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Effect of chemical and elastic interactions on the phase diagrams
of isostructural solids
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It is shown how the introduction of volume-dependent elastic interactions into lattice models of
order-disorder transformations, in addition to the familiar constant-volume interactions (analogous
to Ising "spin energies"), leads to qualitatively new features in a binary A Bi —„phase diagram.

The formation of an ordered compound 2 8~
(M =const) from its isostructural constituent elemental
solids A and 8 can be conceptualized to consist of an "elas-
tic" step, where the separate end-point solids A AM—
and 8 BM are compressed and dilated, respectively, to
the cell dimensions of A B~ through an investment of
an elastic energy hF, followed by a "flip" of the necessary
number of A and 8 atoms on these prepared lattices, in-
volving a "chemical" (or, "substitutional" ) energy e I ), to
create 8 BM — . Many classical models, ' constituting
the working paradigms of metallurgy and structural chem-
istry, have rationalized the stability (dF+e & 0) or
instability (hF+e )0) of ordered phases by represent-
ing the balance between elastic (d F) and chemical (e) en-
ergies through phenomenological constructs, such as the
mismatch between the atomic radii' of A and 8 (for the
elastic energy), and various scales of electronegativity
mismatch (for the chemical energy). However, while
the temperature-composition phase diagrams of even
binary isostructural solids manifest far more diverse phe-
nomena than merely the existence or nonexistence of or-
dered phases (disordering, miscibility gaps, spinodals,
etc.), the complexity associated with the configurational
degrees of freedom underlying such phenomena has gen-
erally limited their modeling to the description of order-
disorder events on a fixed lattice, common to A, 8, and

BM—,i.e., including only substitution energies
Inspired by the analogous spin- —,

' three-
dimensional Ising problem, such efforts have generally fo-
cused on the determination of a set of fixed "chemical en-
ergies" e™(analogous to the Ising many-spin interac-
tion parameters) which best describe actual phase
phenomena through approximate solutions of the
configurational Hamiltonian, neglecting, however, hF.

Whereas the introduction of an ever increasing set of
("multiatom") interaction parameters je( )j, exten-
sion of the range of interaction to second, and even further
neighbors, ' " introduction of ad hoc composition-de-
pendent interaction energies e I (x), and improvements in
the methods of solution (Monte Carlo simulations, ' "
high-temperature expansion ) have generally resulted in
a greater degree of realism, " such models often produce
but a "caricature of real alloys, "' even for the simplest
and best-studied isostructural face-centered-cubic (fcc)
systems. This state of affairs is manifested, among others,
by the inability of constant interaction energy (i.e. ,
hF =0) lattice models to predict from the same Hamil-

tonian9 both order-disorder critical temperatures (decided
solely by e )) and excess thermodynamic energies (e.g.,
mixing enthalpies, decided primarily by' '3 AF), the oc-
currence for fcc lattices of a triple point at abnormally low
temperatures, " and the systematic failure to obtain real-
istically narro~ single-phase regions at low temperatures
for ("antiferromagnetically") ordered structures 9 or to
predict the coexistence of miscibility gaps with ordering.
We will show that these shortcomings reflect primarily the
omission of elastic eA'ects (b,F)—the single most impor-
tant mechanism of atomic packing in phenomenological
models of structural chemistry' and in semiconductor al-
loy phase diagrams. ' '

We start by outlining the way in which the phase dia-
gram'of A, B ~ can be constructed from the interaction
energies in this system. ' To do so, we define clusters
of lattice points within which interactions are to be re-
tained. The largest cluster size M will decide the max-
imum order of multisite interactions (in this work, includ-
ing one, two, three, and four body) within the interaction
range one is prepared to consider (e.g. , nearest neighbors).
Each of the M sites of a cluster is occupied either by an
atom 2 or 8. By periodically repeating each cluster, one
obtains a set of ordered structures whose sublattices are
generated by the repetition of the cluster sites. For each
ordered structure n we define the volume-dependent (V)
excess energy relative to the constituent solids A and 8 as

&E(n, V) =E(n, V) —X„Eg(Vii) —(I —X„)E~(Vg), (I)
where n specifies the set of occupations (by A's or 8's) of
the M cluster sites (or of the M sublattices), E~ and EIs
are the energies of pure elemental solids A and 8 at their
equilibrium volumes Vz and V~, respectively, and X„ is
the concentration of the 8 atoms in either the cluster or
the corresponding ordered solid. At equilibrium [where V„
satisfies dhE(n, V)/d V =0] the excess energy simply gives
the formation enthalpy hH " of this ordered crystal from
its constituent elemental solids.

For a disordered alloy we define the state of order o as
one of the 2 possible arrangements of atoms A and 8 in
the lattice with N sites. For such nonperiodic disordered
arrangements of atoms, one counts the number of clusters
with a given set n of its M site occupations. One thus
defines the frequency g„(o) of occurrence of the cluster
occupation n as the number of such clusters divided by the
total number of clusters with M sites. (For example, in an
fcc alloy, we take the basic cluster as a tetrahedron of
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nearest neighbors, i.e., M=4. ) In the alloy of N sites
there are 2X tetrahedra whose vertices are distinguished
by the sublattice to which they belong, and therefore there
are 2 =16 different cluster occupations n, or distinct or-
dered structures. The excess energy of the alloy in the
state of order cr is then written in terms of the excess ener-
gies of the ordered structures AE(n, V) and the frequen-
cies („(o)as

g„g„(cr)= I, one verifies that up through the linear
(k = I ) term AE(o, V) depends on x but not on o. On the
other hand, the higher powers of X„ lead to terms in Eq.
(2) which depend on the state of order o. However, if the
equilibrium volume is to depend only on x, the functions
Yt, (V) for k ~ 2 must be volume independent. Thus, we
get the form of Eq. (4) and further show that g(x, V) is
linear in x, or that

AE(o, V) =g g„(cr)AE(n, V) (2) g (x, V) = (I —x )Fg (V) + xFtt (V) (s)

Letting P„(x,T) =(g„(cr)) be the canonical ensemble
probability of finding the cluster occupation n at the tem-
perature T and concentration x =Q„P„(x,T)X„, the equi-
librium free energies are F(x, T) =AH(x, T) —TS(x, T),
where the mixing enthalpy of the alloy is

hH(x, T) =QP„(x,T)AE(n, V, ) (3)

S(x,T) is the entropy, and V,q(x) is the alloy's equilibri-
um molar volume [which minimizes F(x, T ) ]. The
knowledge of [AE (n, V) )—replaced in many previous
models, " by a set of constants Ie "

l —can then be used
through standard methods ' to construct F(x,T) and
hence the whole phase diagram.

Rather than use constants for AE(n, V), we will now
show that the effective energies to be used in phase dia-
gram calculations [Eq. (2)1 can be separated into a
volume- and composition-independent ("chemical" ) part
et"~ and a volume-dependent but n-independent ("elas-
tic") part g(x, V):

~E(o, V) =g g„(o)e&"'+g(x,V), (4)
n

if the equilibrium molar Volume V,q(x) does not depend
on the state of order'5 o. Conventional Ising alloy mod-
els " retain only the first term in Eq. (4). Whereas the
second term clearly does not affect constant-composition
order-disorder phenomena (since g is n independent), we
will show that g(x) has a dramatic effect on those aspects
of the phase diagram that represent multiple-phase coex-
istence, and that it cures many of the shortcomings of con-
ventional Ising models of alloys even if only nearest-
neighbor chemical interactions are included.

To verify that the assumption of state-of-order indepen-
dence of volumes leads to Eq. (4), one first considers two
ordered structures n and m with the same concentration
(X„=X~). Mix these ordered structures with a third one
l, to form an alloy with excess energy

AE(o, V) =ad E(n, V)+bhE(l, V)

(and an analogous expression for mixing l with m ). If the
equilibrium volume is to be the same for both alloys
(because they have the same concentration aX„
+bXt =aX +bXt), then AF(n, V) and AE(m, V) can
differ only by a volume-independent constant. This shows
that the difference &F. (n, V) AHt"l depends on n only—
through its concentration X„,or that it can be expanded in
a power series gk Yk (V) X„. Inserting this expansion into
Eq. (2), and using the concentration x =g„g„(cr)X„of
the 8 atoms in the alloy and the normalization condition

from which one obtains upon integration
&x(v)

and

F„(v)=
4 0

xZ(x) dx

F, (V) = (I —x)Z(x)dx,~ x(v)
where x =X(V) is the inverse function of V = V,q(x) and

il' I 2

Z(x) = " 8(x)/V, q(x) .

At equilibrium, when dg(x, V)/dV=O, the volume disap-
pears from the equation as x =X(V,q) and the excess al-
loy energy is

aE(cr) =g &„(cr)e'"'+G(x) (7)

where

G (x) =g (x, V,q) = (I —x)Fg (V,q) + xFtt (V,q)

Equation (7) is the central result of this paper. 's Its
first term ("chemical energy") is the well-known
constant-volume configuration-dependent (many-site) in-
teraction energy. It represents the energy of an alloy that
has the same equilibrium volume as its constituents
V~ = Vtt = V,„(x), i.e., when the lattice mismatch is zero.
The new second term represents the configuration-
independent ("elastic energy") of the medium and van-
ishes by Eq. (6) in the (unusual) case when the constitu-
ents have the same equilibrium volume as the alloys, i.e.,
when dv, ~/dx =0. In analogy with the "generalized per-
turbation method, "' Eq. (7) refiects the fact that order-
ing energies e " represent Auctuations about an energy
G (x) for the "effective medium, " common to both the or-
dered and the disordered phases.

This shows rigorously that when the volume is state-of-
order independent, the excess alloy energy AE (o, V) is just
a concentration-weighted average of the corresponding en-
ergies of the end-point compounds.

Since in practice there may be some state-of-order
dependence of V,q(x), one could derive more accurate ex-
pressions for F~ (V) and Ftt(V) from information at all x's
(not just x=O and x=1). Under our assumption of
state-of-order independence of V,q(x), the bulk modulus
B(x)= Vd AE(cr, V)/dV also depends only on x. Furth-
ermore, at the special compositions X„, one has V,q(X„)= V„and 8(X„)=8„. Equation (S) can then be expressed
in terms of these quantities by taking dg(x, V)/dV=O at
V,q and

d 2g(x, V)/d V =8 (x)/V, q(x)
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To demonstrate the consequences of the interplay be-
tween "chemical" and "elastic" energies, we compare the
calculated phase diagram and thermodynamic functions of
the Cu-Au systems in two ways: (i) retaining in Eq. (7)
both chemical and elastic terms (the "c-G approach") or
(ii) retaining just the chemical term (the "a-only"
approach). G (x) and e " can be simply extracted from
the experimental data ' on Cu-Au, i.e., from (i)
[V„B„,AH(" j and (ii) the three critical temperatures
Ti =663 K, T2 683 K, and Ts=—500 K for order-
disorder transition of Cu3Au, CuAu, and CuAu3, respec-
tively. Since these temperatures depend solely on
e =AH ")—G(X„) [by Eq. (7)], given AH ("), it suffices to
fix G(X„) at the stoichiometric compositions X„=4, —,',
and —,

' . This is done by adjusting dV/dX in G(X) of Eq.
(6) at these three compositions. The full G (x) curve is ob-
tained by (i) interpolating V„(with the adjusted deriva-
tives) to obtain V(x), (ii) interpolating B„ to find B(x),
and (iii) integrating Eq. (6). The resulting G (x) is
represented in Fig. 1 by the solid curve. For purposes of il-
lustration it suffices to represent this G(x) by the simple
form Qx(1 —x) (solid dots in Fig. 1), where Q =13.408
kcal/ mol, with virtually no loss in precision. We find

= —4.024, s = —5.264, and c = —3.628
kcal/mol. The four values (s and 0) completely specify
the Hamiltonian used. Note that the elastic energy is sub-
stantial on the scale of the chemical energies, and that the
common assumption of Vegard's rule (dV,~/dx =const)
substantially overestimates G (dashed line in Fig. 1). We
have calculated the phase diagrams [Figs. 2(a) and 2(b)],
and the enthalpy [Eq. (3)] at T=800 K (Fig. 3) using
the cluster variation method (CVM), ' retaining up to
four-body ("tetrahedron") interactions within the first
nearest neighbors.

As stated before, both the e-G and the e-only ap-
proaches yield the same critical temperatures [compare
Figs. 2(a) and 2(b), where we obtain the critical tempera-
tures 681.6, 676. 1, and 497.4 K at the critical composi-
tions 0.265, 0.497, and 0.727, for n 1, 2, and 3, respec-
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FIG. 2. CVM-calculated phase diagrams for the Cu-Au sys-
tem using Eq. (7) with s ' —4.024, s —5.264,
= —3.628 kcal/mol, and G(x) 13.408x(1 —x) kcal/mol. (a)
Both s and G(x) retained in Eq. (7); (b) only s retained. Shad-
ed areas denote single-phase regions. P Cu&Au, y CuAu,
6 =CuAu3, and D denotes the disordered phase.

tively]. In contrast, the e-G approach cures the systematic
problems of the normal Ising (a-only) approach in describ-
ing multiple-phase phenomena even though only nearest-
neighbor interactions are retained. This is evidenced by
the following observations: (i) Whereas the observed mix-
ing enthalpy dH(x, T) of the disordered alloy [Eq. (3)]
can be accurately reproduced in the e-6 approach solely
by fitting critical order-disorder temperatures [solid line in
Fig. 3(a)], if elastic energies are ignored [dashed curve in
Fig. 3(a)], the calculated enthalpy is far too small (here,
too negative by a factor of -4-5). This simply refiects
the fact that hH " is given by e " +G(X„),but that only
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a piece of it (e ")) decides the critical temperatures. This
further clarifies why fitting of hH " in the e-only ap-
proach leads to erroneous critical temperatures, whereas
fitting of critical temperatures leads to erroneous enthal-
pies. (ii) Elastic energies act to stabilize ordered phase
This is evidenced by a far narrower single-phase region
(shaded areas in Fig. 2) and far wider two-phase region
(clear areas in between) in the e-G calculation [Fig. 2(a)]
relative to the s-only calculation [Fig. 2(b)]; the latter ap-
proach further fails to describe the rapid narrowing of the
ordered phase domains at low temperatures. (iii) It has
been recently demonstrated through accurate (Monte Car-
lo' ") calculations that retention of only the constant-
energy terms in the Ising Hamiltonian [s s in Eq. (7)]
leads in the antiferromagnetic fcc model to the unphysical
occurrence of a triple point T, (equilibrium between a
disordered phase of composition x and ordered phases of
compositions X& and X2) at very low temperatures,
whereas more approximate solutions (i.e., using the cluster
variation method) to the same Hamiltonian place T, at
higher temperatures [e.g. , see Fig. 2(b), where D, y, and P
coexist at T, ], in better, but fortuitous agreement with ex-
periment. We show that inclusion of elastic effects in the
Hamiltonian must push T, to finite temperatures even in
the exact solution. At any composition x, where

X~ & x &X2, let fi and fz be the fractions of the alloy
disproportionating into X~ and X2 (where f~X'i+f2X2 =x
and fr+f2=1). If one were to retain only the first term
in Eq. (7), it must be greater or equal to fact')+f2'(2).
When equal, all three phases could be at equilibrium at
T=O, hence T, =0. However, since the second term of
Eq. (7) has a negative curvature, i.e.,

d G/dx = —[B(x)/V,q(x)](dV, q/dx) & 0

one always has G(x) & f~G(X~)+f2G(X2), a condition
which forbids the three-phase equilibrium at T, =0. Fi-
nally, we note that incorporation of elastic effects was re-
cently shown ' to produce a coexistence of miscibility gaps
and ordering in the same phase diagram, as well as predict
(metastably) ordered structures even if /JH (") & 0.

The ease of incorporating the elastic term G(x) into
Ising-type Hamiltonians [Eq. (7)l and its simple evalua-
tion from structural and elastic data promise to produce
far more realistic descriptions of alloy phase diagrams'
than hitherto possible with purely configurational Ham-
iltonians.
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