties of the HF 
molecule. Eo denote the ground state Hartree-Fock total 
energy. 

Property INDO Exptl 

Fluorine net charge (e)a - O. 268 
Dipole moment (D), (WY-) 1.99 1.82" 

Quadrupole moment 1. 56b 2.6' 
(esu)( 10-26) 
Bond length (A) 1.006 0.917k 

Dissociation energy (eV) 6.30 6.121 

E. (eV) 19.96 19.05m 

E3. (eV) 21.70 

E2f;J (eV) 44.16 

Force constant 10.50 9.6" 
(dyn/cm x 10+6) 

aMulliken's definition. 
tn.eference 16, Eo = - 99. 270225 a. u. 
cReference 47, Eo = -100. 057127 a. u. 
dReference 48. 

Minimal Extended 
baSis set basis set 

-0.225b -0.2300 

1.39b 1. 8270 

0.878' 2. 382t 

1.44" 1. 934" 
3.05' 2.33' 
2.46" 
0.9384b 0.916t 

0.917' 
1. 21· 4.44' 
2.56" 4.1140 

12.64" 17.70' 
12.75"' 
15.39· 20.91" 
16.47·' 
40.17" 43.57" 
40.51" 

13.1So 

-Reference 49, Slater orbitals, Eo = - 99. 47854 a. u.; .. Ref. 
49, best limited set, Eo = - 99.53614 a. u. 

fReference 17b, E o=-100.01346. 
8Reference 50, Eo=-100.0705 a.u. 
bReference 51. 
1Reference 52. 
'Reference 53, computed with wavefunctions (e); " Ref. 53, 
computed with wavefunctions (e'). 

ItReference 54. 
1Iteference 55. 
mReference 56. 
"Reference 57. 
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1718 Alex Zunger: Band structure for solid HF 

TABLE II. Calculated values for the most stable HF dimer 
compared with experimental data. Eo denotes the ground state 
Hartree-Fock monomer total energy. e denotes the intermo­
lecular angle and 6E the stabilization energy. 

Method RHF(A) RFF(A) (j (deg) 6E(kcal/ mole) 

INDO 1. 00 2.45 40.5 9.1 
Minimal set"' 0.9384b 2.55 69 5.20 
Extended setC 0.946b 2.~7 40 4.7 
Extended set<! 0.916b 2.78 20 6.48 
Extended set" 0.917b 2.85 40 4.5 
Experimental 2.79±0.05f 20±5K 6.0 ±1. 5K 

(60-70)f 

aReference 16, Eo = - 99. 270225 a. u. 
bRHF distance not optimized for the dimer. 
cReference 17b, atomic basis set Eo = - 99. 99578 a. u. with 
scaled hydrogens. 

dReference 17b, split-out atomic basis E o=-100.01346 a.u. 
8Reference 58, Eo=-100.05638 a.u. 
fReference 59. 
gReference 60. 

and ab initio results is reasonable, and it is felt that 
the former method is presently an agreeable compro­
mise between accuracy and computation-time costs in­
volved in extensive band structure and structure-optimi­
zation calculations in solids. Hence, the method will be 
used with the SPC model throughout this paper. 

III. BAND STRUCTURE AND CONVERGENCE EFFECTS 

A. Band structure 

Hydrogen fluoride crystallizes at - 83. 4 °C in long 
zigzag chains. X- ray single crystal diffraction studies61 

could not distinguish between the space group D~ with 
two molecules per unit cell, in which the sense of the 
chains is randomly distributed relative to the crystal 
y axis, and the ordered structure D~ with four mole­
cules per primitive cell, in which each chain has four 
antiparallel nearest neighbor chains related by inver­
sion centers. Infrared and Raman spectra of pure crys­
talline HF and DF62 and of isotopic mixtures HF /DF63 
were consistent with the inelastic neutron scattering 
spectrum64 and suggested, on the basis of coincidence 
between Raman and ir lines in the stretching region, 
that the structure is D~~ with the primitive cell isomor­
phous with C2v ' Theoreticallatlice dynamical analysis62 

indicated that the interchain force constants are 1/50-
1/200 weaker than the intrachain hydrogen-bond force 
constant. Consequently, we treat the band structure in 
a single chain approximation with the C2v structure (Fig. 
2), although interchain forces could broaden the elec­
tronic bands in the solid. 1 

The minimum F-F distance established in x-ray 
studies is 2. 49 ± O. 01 A, and the angle a along the chain 
is 120. 0°. 61 The hydrogen positions could not be antici­
pated from x-ray studies, although the Fourier projec­
tion obtained indicated an asymmetrical hydrogen bond 
(the H-F distance is shorter than one-half the F-F dis­
tance) statistically distributed between nearest fluorine 
atoms. The occurrence of such a structure is also sup­
ported by the absence of a residual zero-point entropy 

in solid HF. 65 Fluorine NMR studies66 have suggested, 
from analysis of the second moment of the resonance 
line, an increase in the H-F distance in the solid rela­
tive to the isolated molecule bond length (R HF 0.95 ± O. 03 
A in the solid vs 0.917 A in the gas phase), 54 while the 
use of the empirical formula of Pimentel and McClel­
land31 for intramolecular vs intermolecular bond length 
correlations (originally used for oxygen-hydrogen bonds) 
with RFF = 2. 49 A reveals a molecular bond length RHF 

'" 1. 02 A in the solid. Since this increase in molecular 
bond length in the solid might have a significant effect 
on lattice force constants, cohesive energy, and atomic 
charges, 31-33 we treat solid HF with hoth its free-mole­
cule HF distance and with the optimized bond length in 
the crystal. 

Figure 3 shows the band structure of solid HF in the 
single chain approximation, the chain being oriented 
along the x axis with RHp' = O. 92 A, RFJ' = 2. 49 A, and an 
interchain angle of a", 1800

• Ten neighbors are con­
sidered in the lattice sums and 20 K points were used in 
the BZ sums. The self-consistency iterations are ter­
minated when band energies and atomic charges in suc­
cessive iterations agree within 10-5 a. u. and 10-4 e, 
respectively. Under these conditions, the energy bands 
are stable to within less than 0.001 eV. The one-elec­
tron energies of an isolated HF molecule with the same 
H-F distance are also indicated in the figure with the 
symmetry notation in the C2V point group. This notation 
will be used for the corresponding crystal orbitals as 
well. Symmetry combinations of the molecular Bloch 
functions 2u, 3u, 71", and 4u, which belong to irreducible 
representations of the HF crystal in the linear chain 
approximation, were given by Bassani et al. 1 The band 
structure of the fictitious crystals (H2)n and (F 2)n, cal­
culated with the same conformation, are also shown for 
comparison. 

The energy shifts of the molecular eigenstates at the 
edges of the BZ due to crystal-field effects that were 
neglected in the non-self-consistent calculation of Bas­
sani et al. 1 are shown to range from 2.38 eV for the 
lowest 2u band, - 4. 05 eV for the 3u band, and - 2. 42 
eV for the unoccupied 4u band, to a very small shift of 
- O. 04 eV for the 71" band. The degeneracy of the 1T level 
in the Coov group of the isolated HF molecule is not re­
moved by the crystal field of the linear solid (a = 180°). 
The crystal orbital1/iT(Y, z) involves pure fluorine 2Pz 
and 2py orbitals and does not mix with other orbitals at 
any point of the BZ. Consequently, this band has a very 
small dispersion and crystal-field shift. The 2u and 3u 
bands are composed of fluorine 2s, 2p", and hydrogen 
1s atomic orbitals. Owing to the substantial size these 
corresponding 2u and 3u molecular orbitals have in the 
free molecule along the axial direction, 67 the 2u and 3u 
bands also exhibit strong dispersion in K space. In the 
linear crystal case, the highest occupied state occurs 
at the center of the zone (r point) and is a 3u band. The 
conduction state minimum also occurs at the center of 

,the zone (at the 4u band), and a very large (25 eV) direct 
energy gap is obtained. The ionization potential of the 
crystal is reduced by 1. 4 eV relative to the isolated 
molecule ionization potential (20.1 eV for RHF = O. 92 A). 
The hydrogen bond formed in the crystal has a 1s-2s 
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Alex Zunger: Band structure for solid HF 1719 

bond order of 0.124 and a ls-2p", bond order of 0.165. 
The sublimation energy of the solid is calculated to be 
12. 1 kcal/mole, which is higher by 3.0 and 1. 2 kcal/ 
mole than the dimer and hexamer17a sublimation ener­
gies, respectively, calculated by the same method (Ta­
ble il). The fluorine net atomic charge increases from 
- O. 275 e in the free molecule to - O. 329 e in the crys­
tal. The significant changes in the one-electron ener­
gies, ionization potential, and charges in the solids 
reflect the strength of the hydrogen bond formed. 

In passing from the (F z)n and (Hz)n structures to the 
(HF)n structure, the 10", band of the (Hz)n is stabilized, 
while the 20", band of (Fz)n is destabilized in forming the 
(HF)n 20" band. The doubly degenerated fluorine 1T band 
of (F z)n is generally similar to the corresponding band 
in (HF)n, the former having more pronounced dispersion 
due to the stronger 2P~-2P~ interaction in the short F-F 
bond. When the total energy per molecule of these 
structures is optimized with respect to the chain angle 
Ci, both (Hz)n and (F z)n have a minimum at Ci = 1800 ± 10

, 

while the minimum for (HF)n occurs at Ci = 1220 ± 10
, 

which is very close to the experimental value of Ci = 1200
• 

1.0 .-----r-----, 
a b 

0.5 

0.0 

-2.0 

_ 2.5 .:.0;'-'0'--_--''--__ -----' 

FIG. 2. Planar zigzag chain 
forming the crystal structure 
of solid HF. Intramolecular 
and nearest intermolecular 
distances are denoted by d 
and a, respectively. The 
chain angle is denoted by a. 

This is partly due to the more favorable F-F interaction 
in the zigzag HF structure, and mainly due to the sta­
bilization effect of the next-nearest H-H interaction 
present in the hydrogen-bonded structure (HF)n. The 
absence of this effect in both (Hz)n and (Fz)n structures 
suggests this is a hydrogen-bond effect. The Etot(Ci) 
curve for solid HF is extremely flat, as was also ob­
served in similar calculations of HF dimers. 17a,l'lb.16.58 

The stabilization energy gained by bending the chain is 
only O. 2 kcal/mole. 

Several modifications occur in the band structure upon 
bending the linear chain. In the zigzag structure, there 
are two molecules in the unit cell. The degeneracy of 
the 1T(y, z) band is removed to yield two 1T(y) and two 
1T(Z) bands. The former bands now interact with the 0" 
manifold, while the 1T(Z) bands, belonging to the r z rep­
resentation (notation of Ref. 1), do not mix with any 
other bands and have a low dispersion. The highest 
occupied valence band is now the 1T(y) band, while the 
30- band that formed the top of the valence band in the 
linear case is lowered. The lowest state in the conduc­
tion band remains at the zone center and the band gap 

c 

FIG. 3. Band structure of 
(a), (F2)n; (b), (HF)n; and 
(c). (H2)n with a = 1. 57 A, 
d=0.92 A, anda=180°. 
Twenty K-grid points and 10 
orders of interaction were 
used. The band structure 
was iterated to full self­
consistency. The energy 
of the corresponding levels 
in the isolated molecule with 
the same d value and their 
point group representation 
notations are indicated. 

-7T 0 .7T _7T 
2" 22 o +7T _7T o .7T 

2' "2 2 
Wove Vector 
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1720 Alex Zunger: Band structure for solid H F 

decreases to 22.5 eV. The crystal. ionization potential 
is reduced by 2.2 eV relative to the ionization potential 
of the isolated HF molecule having the same bond length 
RHF • A much smaller lowering of the ionization poten­
tial. (0.7 eV) was obtained by Bassani et al. ,lowing to 
the neglect of crystal field effects. 

The Davydov splitting in the 40- band is 4.1 eV and is 
characteristic of strong intermolecular coupling. The 
charge distril~ution and the hydrogen-bond order are 
almost unchanged relative to the linear case. Owing to 
the very small stabilization gained by bending the HF 
chain, we now proceed to examine the convergence ef­
fects on the band structure by considering the linear 
structure. 

B. Convergence effects 

We start with the convergence of the band structure 
and charges as a function of the K grid used in Eqs. (9) 
and (10). After taking an interaction radius which cor­
responds to 1 order of interaction and interating the 
energy eigenvalue problem to full self-consistency, the 
band structure is evaluated for increasing cluster sizes, 
each time adding to the sum additional K points evenly . 
spread in the BZ. It should be noted that the method 
used here to evaluate the band structure is a real- space 
technique rather than a reciprocal-space representation 
like the tight-binding, APW, OPW, and Korringa-Khan­
Rostoker (KKR) methods in which the crystal wavefunc­
tion is chosen to be explicitly wave vector dependent by 
imposing translational invariance on it. Consequently, 
the inclusion of a given K grid in our calculation via 
Eq. (9) is obtained by increasing the number of atoms 
in the cell, keeping the interaction radius constant. The 
results of this convergence check are shown in Table 
lll. It is evident that at least six to ten evenly spread 
K points are required to obtain stability of the bands 
and charges within 10-4 a. u. and 10·4e , respectively. 
The 1T(Y, z) band, which is less dispersed in K space 
and has no direct interaction with other bands, con­
verges most rapidly; while more disperse bands, like 
the 2a, are changed more pronouncedly by using a high­
er mesh K grid. Similarly, the Hartree- Fock matrix 
elements of the orbitals that are relatively localized in 
real space (2s orbitals) are changed to a smaller extent 
than elements coupling orbitals that are more extended 

(like the 2p orbitals). The cohesive energy changes by 
as much as 14% in the fully convergent result, reflecting 
the net stabilization of all occupied bands due to the in­
crease in the K grid mesh. Similar results were also 
obtained when the interaction range was extended to in­
clude 3 orders of neighbors, except that in this case only 
results corresponding to at least seven grid points can 
be obtained and some of the characteristics of the be­
havior at low mesh grid are lost. 

In other self-consistent calculations on ionic-covalent 
solids, 41 it was found that when only a few high symme­
try points in the BZ are used relatively poor results are 
obtained, 39a since high-symmetry points are usually a 
poor representation of the totality of the BZ points un­
less a large density of states is accumulated around 
them. This can be demonstrated in HF by considering 
the Kp-grid dependence of the charge-bond matrix in 
Eq. (9). Its diagonal elements correspond to the atomic 
orbital charge contributed by all occupied bands in the 
ground state; 

O'oce 

P I!S.I!S == QI!S" L:L: 2ctsy(Kp)C 1!S1' (Kp)" L::Q I-'s(Kp)' (12) 
Itp y=l xp 

The fraction of orbital charge contributed by all occupied 
bands at a selected limited grid {Kp} is denoted by 

(13) 

Calculating, for instance, the 2s orbital charges on a 
given fluorine atom considering only zone-center (K" 0) 
contributions yields a value of 0.0593 for f. Addition 
of zone-edge contributions increases it to O. 1795, while 
sampling of ten evenly spaced points (including zone 
edge and zone center) increases it to 0.8342. Similar 
results are obtained for the other orbital charges. 
Since the dispersion of the Ql!s(Kp) charges is relatively 
large, sampling of evenly spaced Kp points is inevitable. 
In the SPC method, the K points appearing in the calcu­
lation are always evenly spread in the BZ, thereby gen­
erating a better representation of the charges and one­
electron energies. Similar large discrepancies in the 
band structure calculations were indicated by Drost and 
Fry39a in computing the bands of LiF with both a few 
symmetry K points and 89 evenly distributed K points. 

TABLE III. Convergence of band energies at Ko=O, Hartree-Fock matrix elements from the final SCF iteration, cohesive energy 
and net atomic charge as a function of the number of K-grid points. One order of interaction and converged SCF interations are 
employed. 

Number of 
nonequivalent E 2a (K=O) E3o(K=0) E .. (yz) (Ko= 0) E4a(K=0) AE QW t F 2s ,2. F 2Px,2Px F 2/>Y. 2/>Y 
points (a.u.) (a.u.) (a.u.) (a.u.) (kcal/mole) (e) (a.u.) (a.u.) (a.u.) 

3 -1.7601 -0.6881 - O. 7430 +0.2391 9.73 -0.3312 -1.4772 -0.5215 -0.7400 
4 -1.7643 -0.6872 -0.7432 +0.2364 10.24 -0.3281 -1.4773 -0.5210 -0.7407 
6 -1.7675 -0.6851 -0.7436 +0.2321 10.91 -0.3231 -1.4775 -0.5205 -0.7409 
8 -1.7676 -0.6850 - O. 7438 +0.2320 10.99 -0.3229 -1.4777 -0.5204 -0.7410 

10 -1.7677 -0.6849 -0.7438 +0.2319 11.12 -0.3227 -1.4778 -0.5203 -0.7410 
16 -1.7677 -0.6848 -0.7438 +0.2317 11.31 -0.3227 -1.4778 -0.5203 -0.7411 
20 -1.7677 -0.6848 -0.7438 +0.2317 11.32 -0.3227 -1.4778 -0.5203 -0.7411 
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FIG. 4. Dependence of the final Hartree-Fock diagonal matrix 
elements on the interaction order, a=1.57 A, d=0.92 A, and 
Ci =180 0

• The K sun and the SCF interaction cycles are con­
vergent. The value of the corresponding elements in the iso­
lated HF molecule with d= O. 92 A are indicated. 

We next examine the interaction radius convergence 
problem. The band structure is now calculated for the 
largest cluster (HF)20 employing 20 evenly distributed 
K points in the calculation of the charge matrix. The 
energy eigenvalue equations are iterated to full self­
consistency and the interaction radius is increased 
from 1 order up to 10 orders (23.3 A). 

The various diagonal elements of the final Hartree­
Fock matrix in the atomic orbital representation for 
increasing interaction orders is shown in Fig. 4. On 
the side of each figure, the corresponding elements cal­
culated from the final Hartree-Fock matrix of the iso­
lated HF molecule having the same internuclear'dis­
tance are indicated. 

The fluorine (2s, 2s) element is stabilized by the 
crystalline environment only to a small extent, behaving 
approximately as an unpolarized core state. The (2py, 
2py) element, which is degeneratewHh the (2P., 2P.) ele-

ment, is likewise only weakly stabilized, since the 2Py 
orbitals are perpendicular to the chain axis and interact 
only weakly with the rest of the orbitals. On the other 
hand, the fluorine (2P." 2p.,) element is markedly decreased 
owing to the strong interaction of the fluorine 2px mani­
fold along the chain axis. The matrix elements involving 
fluorine orbitals are all stabilized in the crystal, since 
the F atoms gain electronic charge relative to the iso­
lated molecule state. The hydrogen (ls, 1s) elements are 
destabilized, since the charge is donated by these orbit­
als in the crystal. The largest change in energy in the 
elements experiencing strong modification in the crystal 
occurs just after the first order of interaction is intro­
duced. A further increase in interaction radius has a 
less pronounced effect which tends to level off at around 
four-five interacting neighbors, with a net maximal 
change of 0.7 eV. In the nonlinear chain, the degener­
acy of the (2Py, 2Py ) and (2P", 2Pz) elements is removed, the 
resulting matrix elements of the 2Py orbitals now exhib­
iting a stronger shift from the energy value correspond­
ing to the free molecule, due to interaction with the 2s 
orbitals. It should be noted that in the LCAD scheme 
used, unoptimized atomic orbitals are employed. The 
use of fully optimized SCF orbitals would have increased 
the convergence rate obtained here, owing to the smaller 
extension of the molecular charge along the bond direc­
tion. 

Figure 5 shows the dependence of band energies at 
K = 0 on the interaction order. It is evident that the low 
energy 2a band that is separate from other bands con­
verges rapidly, while the other bands exhibit a slower 
convergence. Generally, 4-5 orders of interaction are 
sufficient to obtain bands that are stable to within 10-4 
a. u. The convergence of the cohesive energy and atomic 

-0.6845 r----,-.,.-,--r--r....,.--r-,-..,.-,.----, - 0.7435 

-0.6855 

_ -0.6860 

= 2 
~ -0.6865 
! 
w 

-1.760 

-1.765 

-1.770 

12345678910 
No. of Neighbors 

- 0.7440 

-0.7445 

-0.7450 -; 
~ ,.. 
f' 

-0.7455 ! 
w 

0.2330 

0.2330 

Q.2325 

0.2320 

FIG.· 5. Dependence of the band energies of K= 0 on the inter­
action radiUS, a = 1. 57 A, d = 0.92 A, and Ci = 1800

• The K 
sum and the SCF iteration cycle are convergent. 
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1722 Alex Zunger: Band structure for solid HF 

charge is shown in Figs. 6a and 6b, respectively. Four 
to five neighbors are sufficient to obtain the cohesive 
energy to within less than 0.1 kcal/mole from the con­
vergence limit result. The fluorine charge in the crystal 
is also compared with the cerresponding value for the 
isolated HF molecule in Fig. 6b. It is again demon­
strated that the charge redistribution in the hydrogen­
bonded solid is significant (here the change in the net 
charge amounts to 17%) and that the isolated molecule 
charge distribution should not be used in band struc-
ture calculations for such solids. 1 

The effect of increasing the number of interacting 
units on the charge redistribution accompanying the 
intermolecular hydrogen-bond formation may be dem­
onstrated by comparing "difference potential" maps of 
clusters of increasing size. Thus, the difference be­
tween the electrostatic potential generated by super­
imposing n free-molecule charge densities arid that 
generated by the charge density of a (HF)n structure is 
investigated for several n values. An open nonperiodic 
chain is used for simplicity. We utilize the method 
suggested by Srebrenik et al. 68 for the analytical solu­
tion of the Poisson equation for charge density that can 
be expressed in terms of Gaussians. The charge den­
sity p(r 1) obtained from the solution of the N-electron 
Schrodinger equation is given by 

p(r 1)= f>l!*(r 1r 2 ••• r N )>l!*(r 1r 2•• .r,,)dT" ·dTN • (14) 
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FIG. 6. Dependence of the coheSive energy per molecule (a) 
and the fluorine net charge (b) on the interaction order. Q~ 
indicates the fluorine net charge in the isolated HF molecule 
with d= O. 92 A. 
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FIG. 7. The difference in electrostatic Poisson potential be­
tween a linear (HF)n chain (a = 1. 57 A, d = 0.92 A, 0' '" 180 0) 
and a superposition of n unperturbed isolated molecule potentials 
with the same geometry. (a), (HFh; (b), <HF)5; (c), the end 
segment of (HFho. 

The Poisson electronic potential generated by this 
charge distribution is obtained from 

'\7 2 Ve1ec(r) = 41Tp(r) (15) 

and represents an electrostatic potential incorporating 
the quantum effects through the derivation of >l!. The 
total potential is obtained by adding the nuclear poten­
tials 

(16) 

to Ve1ee(r). The Slater orbitals used by us as basis 
functions can be easily expanded into Gaussians using 
the 6-G expansion given by Hehre et al. 69 It has pre­
viously been shown that potentials derived from INDO 
wavefunctions yield very good agreement with potentials 
generated from ab initio wavefunctions70 by numerical 
intergration. Since population analYSis oversimplifies 
the charge redistribution, and Simple charge-density 
maps are not sensitive enough to these effects,71 poten­
tial maps provide a much better indication of actual re­
arrangements occurring upon intermolecular bond for­
mation. 

Figure 7 represents the difference potential for clus­
ters with n = 3, 5,20. In the latter case, only the last 
seven HF units are displayed. It is evident that upon 
hydrogen-bond formation the H atom loses electronic 
charge and has a lower electrostatic potential, whereas 
the potential at the fluorine atom increases. Most of the 
intramolecular HF region manifests a buildup in poten­
tial; while close to the hydrogen atom the potential de­
creases, reaching a minimum in the intermolecular 
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region. A similar calculation on the (HF>S fragment 
[Fig. 7 (b)] shows that the potential differences are 
markedly changed at the end F-H ••• F segment from 
those in the corresponding (HF)zo case, indicating that 
charge rearrangement in the A-H ••• B mOiety depends 
also on more distant atoms in the structure. Thus, 
models that consider only A-H, B-H, and A-B inter­
actions l9, 20 are inadequate for a realistic description of 
phenomena in such (A-H-B)n hydrogen-bonded systems. 
Similar conclusions were suggested by Morakuma and 
Petersonn and by Kollman and Allen. 73 The redistribu­
tion effects. manifested by the HF chain are qualitatively 
similar to those calculated by Kollman and Allenl'lbfrom 
their HF-dimer charge-difference maps, although edge 
effects are probably very marked in their highly trun­
cated (HF)2 system. 

Tight-binding calculationsl that generate the crystal 
potential from direct superpositions of unperturbed free­
molecule charge densities completely neglect the poten­
tial rearrangement effects shown in Fig. 7 and probably 
cause a severe underestimation of binding effects, band 
dispersion, and crystal-field shift. It should be men­
tioned that the linear superposition approximation is 
probably a better one in the band structure Calculation 
of van der Waals solids, such as CF4, 74 where similar 
difference potential calculations have indicated very 
shallow and flat potential differences. 

We now turn our attention to the third convergence 
problem, namely the convergence of the self-consis­
tent cycle. In previously reported39;1,40.41 self-consis­
tent band structure calculations for atomic crystals, 
the crystal potential at any point in the unit cell is self­
consistently adjusted on the basis of the recalculated 
band functions. In molecular crystal calculations, 1.74 

TABLE IV. Values of diagonal Hartree-Fock energy matrix 
elements, band energies (at K"'O), charges and cohesive energy 
for different self-consistency (SC) requirements. Full SC in­
dicates that both intra- and intermolecular potentials are self­
conSistentlY adjusted. 

FuJI SC Intramolecular Full SC 
Property (12 iterations) SC (1 iteration) 

Diagonal elements (a. u. ) 

Fj!i!1s -0.1899 - O. 2230 -0.1982 

FiJ':2s -1.4798 -1.4776 -1.4709 

Fft';.2P, -0.5247 - 0.4939 -0.5305 

F(F) 
2~.~ 

-0.7428 - O. 7387 -0.7408 

Band energies at 
K~O(a.u.) 

E Za -1. 7692 -1. 7712 -1. 7682 

E3a -0.6868 -0.6771 -0.6816 

E. -0.7455 -0.7414 - O. 7449 

E 4a 0.2336 0.2257 0.2277 

Partial charges (e) 

Qi. -1.8710 -1. 8728 -1. 8646 

Q~x -1.4585 -1.4054 -1.4735 

Q:-'t~-~t -0.3235 -0.2752 -0.3381 

CoheSive energy 12.1 9.4 9.7 
(kcal/moie) 

usually only the intramolecular potential is taken to be 
self-consistent (using self-consistent free-molecule 
electrostatic potentials), while intermolecular inter­
actions are treated in a non-:-self-consistent tight-bind­
ing model. Electrostatic potential redistribution effects 
in the intermolecular region (Fig ~ 7) suggest that this 
might be a poor approximation for hydrogen-bonded 
solids in view of the large polarization effects in this 
region. 

Band energies at the zone center, diagonal Hartree­
Fock energy matrix elements, partial charges, and the 
cohesive energy, calculated with self-consistent adjust­
ment of both intra- and intermolecular potentials up to 
the convergence limit, are compared in Table IV with 
the results obtained by the method of Bassani et al, 1 

where only the intramolecular elements are self-consis­
tently refined. It should be noted that the true molecular 
anisotropy is retained in both our calculations, while 
in that of Bassani et 01. the potential was spherically 
averaged around each atom. In each case, 20 K grid 
points were used and 10 orders of interactions were 
retained. 

Diagonal Hartree-Fock elements are shown to devi­
ate significantly in the calculation, when only intramo­
lecular self-consistency is retained. The smallest de­
viation occurs in the 2s elements (0.06 eV) which rough­
ly represent core elements, and in the 2py elements 
(0.1 eV) which represent the energy of orbitals perpen­
dicular to the chain axis. Other elements exhibit a more 
pronounced change (0.8-0.9 eV for the Is and 2P" ele­
ments) resulting in deviations of the order of 0.2-0.3 
eV in the band energies. The net charge is somewhat 
low in the calculation r~taining only intramolecular self­
consistency mainly owing to the underestimation of the 
charge transferred by the 2p" orbitals along the hydro­
gen-bond direction. The cohesive energy is also shown 
to be grossly underestimated by this approximation. 

Treating both intra- and intramolecular self-conSis­
tency on the same level, we observe (Table IV, Col. 4) 
that even one iteration results in somewhat better agree­
ment with the fully convergent results, although the 
bands are still not fully stabilized and tne cohesive en­
ergy is small. 

Owing to the relatively rapid convergence of the K 
sums, of the interaction radius dependent energies, and 
of the self-consistent cycle, it is possible to tre~t var­
ious structural optimization problems such as confor­
mation, stability, and relaxation of the lattice around 
point defects with moderate computer time. In the fol­
lowing calculations we consider the fully convergent 
SCF results with 6 orders of interactions and 10 K 
points. Such a calculation requires 1. 3 min on a CDC 
6600 computer. 

C. Truncated-crystal models 

Due to the nonadditivity of bond energies and the 
strong edge effects manifested by HF dimers and tri­
mers, the electronic and structural properties of the 
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FIG. 8. Fluorine net atomic charges as a function of position 
along the nonperiodic (HF)n chain for n= 9, 11, 13, and 15. 
Experimental structure (a=1.57 A, d=0.92 A, and 0' =120°) 
is assumed. 

F-H.··F bond in crystals and polymers have previously 
been investigated on truncated-crystal models using 
(HF)6 clustersl6, 18,24 and (HF)s clusters. 17a The valid­
ity of the truncated-crystal model for hydrogen-bonded 
chains is examined by performing INDO calculations on 
(HF)n chains having the experimental crystal conforma­
tion !.RFF = 2. 49 A, a", 120 0

, and RHF assumed 0.92 A) 
and comparing the results with those obtained in band 
structure calculations for periodiC structures. The 
chain length examined extends up to 20 HF units. 

The fluorine net atomic charge for atoms labeled 1-15 
in chains with increasing length are plotted in Fig. 8. It 
is evident that for small chains (n:S 9) the number of 
atoms experiencing a "bulk" atomic charge is small com­
pared with the total number o! chain atoms and that edge 
effects propagate quite deeply into the "bulk". Only for 
n '" 15 do the three interior fluorine atoms have approxi­
mately equal charges. Taking this cluster size, we ex­
amine the effect of charge inhomogeneity on the Hartree­
Fock matrix elements in Fig. 9. Likewise, it is seen 
that only the central atoms exhibit an approximate con­
stancy in these elements. Thus, edge effects propagate 
some siX to seven molecular units into the bulk of the 
chains, as far as charges and energy matrix elements 
are concerned. 

The convergence behavior of the fluorine atomic 
charge of the innermost atom in each cluster and the 
energy per molecule as a function of cluster size are 
shown in Fig. 10. Owing to inhomogeneity effects, the 
values of band energies even in the largest cluster con­
sidered [(HF)20] still deviate significantly from the 
results obtained in a similar calculation using a periodic 
structure. The ionization potential for (HF)ZD is off by 
1. 2 eV from the periodic cluster value, the bandgap is 

overestimated by 2.5 eV, and the valence band is wider 
by 1. 8 eV. The atomic charge of the central atom in 
the cluster (Fig. 10), on the other hand, converges rea­
sonably, 5-7 orders of interaction being sufficient to 
assure its stability. 

Another demonstration of edge effects in such trun­
cated-crystal models is shown in Fig. 7, where poten­
tial difference functions are computed for chains of 
varying size. The electrostatic potential differences at 
the edges are seen to differ markedly from the chain 
center potentials, and only several HF units in from the 
edge are these perturbations damped. These penetra­
tion effects also indicate that surface states and point 
defect structures in hydrogen-bonded chains are not 
amenable to the band-edge treatments suggested by 
Levine 75 and Davison and Koutecky, 76 in which the defect 
perturbative effect is assumed to be localized on a sin­
gle atom. It is thus concluded that results of truncated-
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FIG. 9. Diagonal Hartree-Fock energy elements for the trun­
cated (HFhs chain as a function of the position of the atoms. 
Horizontal lines denote the corresponding F~,jJ. element in the 
crystal, as obtained in the convergence limit of SPC calcula­
tions. The experimental structure with a= 1. 57 A, d= 0.92 A, 
and O! = 120 ° is assumed. 
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FIG. 10. Dependence of the energy per molecule (E,,/n) and 
the net atomic charge (QFt) of the central fluorine atom on the 
number of molecules in the truncated crystal. Experimental 
structure assumed. (Ejn)ery and (Q}et)ery indicate the values 
corresponding to a periodic structure with the same geometry. 

crystal calculations employing a small number of hydro­
gen-bonded units (n < 15) should be applied with great 
caution to the examination of energetic and charge-de­
pendent properties of the corresponding infinite periodic 
structure. 

IV. STRUCTURE OPTIMIZATION 

The small-periodic-cluster method, utilizing a self­
consistent LCAO representation of the crystal orbitals, 
is capable of treating variations in unit cell structure 
and dimensions which differ from the experimental 
equilibrium values, without further assumptions on 
hybridization or interaction matrix elements needed in 
empirically adj usted pseudopotential17a or tight-binding m 
methods or interpolation schemes78 for band structure 
calculations. Owing to the explicit use of a self-con­
sistent scheme based on atomic rather than molecular' 
or crystal data,77.78 one can examine the stability of a 
given crystal structure against changes in unit cell 
dimensions or translations and rotations of molecules 
inside the unit cell, thereby maintaining the theoretical 
equilibrium geometry. Since, in constructing the wave­
functions in the SPC method, we did not use the space 
symmetry of the crystal to factorize the secular equa­
tions, it is possible to investigate within this scheme 
the energy associated with lattice distortions that do 
not preserve the symmetry of the primitive unit cell, 
such as those accompanying lattice mode vibrations. 
Thus, for a given distortion (e, g., symmetric stretch­
ing of the fluorine sublattice), we obtain the total crystal 
energy as a function of the distortion coordinates. This 
permits the calculation of force constants for various 
lattice vibrations. Such a calculation is very difficult to 
implement by band structure methods that employ sym­
metry-adapted wavefunctions explicitly. 

For minimizing the total energy, we employ the 
steepest-descent method, in which the displacement 

Ii~ in the vector ~ required to approach static equilibrium 
is iteratively determined by 

(17) 

where Etot(~) denotes the total Hartree-Fock energy 
[Eqs. (lla) and (llb)] of a crystal with structure param­
eters given by the components of~, and G is a scaling 
factor. The required derivatives are numerically cal­
culated from the total energy of a crystal where 10 K­
grid points and six neighboring interactions are con­
sidered. Near the minimum, the first derivative meth­
od is nonconvergent and a Simple mapping procedure is 
used. Differences in successive iterations of the order 
of 0.002 A and lOin distance and angles, respectively, 
are taken as convergence criteria. 

We first consider the optimization problems for the 
linear structure with Q' = 180 0

• We start with the ex­
perimentally obtained F-F distance (a +d) = 2. 49 A. 
Minimization of the total energy yields a fully planar 
structure with a a = 1.475 A and d = 1.015 A. This 
amounts to an increase of 0.009 A in the intramolecular 
H-F bond relative to the free molecule value obtained 
by the INDO method. The cohesive energy is 17. 8 
kcal/mole. A structure with (a+d) = 2. 49 A, but with 
d = 1.006 A corresponding to the HF bond length predicted 
by the INDO method for the isolated molecule. reveals 
a cohesive energy of 170 1 kcaI/ mole, indicating that 
the intramolecular bond rearrangement further stabilizes 
the hydrogen-bonded structure. The fluorine net atomic 
charge undergoes a significant modification upon forma­
tion and stabilization of the bond, becoming - O. 345 e 
compared with - O. 268 e in the equilibrium configura­
tion of an isolated molecule. This compares favorably 
with the values of - O. 327 e and - O. 225 e obtained by 
Del-Bene and Pople'6 for the monomer :lnd hexamer, 
respectively, by the minimal basis set ab initio 
method. Formation of the hydrogen bond with (a + d) 
= 2. 49 A, without relaxing the intramolecular bond 
length, lowers the free molecule net charge by 16%, 
and a further lowering by 6.2% accompanies the intra­
molecular bond rearrangement in the crystal. It should 
be noted that such effects are completely neglected by 
theories that use a phenomenological nonbonded atom­
atom or bond-bond potentials to compute the crystal 
conformation21-24 under the rigid molecule approxima­
tion. Similarly, the transferability of the atomic 
charges of the isolated molecule to the molecular crys­
tals, for computing electrostatic interactions in the 
hydrogen-bonded system, 24 seems questionable in view 
of the significant modifications the charges undergo in 
the solid due to charge transfer and intramolecular re­
laxation. 

Optimization of the crystal structure, subject to the 
condition that the intramolecular bond length d remains 
unchanged relative to the isolated molecule equilibrium 
state revealed by the INDO method, results in a = 1. 22 A 
(a + d = 2. 226 A) and a cohesive energy AE of 22. 2 
kcaI/mole. A similar optimization performed by Del­
Bene and Pople16 on the hexamer by the ab initio method 
revealed a structure with (a + d) = 2. 2 A but with a much 
lower cohesive energy of 12.7 kcal/mole. This is in 
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1726 Alex Zunger: Band structure for solid HF 

line with the tendency of the INDO method (see Table 
II) to overestimate the intermolecular binding energies 
significantly. 

A full optimization of the structure relative to all the 
out-of-plane angles of the molecules in the crystal and 
a, a, and d independently, reveals at equilibrium a fully 
planar structure with a =d = 1.125 A, a = 122 0

, and 
6.E = 29.5 kcal/mole. In view of the strong tendency of 
the INDO method to underestimate the intermolecular 
bond length and to overestimate the intermolecular 
cohesive energies, it seems that the results of the full 
optimization are unlikely to be correct and that attention 
should be focused on the trends obtained, rather than on 
the absolute configuration deduced. Nevertheless, it is 
instructive to observe the effects introduced by polar­
ization and charge transfer on the equilibrium geometry 
and charge distribution in the solid. For this purpose, 
we calculate the cohesive energy in the following three 
approximations: 

(a) First-order perturbation theory using the isolated 
HF molecule wavefunction as zero-order vectors to yield 
the stabilization energy E(1); 

(b) SCF theory for the periodiC structure with intra­
molecular bond length fixed at the isolated molecule 
value. The stabilization energy is denoted ESCF ; 

(c) SCF theory for the periodic structure with opti­
mization of the intramolecular bond length at each inter­
molecular separation. The stabilization energy is de­
noted E~~lF' and the optimization procedure indicated 
in Eq. 15 is used where ~ now indicates the intramolec­
ular bond lengths. 

The difference ESCF - EO) denotes the contribution of 
charge transfer and polarization15 (sometimes referred 
to as delocalization energy) to the total stabilization 
energy. Figure 11 reveals the dependence of E(1), 

EscF , and E;i. on the intermolecular distance a. 

O. 

min 

~ d (A) 
1 /.006 
2 1.006 

3 /.008 
4 /.010 

5 1.015 

w 6 /.030 

<J -20 7 /.040 

8 [075 

9 /.990 
10 1.125 

1/ 1.130 

12 /.240 

13 1.260 

lO 1.5 2.0 25 
a (A) 

FIG. 11. Contributions of E(1), the first-order interaction 
energy E SCF ' the full SCF energy in the rigid-molecule approxi­
mation, and E';;:lF' the SCF energy with optimization of the in­
tramolecular bond, to the crystal cohesion. The numbering 
on the curve E'i:;lF refers to the value of the optimized intra­
molecular bond length given in the insert. 
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FIG. 12. Fluorine net atomic charge as a function of inter­
molecular separation, calculated by first-order theory, SCF 
with rigid molecules, and SCF with relaxation of the intra­
molecular bond length. 

The first-order energy E(1) shows a minimum at 
a == 1. 33 A with 6.E = 12. 2 kcal/ mole. Charge transfer 
and polarization increase the stabilization energy to 
22.2 kcal/mole and shift the minimum to 1. 22 A. Re­
laxation of the intramolecular bond length further sta­
bilizes the energy to 29.5 kcal/mole, shifting the min­
imum to a== 1.125 A (R FF == 2. 25 A). Polarization and 
charge-transfer effects begin to be apparent at relatively 
long intermolecular separations (a - 3.3 A), while the 
effects introduced by relaxation are apparent only at 
distances shorter than a == 1. 8 A. The long-range effects 
introduced by the distortion of the molecular charge 
density in the solid were argued15 to arise from the 
direct Coulomb energy, while the exchange contributes 
to the charge transfer and polarization affects the en­
ergy only at relatively short distances. 

The fluorine net charge calculated from the first­
order treatment, the SCF procedure with rigid intra­
molecular bonds, and the SCF procedure with the fully 
relaxed conformation are compared in Fig. 12. It is 
evident that a first-order treatment allows only for a 
very small modification of molecular charges in the 
solid (brought about by the antisymmetrization of the 
unperturbed wavefunctions due to intermolecular ex­
change), while an SCF treatment drastically changes 
the molecular charges in the solid, yielding thereby a 
much stabilized system. Relaxation of the intramo­
lecular bond length introduces further adjustments in the 
atomic charges, minimizing the interpenetration of the 
charge clouds and thus decreasing the repulsive forces 
at short distances. 

We next consider the variation in potential energy of 
a HF lattice as a function of the collective proton dis­
placements coordinate R =RFF!2 -RHF , for several 
RFF distances. The results are shown in Fig. 130 

For all RFF distances conSidered, the crystal structure 
corresponding to minimum energy is planar, in accord 
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FIG. 13. Potential energy for collective proton displacement 
R = (iR FF - RHF) for a fixed fluorine sublattice with various 
RFF distances: RFF = (1) 2.73 A, (2) 2.49 A, (3) 2.40 A, (4) 
2.25 A, (5) 2.00 A. 

with the results of Del-Bene'and Poplel6 forthehexamer. 
It is observed that for large RFF values, a double mini­
mum is obtained with a barrier which decreases with 
decreasing RFF value. For small RFF distances, a 
single well is obtained whose stabilization is lowered 
when the RFF distance is further decreased. At the 
vicinity of the double well-single well transition;the 
potential for proton movement becomes flat and the 
protons exhibit strong delocalization. At the RFF range 
where a double well persists, the protons of the crystal 
could be viewed as collectively resonating between the 
two equivalent asymmetric positions and should reveal 
a statistical proton density distribution. Such a dis­
tribution is observed in the crystallographic Fourier 
projection, obtained in x-ray diffraction. 61 

The double well potential for the collective displace­
ment of the protons in HF is characterized by a high 
barrier (22.6 kcal/mole for symmetrica: displacement), 
suggesting that macroscopic changes in the polarization 
should not be observing up to the melting point (at 
kT= 0.38 kcal). Contrary to other hydrogen halides, 
the HF crystal does not exhibit any phase transition 
(judging by the heat capacity measurements, 65 as dielec­
tdc relaxation has not been measured) up to the melt­
ing point, due to strong hydrogen bonding resulting in a 
high barrier for proton displacement. This high barrier 
also prevents any measurable splitting in the lattice 
mode frequencies associated with proton tunneling 
across the potential well, as observed in less tightly­
bound hydrogen-bonded crystals. 79 

The statistical distribution of protons in the two equiv­
alent asymmetric positions should likewise not lead to 
any 'measurable residual entropy, assuming the pres­
ence of only HF molecules and no F - and (HFHt species 
in the chain. Although the measurement of residual en­
tropy in HF is complicated by the need to evaluate the 
polymerization entropy in the gas phase, it was con-

cluded on the basis of both spectroscopic and calori­
metriC measurements65 that no residual entropy is 
observed within experimental error. 

In further discussions we shall consider the optimized 
structure, subject to the condition that the RFF distance 
assumes the experimental value. The most stable struc­
ture thus obtained is with a = 1. 475 A, d = 1. 015 A, Ci 

= 124 0, and A.E = 18. 1 kcaI/mole. 

The experimental sublimation energy at OaK is diffi­
cult to estimate owing to the lack of reliable data to 
estimate the multimer heat capacity and the equilibrium 
constants for multimer formation in the gas phase. The 
thermochemical data measured by Hu et al. ,65 together 
with the data of Simons and HildebrandlO for the hexamer 
formation and that of BrieglebSl for polymerization rate 
constants, could be used to give a very rough lower 
bound of 10.7 kcal/mole for the static cohesive energy. 
The zero-point energy corrections were estimated by 
using a Simple Einstein Model for each of the optical 
modes and a Debye model for the acoustical modes. 
The optical phonon frequencies used are those measured 
by Kittelberger and Hornig62 for the zero-phQnon wave 
vector, and the acoustic Debye frequency was taken from 
the lattice dynamiCS calculations ofAxmann et al. 82 

Previous calculations on stabilization energies were 
performed on cyclic hexamers of HF with optimization 
of intermolecular geometry alone 16 or with the fixed 
theoretical dimer geometry. 17a These resulted in a 
stabilization energy of 12.7 kcal/mole and RFF = 2. 22 A 
for a planar structure, with RHF fixed at 0.9384 A in the 
minimal basiS set calculation, 16 and 10.92 kcal/mole 
in the INDO calculation with the fixed dimer geometry 
(RFF = 2. 45 A and RHF = 1. 00 A). 17a No complete struc­
ture optimization was previously attempted. 

The increase in the intramolecular bond and the 
bending of the chain observed in this study are charac­
teristic of the hydrogen bond formed. A comparative 
study made on (H2 )" chains with identical mesh for the 
K grid, interaction order, and self-consistency con­
vergence criteria, indicates that upon full minimization 
of a, d, O!, and the out-of-plane angles, the equilib~ium 
structure obtained is the planar chain with a = 1. 76 A, 
d = 0.747 A (compared with d = 0.746 A obtained by the 
same method for theisoiaredH2 molecule), and O! = 179 0

• 

The increase in the intramolecular bond and the chain 
bending are therefore negligible in this structure. On 
the other hand, structures that involve hybridization 
between 28 and 2p orbitals, as {CH-CH)n chains, are 
bent. 83 

The band structure of the optimized HF structure 
with a=1.475 A, d=1.015 A, and 0!=180° is compared 
in Fig. 14 with that of the unoptimized crystal structure. 
The valence bands are shifted to higher energies and 
the conduction band is shifted to lower energies upon 
optimization, resulting in a decrease of 3.2 eV in the 
energy gap and 1. 1 eV in the ionization potential. De­
spite this destabilization of the energy of the occupied 
one-electron bands, the optimized structure has a 
larger coheSive energy relative to the unoptimized 
structure. This results mainly from the effects intro­
duced by the H"n, Am matrix elements [Eq. (7)J, while 
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FIG. 14. Band structure of a linear HF crystal: -, optimized 
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electron repulsion effects [second term in Eq. (6)J tend 
to destabilize the optimized structure. The 4a conduc­
tion band is lowered in the optimized structure due to 
a decrease in its antibonding character. The main 
effects of stabilization and destabilization oCCur at the 
zone center, while at the edges of the BZ, modifications 
in the bands are less pronounced. The optimized struc­
ture is more polar than the unoptimized one owing to a 
larger charge-transfer accompanying its stabilization. 

The intramolecular stretching force constants in the 
HF crystal were computed by Kittelberger and Hornig62 

in an F - G scheme using the observed ir active stretch­
ing vibrational frequencies (antisymmetric mode-3400 
cm-!, symmetric mode-3061 cm-!, isolated molecule 
value-4138 cm-!). The symmetry-adapted force con­
stants thus calculated were 6. 5x 105 dyn/cm and 5. 3 x 105 

dyn/cm for the antisymmetric and symmetric vibration 
stretchings, respectively, compared with 9.6 x 105 

dyn/cm for the isolated molecule. We calculated 
stretching force constants by obtaining numerical de­
rivatives of the potential energy corresponding to anti­
symmetric and symmetric collective proton displace­
ments, in the vicinity of the calculated equilibrium. 
This yielded 7.2 X 105 dyn/ cm and 6. 1 x 105 dyn/ cm for 
the antisymmetric and symmetric stretching force 
constants, respectively, compared with 10.5 x 105 dyn/ 
cm for the isolated molecule. Thus, the clear decrease 
in stretching force constants upon hydrogen-bond forma­
tion is reproduced. 

The dependence of the RHF distance on the RFF dis­
tance at static equilibrium in the linear chain with 
a = 180 0 is plotted in Fig. 15. The region where RHF 

is a decreasing function of RFF is characterized by an 
asymmetric double minimum in the proton potential, 
while the region where RHF =RFF/2 is characterized by 
a symmetric single well potential. The transition be­
tween these two regions is difficult to establish accu­
rat ely , owing to the shallowness of the potential, and is 
indicated in Fig. 15 by the shaded area. A similar ex­
perimental correlation was observed by Pimentel and 
McClellan in O-H'" 0 bonds31 and calculated by the 
phenomenological 0-0, O-H, and O· .. H potentials by 
Reid. 2o It is interesting to speculate on the nature of 
the proton positions in fluorine hydrogen-bonded solids 
in view of this calculation. This leads to LiHF 2 
(RFF = 2.27 A), 84 KHF 2 (RFF = 2. 26 A), 85 and NH4HF 2 

(R FF = 2. 272 A)88 being characterized by a symmetric 
hydrogen bond, while KH2F 3 (RFF = 2. 33 A)87 is a border 
case having either a single symmetric minimum or a 
very low barrier in a double-minimum well. Neutron 
diffraction data are presently available only for KHF2, 88 
indicating indeed a central position for the hydrogen 
atoms. Similar correlations between F-F distance and 
the lattice Skeletal vibration frequency were suggested 
by Boutin et al. 64a 

The fluorine net charges as a function of proton loca­
tion in the chain are shown in Fig. 16 for various RFF 

distances. It is observed that the largest charge trans­
fer occurs for central proton positions, in which the pro­
ton polarizes its nearest fluorine atoms equally. For 
all RFF values, the fluorine charge decreases approach­
ing the corresponding free molecule value as the protons 
are more asymmetric. As the F-F distance decreases, 
the equilibrium proton positions tend to become closer 
to the center of the F-F bond, and the fluorine charge 
becomes strongly more negative. 84a This should in­
crease the magnitude of the dipole moment for F-H 
stretching resulting in an enhancement of the intensity 
of the vibration. 

We next examine the stability of the structure that we 
optimized with respect to unit cell parameters (out-of-

us 
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.~ ... 
rl 

IDS 
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2.0 25 • 3.0 35 
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FIG. 15. Dependence of RHF or RFF at static equilibrium, for 
the linear chain with a = 180 0 • 
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plane angles, chain angle, and RHF keeping RFF con­
stant at the experimental value), against displacement 
of a specific proton. Figure 17 shows the variation in 
the crystal potential (relative to the equilibrium of the 
unit cell) due to the displacement R H= (t R FF - R HF ) of a 
specific proton from its equilibrium position, while all 
other protons are kept in their usual a.symmetric positions. 
The proton that was initially at RH = O. 23 A in the perfect 
lattice tends to return to this position. The energy re­
quired to move this proton to RH = 0.23 A, thus forming 
an ionic Bjerrum defect composed of a symmetric (HFHr 
pair and a F- anion, is 83.90 kcal/mole. This defect 
is formed by rotation of a speCific HF moleCule in the 
crystal by 180 0 about its center or by the tunneling of 
a single proton to the opposite side of its potential well. 
The broken curve in Fig. 17 shows the potential energy 
of the crystal due to displacement of a specific proton 
while all other protons are kept in the symmetric posi­
tions, midway between two neighboring fluorine atoms. 

Several conclusions may be drawn from these results: 

(1) When all protons are in their asymmetric equi­
libriumpositions, the crystal is stable against displace­
ment of a single proton. 

(2) The displacement of a specific proton between its 
neighboring fluorine atoms in the F1-H'" F2 structure 
is critically dependent on the positions of all other pro­
tons in the crystal. This conclusion is validated by 
calculating the potential for a specific proton displace­
ment, when the protons up to the Jth neighbors of the 
specific proton are in the equilibrium asymmetric posi­
tion and all other protons (from the Jth to the 10th 
neighbors) are in a symmetric pOSition. The unbroken 
curve in Fig. 17 corresponds to J = 10 and the broken 
one to J = O. It is observed that starting for J greater 
than 2, the system exhibits an increasing asymmetry, 
resulting finally in the stable and strongly asymmetric 
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FIG. 16. Fluorine net atomic charge as a function of proton 
position R = HRFF - RHF) in the chain, for several RFF dis­
tances: RFF = (1) 2.00 A., (2) 2.25 A., (3) 2.73 A. 
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FIG. 17. Potential energy for specific proton displacement 
in an HF chain: -, all protons in asymmetric positions; Q 

= 1. 475 A, d= 1. 015 A.; ---, all protons in symmetric positions; 
a=d=1.245 A. 

structure for J = 10. This implies that a relatively 
long-range proton-proton coupling exists in this hydro­
gen-bonded system. 54 This results in a dependence of 
the forces acting on one proton, on the poSitions of 
other, rather distant, protons. This coupling is very 
similar to that suggested by LOwdin in the collective 
motion of protons in enzymes B9 and to the long-range 
coherence discussed by FroIich. 9o 

(3) The central position of all protons is characterized 
by a very small force constant for proton displacement 
(upper curve, Fig. 17). Alternatively, as more neigh­
boring molecules are situated in symmetric pOSitions 
around an asymmetric proton, the force constant deter­
mining its motion decreases. Collective proton dis­
placements can thus occur in such a chain structure 
by successive polarization of each proton by its neigh­
boring protons. This motion is probably very inefficient 
in HF crystals at low temperatures owing to the large 
energy involved in proton displacements in this strongly 
hydrogen-bonded system, but could probably take place 
in systems with weaker bonds. 

(4) Theories that do not account for long-range proton 
coupling, like the methods employing phenomenological 
atom-atom potentials with either no proton-proton 
couplingl9.2o or with a strongly decaying (Lennard-Jones 
or Buckingham) potential, 24 are probably unsuitable for 
describing extended hydrogen-bonded structures ex­
hibiting collective properties. 

V. SUMMARY AND CONCLUSIONS 

The small-periodic-cIuster method suggested permits 
both the calculation of the electronic structure of a per­
fect lattice and that of systems lacking full translational 
symmetry due to displacements of one or more atoms 
from substitutional sites. The method is thus capable 
of treating band structure as well as conformational 
aspects and point defect structure. The main conclusions 
that can be drawn from this work are as follows: 
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(1) Conventional tight-binding calculations employing 
unperturbed free-molecule charge densities or electro­
static potentials and neglecting crystal-field effects are 
inadequate for hydrogen-bonded solids such as HF, in 
view of the large charge residtribution accompanying 
the intra- and intermolecular rearrangements during 
the bond formation. 

(2) In computing the interaction matric elements, one 
should employ at least 5-6 K-grid points in the BZ sums 
and more than 3-5 orders of neighbors in the lattice 
sums to obtain stable bands. Likewise, the importance 
of both intra- and intermolecular self-consistency in 
the calculations is demonstrated. 

(3) Truncated-crystal models are inadequate for 
treating the electronic structure of such hydrogen­
bonded crystals, unless a very large number of mole­
cules is employed. Edge effects, characterized by a 
strong charge inhomogeneity at the surface, propagate 
quite deep into the bulk of the cluster, thereby perturb­
ing the perfect lattice properties to a significant extent. 
Thus, application of periodic boundary conditions can­
not be avoided. Systems that exhibit smaller charge 
rearrangement upon formation from isolated molecules 
(molecular van der Waals solids) are probably more 
amenable to truncated-crystal models. 

(4) The potential energy and electrostatic interactions 
of a proton between two neighboring electronegative 
atoms are critically dependent on the configuration of 
other protons. Phenomenological models employing 
atom-atom interactions with either no H-H potential or 
with a strongly decaying covalent H-H potential are 
likely to be unsuitable for such hydrogen-bonded system. 

(5) The use of the semiempirical all-valence electron 
INDO method in conjunction with the small-periodic­
cluster representation is easy to implement in practice 
and yields, with reasonable computing time, a wealth 
of information regarding electronic energies, charges, 
etc. However, owing to the inherent apprOXimations 
underlying the INDO method, only semiquantitative in­
formation can be obtained on properties such as equilib­
rium conformation. If more accurate results are re­
quired, ab initio methods cannot be avoided. 

The general aspects of the hydrogen bonds in solid 
HF (formation of disperse energy bands, intramolecular 
bond relaxation, decrease in stretching force constants, 
asymmetry of the proton potential, etc.) are clearly 
demonstrated. Further experiments on optical proper­
ties, photoelectron scattering, neutron diffraction, and 
dielectric relaxation would serve to further clarify these 
electronic and structural features of the hydrogen bond 
in solid HF. 
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