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ABSTRACT

Ordered phases have been recently predicted and observed in alloys of tetrahedrally
bonded semiconductors. Using first-principles local-density total energy calculations,
we study the structure and stability of both ordered and disordered phases of semicon-
ductor alloys. Our calculations show that ordered alloys are stabilized by the reduction
of microscopic strain and chemical interactions. If the alloys are grown on a substrate,
an additional elastic energy term affects their relative stability.

Introduction

Alloys of tetrahedrally bonded semiconductors (e.g. AlyGa;_xAs, SiyGe;_y, or
GaAs,P;_x) are extensively used in electronic and opto-electronic devices using het-
erostructures and superlattices, like semiconductor lasers or infrared detectors, where
the availability of a continuous range of band gaps (or of any other property) is ex-
tremely useful. These semiconductor alloys were believed to exist only in a disor-
dered phase, until the recent surprising prediction® and observation? of the existence
of ordered phases showed that their phase diagram is more complicated than at first
suspected.

Previous theories®* of the stability of semiconductor alloys justified the lack
of observation of ordered phases by assuming that isovalent atoms differed essentially
only in their size. The strain due to the accomodation of atoms of different size gave a
positive contribution to the enthalpy of mixing of the alloy A H*"*" = NQz(1—z) > 0,
where N is the number of atoms in the mixed (sub-)lattice, and 0 is the interaction
parameter that scales with the square of the lattice mismatch between the end-point
compounds. When we combine this form of the enthalpy with the entropy of mixing
of a random distribution of atoms AS = —kN(zlnz + (1 — z)In(1 — 7)), we obtain
a regular solution thermodynamic model. According to the phase diagram calculated
in the regular solution model with a positive definite enthalpy of mixing, the alloy
disproportionates at sufficiently low temperatures, forms a solid solution at higher
temperatures, and does not have any ordered phases.

The strain model should not be expected to hold if the chemical difference
between the atoms in the alloy is significative, and as we will show later, it is not
relevant for ordered alloys. A notable example of an ordered isovalent “alloy” is the well
known compound SiC (isoelectronic with SiGe), which is observed in several ordered
structures with different hexagonal stacking sequences, including the zincblende and
wurtzite structures. However C is a first row atom that can be expected to have a
chemical behaviour distinct from the isovalent atoms from the second and higher rows of
the periodic table. Order-disorder transitions between the chalcopyrite and zincblende
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structures are well known for ternary semiconductor compounds® like CulnSes, but
in this case the ordering occurs between non-isovalent and therefore strongly different
atoms. We notice that order-disorder transitions have also been observed® for isovalent
atoms in the non-tetrahedrally bonded CdZn.P, semiconductor, but in this case even
the disordered alloy has already three crystallographically distinct cation sites.

The observation of ordering in isovalent tetrahedrally bonded semiconductors is
very recent (SiC excepted), but there are already several known ordered semiconductor
alloys?7~1° (Table I), including IVAIVE, IIAMIBV, and III VAVE alloys, grown by
different methods, and having both small and large lattice mismatches. This variety
may indicates that ordering is a general feature of semiconductor alloys, although it is
certainly difficult to obtain. The difficulty in the growth of an ordered semiconductor
alloy is due to its the small diffusion rate: at high temperatures the disordered solid
solution, with its large entropy of mixing, is the equilibrium thermodynamic phase of
the alloy, while at low temperatures, where the thermodynamically stable state is either
the ordered phase or the segregated phase, the diffusion rate could be so slow that the
alloy may be inhibited to reach its thermodynamic equilibrium within the laboratory
time scale. The temperature range where ordering can be obtained by annealing could
be extremely narrow, or even nonexistant. During growth however, the surface mobility
could be sufficient for the ordered alloy to form, as long as it is possible to grow it at
temperatures lower than the ordering temperature. Another possibility to significantly
increase the diffusion rates is the use of impurities with the same effects!! as the Zn
and Si impurities in Al;_,Ga,As.

Table I

Experimentaly observed ordered semiconductor alloys.

Alloy Structure Growth | Temperature Remarks
method of growth C
AlGaAs,? CuAu-I VPE,MBE ~T700
AlGaAs,® CuAu-I LPE X-ray diffraction
SiGe® CuPt MBE ~550 anhealed
GapAsShd CuAu-I VPE ~600
Ga;AsSbd Chalcopyrite VPE ~600
IngGaAs,® (?) | Famatinite LPE ~630

@ Ref. 1; b Ref. 8; ¢ Ref. 7; ¢ Ref. 9; ¢ Ref. 10
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Theorethical framework
Our theory of ordering in semiconductor alloys®:??:12 is based on extensive total
energy pseudopotential local density calculations with a plane wave basis set!4.

For ordered alloys we minimize the total energy with respect to the structural
parameters (e.g. lattice constant) obtaining both the structure parameters at equilib-
rium, and the binding energy. The enthalpy of formation of an A,B,,Cp4ym ordered
(O) phase (at O temperature and pressure) is then given by

o] — eq eq €q
AHY 8. Cosm = Ex B, Cny, — (REAGC + mMERG), (1)

where E¢7 is the binding energy at equilibrium (eq) of the phase a. To select from the
infinite number of possible ordered phases of adamantine compounds (we will restrict
ourselves to the tetrahedral structures with two fcc sublattices, that is, we will not
consider compounds with different hexagonal stacking like wurtzite) the few that are
more likely to be the most stable, we use the Landau-Lifshitz theory of structural phase
transitions'®. These structures have the following remarkable properties: (z) they are
the only ones where the order-disorder transformation can (but need not) be of second
order!®, (i7) all (and no others) are stable with respect to antiphase boundaries’®, and
(137) they can exist over a wide concentration range!®. This last property is important
if we want to observe ordering in a non-stoichiometric alloy. Figure 1 shows four
(out of eight) of the Landau-Lifshitz structures for a pseudobinary alloy, as well as the
zincblende disordered phase. It is remarkable that all the observed ordered alloys listed
in table I are Landau-Lifshitz structures (see fig. 1).

For the disordered structures we use a model where the properties of the dis-
ordered alloys are obtained as an average over the same properties in the ordered
structures!’!7. We consider that in a pseudobinary alloy A,B;_,C the five possible
distributions A4_,B, of atoms A and B around an atom C (the A and B atoms are, of
course, always surrounded by four C atoms) exist for each composition £ with a random
probability P*(z) = (:) (1 — z)*~", and that the binding energy of the disordered
(D) alloy at composition z is obtained by minimizing an average over the energies of
ordered compounds?,

EP(z) =min; 3" P"(z)Ba, 5.0, (). (2)
n=0

Here E(a) is the energy of the reference ordered compounds (with a unique distribution
of A and B atoms around every C atom), at a given lattice constant a, but minimized
with respect to all other structural parameters. The minimization of equation (2) gives
also the lattice constant of the disordered alloy, a(z) and can be used to calculate the
enthalpy of formation of the disordered alloy,

AHP(z) = EP(z) — (zE3% + (1 — z) E5L). (3)
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Figure 1

Four possible ordered siructures (out of eight) and the zincblende disordered structure
of a semiconductor alloy Aj_xbxC or AB;_.C; are shown in the top of the figure.
Structural information (space group and atomic positions according to the International
Tables for Crystallography) is given in detail, and the diffraction pattern is shown.
We also indicate if an artificially grown supperlattice has the same structure as these
phases, e.g. if one alternates the growth of one AC layer, with one BC layer in the
(0,0,1) orientation , i.e. a monolayer superlattice — (1,1), one obtains the CuAu-I
ordered structure.

Microscopic strain

It is not possible, in general, to accomodate two different bond lengths in a
compound (e.g. the Ga—As and the In-As bond lengths in GazIn;_;As), and at the
same time keep all the bond angles at their tetrahedral values. A compromise must
be obtained and the deviations from the ideal values of the bond lengths and bond
angles have an energy cost that we call’»1%13 the microscopic strain (ms). Consid-
ering the composition dependence of the two bond lengths in an alloy Rac(z) and
Rpc(z), (to avoid complicated notations we will, for the moment, assume that we have
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a pseudobinary A;B;_,C alloy, the extension to other cases being trivial), two limiting
possibilities were recognized quite early. First, Bragg’s and Pauling’s (P) notions that
atomic radii are approximately conserved quantities'® (and are hence transferable) in
different chemical environments suggested that the bond lengths are composition inde-
pendent and equal to their ideal values, RKC = dOAc and -R}{jc = d%c, of their end-point
compounds. On the other hand, Vegard’s discovery!® that the alloy lattice constant
depends linearly on the composition a(z) = zaac + (1 - z)asc, has led many workers
in the field, in particular those using the Virtual Crystal Approximation (VCA), to
assume that since the bond lengths in the pure zincblende crystal are proportional to
the lattice constant, d3o = 34@aAc, the same would be true for the alloy, obtaining

identical bond lengths, RYS4(z) = RES4(z) = léga(z). We find it useful to express
the true average bond length in the alloy in terms of a dimensionless relaxation param-
eter €¢(z), which is equal to 1 in the Pauling limit and equal to 0 in the VCA limit, and
is defined by?2°

Rac(z) = e(z) RXc(z) + (1 — €(z)) RXE* (2). (4)

The bond lengths calculated! for ordered Ga,Ing_,P4 and for?! Ga,Iny ., As4
are almost independent of the particular structure or stoichiometry (Fig. 2), as Bragg
and Pauling would predict, € ~ 1. To our knowledge, there is no experimental data for
ordered alloys that could confirm our prediction. For the disordered alloy we calculate
the average bond lengths by averaging over ordered structures using a method similar
to Eq. 2. First for each reference ordered compound A, B4_,C4 we calculate the bond
lengths R} (a) as a function of lattice constant and then we average using the known

relationship between bond length and composition!?,

4

Rac(z) = ) _(4 - n)P"(z)R}c(a(2)), (5)

n=0

where the factor (4 — n) is just the number of AC bonds in unit n. The calculated
results for GazIn;_.P (Fig. 2) show a small but non negligible deviation from the
Pauling values with €(z) ~ 0.8. Similar values, 0.65 < ¢(z) < 0.85 have been obtained
for several disordered semiconductor alloys both by Extended X-ray Absorption Fine
Structure!”?2 (EXAFS) , and by empirical theories!7:20:23,

Inspection of Fig. 2 tells us immediatly that the microscopic strain contribution
to the enthalpy of mixing is larger for the disordered phase than for the ordered phases,
AHP (z) > AHS,(z). The actual numerical values calculated for Gag sIng 5P are
AHP (0.5) = 13meV /atom and AHS"*!¢: = 2 meV/atom, (here Chalc. denotes chal-
copyrite ordering). If the two atoms, however, have very similar sizes as in Ga;Al;_;As,
then the microscopic strain is negligible, AH,,; = 0. In the binary systems SiC and
SiGe there are two very special Landau-Lifshitz structures: the zincblende and one of
the Cu—Pt orderings that have exactly zero strain. The other ordered structures and
the disordered diamond structure are, of course, strained??. Hence the existance of
SiC despite the large lattice mismatch between Si and Diamond C (SiC has only one
kind of bond which can take any desired length by adjusting the lattice constant of the

crystal).
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Figure 2

Percent change in the nearest-neighbour bond length in ordered phases (black dots)
are compared with the change in random alloys (broken line).

Chemical interaction

The microscopic strain is not the whole contribution to the enthalpy of formation
of semiconductor alloys. We define! the chemical interaction (Ch) contribution to the
enthalpy of formation as the difference between the total enthalpy of formation and
its strain contribution. For SiC which has zero strain, its large enthalpy of formation
is exclusively of chemical origin'?, AHsic = AHSE = —0.33 eV/atom. This large
value is due to the charge transfer!? from Si to C when the Si-C bond is formed. For
Zincblende SiGe, which also has zero strain, the charge rearrangement is different!2,
giving a small positive enthalpy of formation'? of AHSC’;’C";e = 7 meV /atom, whereas
for GalnP,, a strained compound, we find! a negative chemical contribution to the
enthalpy of formation, /_\Hg;‘mpz = —17 meV/atom.

The energy dependence on the bond length (Eq. 2) is mainly a strain effect,
and thus when the chemical energy of a disordered alloy is calculated a value similar to
the the chemical energies of the ordered phases is found. It has been recently claimed,
using a Madelung type of model?®, that the charge fluctuations in the disordered phases
should give a large positive contribution to the enthalpy of mixing that is not included
in equation 2. The model does not treat the screening self-consistently and it should
be checked, if it can explain the experimental scaling of the enthalpies of mixing,
deduced from the solidus-liquidus lines for the disordered phase, with the square of
lattice mismatch. The microscopic strain energy, which scales with the square of the
lattice mismatch, gives the biggest contribution to the enthalpy of mixing of disordered
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semiconductor alloys, explaining why theories that consider only this contribution®*
are successful in predicting the experimental values for the disordered phase.

The chemical contribution to the the enthalpy of mixing can have either a posi-
tive or a negative sign in contrast to the strain energy that is always positive. The full
enthalpy of mixing is the sum of the strain and chemical parts

When the enthalpy of mixing of an ordered alloy is negative like in SiC or GalnPs, then
the ordered phase is stable below an ordering temperature T¢ ~ (AH? —AH°)/ASP,
where for an estimation of the mixing entropy of the disordered phase, ASP we can use
the value for the random alloy. More accurate ordering temperatures can be obtained
by using a better thermodynamic model for the entropy of mixing?®?7, in particular
combining total energy calculations with the cluster variational method??. When the
enthalpy of formation of the ordered phase is positive like in the case of SiGe then

the segregated phase is the stable phase below the segregation temperature 75 ~
AHP/ASP.

Epitaxial strain

In a pseudomorphic epitaxial (Ep) growth of a sufficiently thin layer the lattice
constant in the two directions parallel to the interface is the same in the layer and in
the substrate. This constraint modifies the stability of the layer, adding a substrate
strain energy (ss), and as pointed out by Ourmazd and Bean” in their experiments
with SiGe epitaxial layers, the epitaxial strain can drive and stabilize the ordering in a
semiconductor alloy. We will illustrate this point with our calculations for SiGe. There
are only two adamantine Landau-Lifshitz ordered structures that have zero strain:
the zincblende (ZB), observed in SiC, and the Rhombohedral (RH) CuPt ordering
observed in SiGe. All other structures?? are discriminated against by the microscopic
strain energy. The difference between the two structures is that zincblende has only
one kind of bond between different atoms whereas the rhombohedral phase has several
kinds of bonds, including 25 % between like atoms. Therefore, when the formation
of bonds between different atoms is favored, like in SiC, the ordered zincblende phase
is the most stable of the two, whereas when the formation of bonds between different
atoms is unfavorable like in SiGe, the rhombohedral structure is the less unstable, the
stable phase being the dissociated form (fig. 3). When we consider SiGe epitaxial on
Si we should consider two references for the enthalpy of formation: (i) the bulk Si and
Ge are used (the reference we used up to now), in this case the epitaxial is even more
unstable by the epitaxial strain energy AE,, (fig. 3); (i) the epitaxial Si and Ge, in this
case Ge has a larger epitaxial strain energy than the alloy and the new the reference
line for the measure of epitaxial enthalpies moves up ( fig. 3) sufficiently to make the
ordered rhombohedral alloy stable by § H. The ordered SiGe alloy is thus metastable:
it is stable with respect to epitaxial products of disproportionation but it is unstable
with respect to diffusion into the substrate. We stress again that our calculations show
that the stability of the rhombohedral phase with respect to the zincblende phase is
due to the different number of bonds between identical atoms.
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Figure 3

Energy of bulk Ge, zincblende (ZB) SiGe, and rhombohedral (RH) SiGe as function of
the lattice constant a, and for epitaxially (Ep) confined (to as; = 5.387A) Ge, ZB SiGe
and RH SiGe as a function of normal lattice constant ¢ . For each curve the zero of
the energy scale was adjusted such that the minimum of the curve gives the enthalpy
of formation. The shaded area accentuates the negative enthalpy § H for Ep RH SiGe.

Conclusions

We studied the ordering in semiconductor alloys with first principles total en-
ergy calculations. The ordering is driven by the reduction of the microscopic strain
and by other chemical interactions (e.g. charge transfer) for the bulk alloys. For epi-
taxially grown alloys the influence of the epitaxial strain should be taken into account.
The calculations are sufficiently sensitive to discriminate between the different possible
orderings available to the alloy.
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