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Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys
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Using the all-electron mixed-basis approach to the density-functional formalism for crystals, we

calculate from first principles the electronic structure of zinc-blende ZnS, ZnSe, and ZnTe as well as
that of their ordered pseudobinary alloys Zn. SSe, Zn&SeTe, and Zn&STe. For the latter we use as a
model a CuAu I—like structure (space group P4m2), and analyze the observed optical bowing in

terms of three contributions: (i) a volume deformation of the band structure due to the replacement
of the lattice constants of the binary constituents by that of the alloy, (ii) a chemical-electronegativity
contribution due to charge exchange in the alloy relative to its constituent binary subsystems, and (iii)

a structural contribution due to the relaxation of the anion-cation bond lengths in the alloy. The to-
tal bowing eff'ect [the sum of (i)—(iii) above] agrees well with observations, yet the present analysis

suggests a physical mechanism for optical bowing which differs profoundly from that offered by the
popular virtual-crystal approach. The maximum contribution of disorder to the optical bowing is

calculated for ZnS, Tel, using a cluster-averaging method, resulting in a reduction in the bowing of
the fundamental gap. We further discuss the band structures, x-ray scattering factors, charge distri-

bution, and deformation potentials of the binary zinc chalcogenides and their ordered alloys.

I. INTRODUCTION: COMPOSITION
DEPENDENCE OF SOME PROPERTIES

OF PSEUDOBINARY SEMICONDUCTOR ALLOYS

A. Phenomenology

F(x) =xFqc + (1 x)Fiic— (la)

by simple quadratic relationships of the type

Soon after the development of modern techniques of
crystal growth and purification of heteropolar binary
semiconductors, it was realized that many pairs AC and
BC of such semiconductors exhibit large ranges of mutual
solid solubility, forming A, Bl,C alloys. ' It became
apparent early on (see reviews of the early work in Refs.
1 —4), that if both AC and BC belong to the same iso-
structural octet class (i.e. , A and B are isovalent, and both
AC and BC are III-V, or II-VI or I-VII), many of the
physical properties of A B~ C can be represented as a
simple analytical interpolation of the properties of its con-
stituent compounds (rather than viewing A„B~ „as a
new chemical compound in its own right). Specifically, it
was found that many physical properties F ( A B~,C) of
such "pseudobinary" solid solutions could conveniently
be related to the linear concentration (x) weighted average
of the corresponding properties Fq~ and F~~ of the end-
point compounds

significant ) exceptions, no structural phase transitions
were observed as a function of composition. Diff'raction
experiments' have further revealed that within the un-
derlying coherence length of the measurement
( —1000 A), the lattice constant a (x) of the alloy is close
to its concentration-weighted average

a (x) =xaqc+(1 —x)aiic ——a(x), (2)

i.e., for F the lattice constant, the bowing parameter of
Eq. (1) is k:—0. (Small deviations from this Vegard rule, 6

i.e., k&0, have been observed for alloys with large lattice
mismatches, ' e.g. , In, All „As, Ga Al~ Sb, and
InSb Ast, and have been discussed by Fong 'et al. )

Optical experiments (see reviews in Refs. 4 and g —11)
have revealed that whereas incorporation of nonisovalent
impurities B in a host crystal AC (e.g. , Si:P, GaAs:Zn, or
ZnS:Cu) produces new energy levels in the otherwise for-
bidden band gap, in most isoualent alloys no new states
are formed, and instead the band edges move continuous-
ly with composition. (Exceptions include the isovalent
impurity systems GaP:N and GaP:Bi, where the large size
and electronegativity mismatch between A and 8 lead to
the formation of bound states and to a limited solubili-
ty. '

) However, in contrast to the tendency of a(x) to
stay close to its concentration average value a(x) [Eq. (2)],
alloy band gaps Eg(x) were found to deviate considerably
from their concentration-weighted average

F(x}=F(x}+kx(1 —x), (lb) cs(x) =x E„c-+(1—x)Eiic. . (3)

where k is approximately composition independent
(representing a general "bowing" parameter), and where
by construction F(1)=F„C and F(0)=Fsc. X-ray
diff'raction experiments have generally indicated no su-
perlattice diftraction spots for high-temperature —grown
alloys, showing that A B& C shares the same Bravais
lattice as its components: With only a few (but

In fact, most measurements of c~(x) could be fit well to
the form of Eq. (1), i.e.,

Eg(x) =Kg(x) bx(1 —x)— (4)

with a nearly composition-independent "optical bowing
parameter" b. Equations (3) and (4) show that sg(x) at-
tains an extremum at
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TABLE I. Observed optical bowing parameters (in eV) for the direct band gap of pseudobinary
ZnS, ZnSe, and ZnTe alloys. The growth method and the method used to measure the spectra are
given in the footnotes.

ZnS Sei ZnSe Tel ZnS Tel Ref. and year

-0
0.6

0.41
0.63
0.43
0.456

1.28

1.23
3.0

Ref. 20 (1957)"
Ref. 23 (1963)'
Ref. 27 (1973)'
Ref. 29 (1972)
Ref. 26 (1977)'
Refs. 21,22 (1979)'
Ref. 24 (1982)~
Ref. 25 (1985)"

'Bulk microcrystals produced by heating at 900 C the powdered constituents; diffuse reflectance.
Polycrystals producing by firing constituents in sealed quartz capsules at 950'C; photoluminescence.

'Thin films prepared by evaporation; absorption.
Single crystals, grown by a modified closed vapor-phase method; reflectivity.

'Melt-grown crystals; reAectivity.
Epitaxial films grown on CaF2 by vapor-phase reaction; spectra measured through the contact poten-
tial bet@ een the samples surface and reference (Kelvin) electrode.
Single crystals grown by iodine transport.

"Polycrystalline thin films grown by evaporation; absorption.

I Ac
x = — 1+

2 b

(where b E= csc —sic), with an extremal value

E~(x ) =(c~ +cEi)ic/2+3 /E46 b/4 . — (6)

For alloys with small band-gap mismatch AE, the ex-
tremum occurs at x = —,'. The optical bowing parameter
b of the lowest band gap is usually found to be posi-
tive, ' s ' i.e., r, (x) is concave upward; the extremum
point (x,Es(x ) } hence represents a minimum.

(Zn„Hgi „Se is an exception, showing' b &0 at small

x. Likewise, the spin-orbit splitting of the top of the
valence band often shows' ' b &0). Equations (5) and

(6) show that alloys with large b, c. and b can have a
minimum gap Eg(x ) lower than the smaller of c, „c and

cz&, and away from x = —,'. Perhaps the most striking

example of optical bowing in isovalent semiconductor al-

loys is provided by solid solutions of zinc chalcogenides
ZnS Se

& „, ZnSe„Te &, and ZnS Te~, all approxi-
mately adhering to Vegard's rule' [Eq. (2)] in the range
of' their solid solubility, yet exhibiting some of' the small-
est bowing parameters [b —0—0.6 eV for ZnS„Se,
(Refs. 20—27)] and the largest [b =3.0 eV for
ZnS„Te, , (Refs. 20 and 27 )] ever observed in isovalent
pseudobinary solutions. (For ZnSe„Te, „, the bowing is

about 1.3 eV. ' '2 } Table I summarizes the observed
bowing parameters in these systems.

The phenomenological observations surrounding the
composition dependence of a (x } and E (x) have motivat-
ed investigations into possible interrelationships be-
tween these quantities. Contemporary approaches to
this question are discussed next.

B. Contemporary approaches to optical bowing

Attempts to find simple phenomenological linear rela-
tionships between the optical bowing b ( A, Bi „C) .[Eq.
(4)] and the lattice-constant mismatch a~c —abc, band-

gap mismatch czar —Ez&, or electronegativity difference
have generally failed. ' Nonetheless, the

need to fine tune the band gaps c~(x) of alloys in various
device applications including light-emitting diodes, low-
loss optical fibers, heterojunction lasers, infrared detec-
tors, and solar cells, has provoked an interest in under-
standing optical bowing in terms of the properties of the
constituent compounds 3C and BC. The earliest and
still the most prevailing approach to the problem has
been the virtual-crystal approximation ' (VCA), in which
the identity of the individual 3 and B elements in the al-
loy is abandoned, replaced by an average ("virtual" ) ele-
ment ( AB }. This approach has been applied to semi-
conductor alloys within the empirical pseudopotential
method (EPM), the dielectric two-band model
(D2BM), i and the empirical tight-binding
method. ' ' The underlying Hamiltonian H con-
sidered in the VCA is

~ = [ —~ + Viic ( r ) ]+x [ Vg c ( r ) —Vsc ( r ) ]

+ [xV~c(r)+ (1 —x }Vac(r )],
where Vqc(r) and V~c(r) are the periodic potentials of
the pure AC and BC crystals evaluated at the alloy lattice
constant a (x). In what follows we describe some of the
properties of this approach, and contrast them with exper-
imental findings in semiconductor alloys.

(i) The perturbation 6V(r)= V„c(r)—Viic(r) has the
same periodicity as that of the underlying end-point
compounds; it therefore couples the Bloch functions

Ig„k (r) I and }/~i,(r) I of AC and BC, respectively, only
at the wave vector k of the (common) Brillouin zone.
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This conflicts with the observed relaxation of optical
selection rules in alloys. Coupling between these Bloch
states can be introduced in second-order perturbation
theory and yields a correction

to the VCA eigenvalue c.,k.
(ii) Since, in addition, b, V(r) also transforms like the

totally symmetric representation of the point group of
AC and BC, it cannot alter the symmetry representation
(hence, orbital character) of the alloy band wave functions
relative to that of AC and BC. For example, the I ~5,
state (a p-d orbital, forming the top of the valence band in
zinc-blende semiconductors) cannot mix with the I t,
state (a predominantly s-type orbital in the conduction
band). However, the observed bowing of the spin-orbit
splitting' ' indicates' ' an alloy-induced mixing of s
character into the top of the valence band.

(iii) Since the identities of atoms A and B, including
the characteristic electronegativities and scattering
powers towards electron orbits of given angular momen-
ta (reflected, for example, in the shape of their 1-

dependent pseudopotentials), are abandoned in the VCA
in favor of an average species [Eq. (7)], direct chemical
events between AC and BC (e.g. , charge redistribution
and polarization ' "') are precluded as well. In fact, a
chemical disparity between Vzc(r) and Vs&(r) could
lead to the preferential localization of an alloy wave
function on one sublattice, splitting thereby the degen-
eracy mandated by VCA (where both A and B share the
same potential). Such is the case in Hg Cd~ Te alloys,
where the different attractiveness of VHs(r) and Vcd(r)
towards i =0 waves (Hg having a deeper outer s electron
than Cd) results in an observed splitting between the
Hg and Cd valence s bands. The same effect has been
observed in ZnS„Se&, where the different potentials-
Vs(r) and Vs, (r) result in distinct ZnS-like and ZnSe-
like features in the alloy s reflectivity spectra and in exci-
ton localization in ZnSe Te& . ' Such is also the case
for Raman scattering of phonons, impurity photo-
luminescence in alloys, ' or nuclear-magnetic-
resonance studies, which have revealed distinctly
different chemical environments for Cd and Hg in
Hg& „Cd Te. The neglect of this effect in VCA is often
referred to as the neglect of "chemical disorder".

(iv) In its application to alloys whose constituents have
more than one type of atom in the unit cell (e.g. , AC
and BC), a specification of bond lengths is required (in
addition to the lattice constant a) to solve for the spec-
trum of H. Practitioners of the VCA in pseudobinary
alloys have often assumed '" also the "virtual-
lattice model" (VLM), i.e. , that the same geometrical re-
lationship that exists in pure AC and BC compounds be-
tween the bond lengths (R„c and Rsc) and the lattice
constants a„c and abc [e.g. , R t3

——(&3/4)a & in the
zinc-blende structure] continues to hold in the alloy.
Since the identity of the 3 and B sublattices is aban-
doned in the VCA in favor of a "virtual" average sublat-

tice ( AB ), the VLM suggests that
R „c(x)=R~c(x)=—R

& ~~}c(x)=Ra(x), (8)

C. Why VCA models produce optical bowing

The basic reason why VCA Hamiltonians of the type
described in Eq. (7) can produce a nonzero bowing pa-
rameter [Eq. (4)] despite the use of a linear average of po-
tentials is the fact that most band-structure methods pro-
duce eigenvalues that are nonlinear in the potential matrix
elements. If V~, U~, and W~ denote general potential
parameters of a given crystal A, in general, the band

(i]structure energies cq of the crystal 3 at its equilibrium
lattice constant a~ have nonlinearities of the form

E~ =a V~ (a~ )+f3U„(a~ )+y W„'(a„)+

In empirical methods, ' '
I V~, U~, IVg, I

their combinations are treated as disposable parameters
used to fit cz. Such is the case in the empirical pseudo-
potential method, where, for example, the band gap at

where ~ is a geometrical constant {e.g. ~3/4 in the
zinc-blende structure). This is equivalent to the state-
ment that Vegard's rule applies not only to atomic
volumes [Eq. (2), as is suggested by Vegard], but also to
bond lengths (not implied by Vegard ). This is often re-
ferred to as the neglect of "positional disorder, " or the
postulation of a "unimodal distribution of bond
lengths. " It has been pointed out, however, that Eq.
(2) does not require Eq. (8) to hold: simple three-
dimensional networks can be constructed "' such that
for any prescribed a =a(x), two arbitrarily dissimilar
bond lengths R z& and Rzz can coexist. Such is the case
in the chalcopyrite structure of 3 'F"'C

z compounds
(where, in CulnSez, one has Rc„s,&R~„s, ), or the
CuAu I structure. ' ' Indeed, extended x-ray-
absorption fine structure (EXAFS) experiments ' ' and
valence-force-field calculations indicate substantial
bond alternation [R~&(x)~R&c(x)] in pseudobinary al-
loys.

(v) Implicit in Eq. (7) is also the requirement that the
effective potential of the alloy be linear in the effective po-
tentials of its constituents. This "superposition approxi-
mation" limits the classes of electronic structure methods
which are accessible through Eq. (7): they need be both
valence electron me-thods (since core states cannot be aver-
aged) such as pseudopotential, tight-binding or
dielectric models, " and linear models (e.g. , the empiri
cal pseudopotential method, but not the self consistent-
pseudopotential method). This is so because the empirical
pseudopotential method postulates that screened atomic
pseudopotentials are superposable, whereas self-consistent
pseudopotential methods assume a superposition of only
the ionic pseudopotentials, recognizing that screening
effects are not linearly superposable. These inherent re-
strictions of Eq. (7) have severely hampered the sophisti-
cation with which previous approaches were able to de-
scribe the electronic structure of semiconductor alloys.
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2

cx ——2 V(220)+ V (111)
2~2

(10)

the X point in the zinc-blende Brillouin zone is approxi-
mately given by

[where V~ = V(220) and U„=V(111) are pseudopoten-
tial form factors]. Such is also the case in the simple
tight-binding method, where the band energies at
high-symmetry points have the form

E~ = V~+(Uiw+ Uz~ )
2 2 1/2

U2~
~g + UI Q +

2 U23 + U13 ) U23

Vg + U23 +
2 U1g + ~ U2A ) U1A

( Vq and Uq being Hamiltonian matrix elements). In the dielectric two-band model, we have a similar situation, where
the effective band gap is

eg ——(Vg+ Ug )'
Vg+ —,

' Ug +, U1g ) U2

U~+ —~w +
(12)

(where V~ and U~ are homopolar and heteropolar gaps,
(i)

respectively). The nonlinearity of the energies E q with

respect to the potential parameters underlying all of these
methods guarantees a nonzero bowing in the VCA. Ex-
pressing the VCA band gap from Eq. (9) for the alloy lat-
tice constant a =a (x} as

Eg (x)=a[x V~c(a) + (1 —x) VBc (a ) ]

+P[xUwc(a)+(1 x) UBc(a)] +—' ' ' (13)

one gets from Eqs. (3), (4), and (13) the general result

bvcA ——[e—[aV(a)+f3U (a)]I /x (1 —x), (14a)

where

V(a) =xV~c(a)+(1 —x) VBc(a),

U(a) =xU~c(a)+ (1 —x) UBC(a),
(14b)

and E=F(a~ , ca)BiCs given by Eq. (3). If one uses a sin-

gle lattice constant a =a (x) in Eq. (14b), as done by Hill
and Richardson, one finds

This shows that b«A is given by the square of the
difference in the nonlinear potential parameters of the
two end-point crystals, evaluated at an interpolated lat-
tice constant a (x) of the alloy. Regrettably, this is not a
very compelling relationship: it has been amply demon-
strated in the literature that by using semiempirical
band-structure models it is possible to fit almost equally
well a given set of band energies by widely different
choices of the potential parameters. Since the informa-
tional content of the observed bowing curves E~(x) [Eq.
(4)] is but one number per transition (i.e. , b), we were
able to obtain through Eqs. (14b) and (15a) almost any
desired bowing parameter bvcA by a suitable choice of
interpolated U„c(a (x)) and UBC(a (x)) values, without
spoiling the fit of the band structure of the end-point
comPounds (at a =abc and a =aBC) to exPeriment.
This can be demonstrated by expanding the expressions
for band gaps into a Taylor series of the form in Eq. (9)
[e.g. , Eqs. (11) and (12)]. It then becomes apparent
that the nonuniqueness of the nonlinear terms permits
almost any value of bvcp [Eq. (14a)].

Previous efforts to calculate the bowing parameters for
zinc chalcogenide alloys were based on the VCA
approach within the dielectric two-band model or
the empirical pseudopotential method. A summary
of some values of b obtained in D2BM and EPM models
for the alloys discussed in this paper is given in Table II.

bvcA =P[U~C(a) —UBc(a)l + ' (15a) D. Role of order and disorder

whereas if the lattice constants of the end-point com-
pounds are used, one has

It is useful to separate the observed bowing parameters
b,„~, into a contribution b i due to order effects which ex-
ist already in a fictitiously periodic alloy, and a contribu-
tion bii due to disorder effects

bvcA l3[ UAc(abc ) UBc(aBc ) l + (15b) b..1 t =br+bi& . (16)
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TABLE II. Calculated optical bowing parameters (in eV) for the direct band gap of Zn chalcogenide
alloys.

Alloy

ZnS Se]
ZnSe Te]
ZnS Te]
Ga In] P

bi

0.14
—0.04

0.28
0.39

VCA-D2BM'
bri

0.14
1.14
2.12
0.31

bexpt

-0.32
—1.27
—2.72

bexpt

0.46
1.23
3.0

VCA-EPMb
b[

0.60
0.90
3.02

'Dielectric two-band model [Eq. (12)] of Van Vechten and Bergstresser, Ref. 38.
Empirical pseudopotential method [Eqs. (10)—(15)] of Richardson, Ref. 36.

In the past, b& has been described largely by empirical
VCA models. ' The contribution of disorder,
taken as the amount by which b& fails to account for the
observed b =b„p„was either modeled empirically, de-
scribed by second-order perturbation theory for compo-
sitional disorder, or by the difference bit —=&cpA —&vcA
between the bowing parameter bcpA obtained in the
coherent-potential approximation ' (CPA), including
compositional disorder effects, and that obtained in VCA
calculations (bv« b&). Th——e VCA calculation of Van
Vechten and Bergstresser (Table II), utilizing the
dielectric two-band model, showed that VCA effects for
these systems account only for a small part of b, pt
(Table II), leaving a large portion b,„~,—b

&
to be

described by disorder phenomena. Subsequent CPA cal-
culations ' do not warrant ascribing such a dominant
role to compositional disorder, e.g. , (bcpA bvc~ )/—
b cpA =3% for Ga In& P, whereas b» of Van
Vechten and Bergstresser for ZnSe Te& and
ZnS„Te~ „ is overwhelmingly significant over bt (Table
II). It is indeed difficult to grant such a decisive role to
disorder eff'ects (as concluded from comparing b,„~, to
bvcA) in view of the remarkably sharp Raman lines,
crystal-like reffectivity spectra ' (with sharp edges), and
high electron mobilities often observed in these alloys.
(CPA calculations have indeed considerably rectified this
situation, explaining the narrow linewidths and high
mobilities in the presence of compositional disorder. )

The ambiguities discussed above in the calculated bvcA
(and indeed, their large spread, cf. Table II) make it im-
possible to assess clearly the roles of chemical interac-
tions, structural relaxations and genuine disorder effects.
Furthermore, the success in interpreting experiment
through VCA models and the resulting conclusions on de-
cisive disorder effects is ambiguous. Consider the follow-
ing examples.

(i) Van Vechten et al. ' argued that the observed (nega-
tive) bowing of the spin-orbit coupling provides conclusive
proof of the role of disorder, since in VCA the top of the
valence band (I ~5, ) is a pure non-s state, and consequent-
ly it cannot lead to s-p mixing and hence negative bowing
of the spin-orbit splitting [see item (ii) in Sec. I B]. They
showed that phenomenological disorder models can mix s
character into the top of the valence band, thus explaining
their bowing. However, mixing of s character into the
I i5, state is possible by other mechanisms as well: It ex-
ists, for example in ordered crystalline chalcopyrite sys-

tems ' ABC2, simply since the anion C is coordinated
(in a coherent fashion) by two A and two B atoms. This
symmetry lowering (incorporated naturally in our calcula-
tions, see Sec. III B) permits s-p mixing.

(ii) Pearsall found a good agreement between his mea-
sured bowing and the phenomenological model of Van
Vechten and Bergstresser associating disorder with the
square of the difference of the electronegativities of the al-
loyed atoms. This too, however, does not constitute any
proof of the relevance of disorder, since the order contri-
bution b &

also scales with the electronegativity
difference' (see also discussion in Sec. VI).

(iii) Similarly, the perturbation argument of Baldereschi
and Maschke " suggesting the importance of composi-
tional disorder in GaP As ~ „ is also not compelling: In-
terband mixing, of the sort included in their calculation
can exist in part also in ordered superstructures, where
the Brillouin zone is folded (see Sec. III C below).

We conclude that existing VCA-based calculations for
semiconductor alloys do not provide a sound basis for as-
sessing the relative significance of order and disorder
effects. In what follows, we describe an alternative ap-
proach to the calculation of bi.

II. MICROSCOPIC MODEL FOR bi

A. The basic idea

We imagine the tetrahedrally coordinated A 8& C
alloy to consist at each composition x and temperature T
of the basic tetrahedral units CB4 (as in BC), CAB3,
CA2Bz, CA3B, and CA4 (as in AC) (i.e. , n =0, 1, 2, 3,
and 4 A atoms, respectively) with a distribution function
P I"'(x, T) for each "subcrystal" n Each .of these
fourfold-coordinated structural units can be thought of
as the repeat unit of a periodic structure A„84 „C4.
Whereas the binary systems AC (n =4) and BC (n =0)
have, in their zinc-blende form, just a single (external)
degree of freedom [the lattice constants a„c and abc,
which uniquely determine the bond lengths
Rzc ——(&3/4)a„c and Rzc ——(&3/4)a~c], the ternary
systems n =1, 2, and 3 can have cell internal degrees of
freedom as well, denoted collectively as [u I"'I. In these
systems the internal parameters allow the bond lengths
to relax toward their (natural) zinc-blende values, and

(n) (n)
the expressions for the bond lengths R zz and Rz& then
no longer have the simple (ideal) form found in the zinc-
blende structure [Eq. (26)]. At equilibrium, a crystal



3204 JAMES E. BERNARD AND ALEX ZUNGER 36

(17)

The probability distribution P'"'(x, T)=P'"'(x (a), T)
can be calculated from Kikuchi's cluster variation
method if the changes in internal energies accompany-
ing reaction (17) are known (or else can be approximat-
ed as a random distribution "). Denoting by
c'„'Bc(a(x),uI"'(x)) the ith interband transition energy
(i.e., fundamental, or any other band gap) of the subcrys-
tal A, B C„+, its optical bowing parameter is given by
Eq. (4) as

(;„I (m+n)
mn

(i, 4) m (i o)E~'c (a~c)+ EBC (aBC )
m +H

composed of a single type of cluster A, B4 „C4 would
be characterized by the lattice constants aeq and c, ,
and (for n = 1, 2, or 3) the internal structural parameters
Iu,'q' I, with corresponding bond lengths. In the alloy,
however, we make the assumption that all five types of
clusters have the lattice constant a'"'(x) =a (x) appropri-
ate for the alloy. The relaxed internal parameters are
then u '"I(x)=u '"'(a(x)) (i.e. , dependent on the composi-
tion of the allo~), and the corresponding bond lengths
are R~c(x) =R„c(a(x)) and RBC'(x) =R'"'(a (x)). The
formation of each subcrystal at the alloy lattice constant,
with relaxed internal parameters, from the end-point
compounds AC and BC at their equilibrium lattice con-
stants can be described by the formal chemical reaction

[ C a~c]+m [BC aBc]-[A.B C. ,a(x), u'"'(x)]

tity of the two different sublattices A and B. This will
allow us to incorporate into b, most of the effects ig-
nored previously [i.e., items (ii) —(iv) in Sec. I B].

In performing such band calculations on ordered alloy
models, a structural unit A„B C„+ is required. We
choose the unit such that each sublattice ( AC and BC)
has the same fcc Bravais lattice as in the end-point com-
pounds, consistent with EXAFS data. ' ' The choice of
such structural units is best based on the Landau-
Lifshitz theory of order-disorder transformations,
adapted to two fcc sublattices. ' This theory allows us
to select structures with the following properties: (i)
they are the only ones where the order-disorder transfor-
mation can (but need not) be of second order, (ii) all of
these structures (and no others) are stable against anti-
phase boundaries, and (iii) they can exist over a wide
concentration range. For ternary A „B C„+
adamantine semiconductors (with disorder on two fcc
sublattices), there are eight Landau-Lifshitz
structures, " including, for the 50%-50% structure
ABCz the CuAu I —like (simple tetragonal, P4m 2, or
Dzd, Fig. 1) and chalcopyrite (centered tetragonal, 142d,
or D zd ), as well as two structures for the 25%-75% case12

of A 3BC4 and AB3C4, namely a Cu3Au-like structure
(the cation sublattice is like that of Cu3Au, the lattice is
simple cubic, the space group is P43m or Td, and the
structure is like that of Fig. 1 but with the A atom at
the center of each horizontal plane replaced by a B
atom), and famatinite (centered tetragonal, I42m or

—E„'Bc(a (x), u '"'(x) ) (18)

The effective interband transition energies of the mixed
(i, n)

alloy could be modeled as an average of c~'z& over the
probabilities PI"'(x (a), T). Our program is somewhat
more modest than this. Since at a fixed concentration x
(say, x = —,

'
) P'" (x, T) shows a maximum occurrence

of the species whose n best represents the composition
(e.g., a 50%-50% compound ABCz at x = —,

' ), and
since calculations on Al„Ga As„+ (Ref. 58) and
Ga„ In P„+ [Ref. 48(a)] show a weak dependence of
b ' o11 11 (1.e. , AIGaAsz, AIGa3As4, and A13GaAs4 have
different band structures but similar bowing of the same
transition i), we will first limit our discussion to a single
subcrystal m =n =2 (Fig. 1), corresponding to the ma-
jority species A2B2C4 ——2ABC2 at x = —,'. The effects of
the minority species (e.g. , A3BC4 and ABz C4 at x =0.5)
will then be added. The bowing parameter calculated
for n =2 corresponds to the actual case for x = —,

' at tem-
peratures below the ordering temperature To,' we expect
it to be a reasonable approximation for temperatures just
above Tp. We will hence first calculate b ' ' from Eq.
(18) by performing band-structure calculations for AC,
BC, and ABC2. Such a calculation of b" corresponds
to the "order" component [b, in Eq. (16)] of the bowing,
leaving out genuine disorder effects; deviations of b

&

from experiment will be used, among others, to judge the
significance of disorder effects b». However, contrary to
previous VCA calculations, -' we will retain the iden-

A B C

Simple tetragonal
P4m2, D2,

FIG-. 1. Crystal structure of ABC. .
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D2d ). Srivastava et al. " have previously performed
total-energy calculations for Ga„ In P„+ in these
Landau-Lifshitz structures. Here, for simplicity we will
represent the 50%-50/o alloy by the n =2 structure with
the smallest unit cell: the four-atom CuAu I—like struc-
ture which is expected to be representative of structures
where the C atom is bonded by two A and two B atoms.
In contrast to the more complex chalcopyrite structure
we have used previously, " ' the CuAu I structure
has along its c axis the same type of atom, hence it is not
naturally birefringent (indeed, a disordered cubic alloy is
likewise optically isotropic). (Note' that the CuAu I
structure is equivalent to a (1,1) monolayer superlattice
of AC+BC in the [001] direction. ) Using it as the
structural unit for our alloy model will hence make it
possible to use known superlattice effects to discuss opti-
cal bowing in alloys. For example, the folding of the X
point of the zinc-blende Brillouin zone into the I point
of the CuAu I Brillouin zone (see Sec. III C) makes it
natural to interpret no-phonon (pseudo-) direct absorp-
tion lines observed in alloys. Furthermore, the band-
gap change as the ABC2 "superlattice" is formed frorp
AC +BC is naturally interpretable as a superlattice shift
of nearly confined band states. The corrections to the
bowing due to the existence of other structures ( AC, BC,
A3BC4, and AB3C4) at x =0.5 will then be added, us-

ing the zinc-blende (for AC and BC) and Cu3Au-like
structures (for A3BC& and AB, C4). Note that such
chalcopyrite, CuAu I and famatinite ordered structures
are observed in isovalent semiconductor alloys.

Hence b vD simply represents the relative response of the(i)

band structures of AC and BC to (positive and negative)
hydrostatic pressures.

Second, we bring together AC and BC, "prepared" at
the common lattice constant o (0.5), to form the ABC2
compound, without relaxing the internal degrees of free-
dom (i.e., keePing RAC ——Rac, just like in the VLM,
denoted here as "unrelaxed" bonds, or "unrel"). The
formal reaction is

[AC, a(0. 5)]+[BC,a (0.5)]~[ABC~, a ( 0. 5), u'„„'„,] .

(20a)

At this stage, the AC and BC bonds can communicate
through charge redistribution, reAecting a possible
chemical electronegativity (CE) difference. The contri-
bution of this reaction to the bowing is hence

bcE 2[&Ac(& (0 5))+EBc«0 5))]
—4EAac, (o(0.5), uI„g„, ) . (20b)

This term, among others, accounts for the fact that the
point-ion Madelung energy of ABC2 differs from that of
AC and BC at the same bond lengths. This is so be-
cause the C-atom charge is different in AC and BC, but
in ABC2 there is a single type of C atom, hence a single
C-atom charge. These differences in Madelung energies
affect the band structure and contribute to bcE.

In the third step, we allow the internal degrees of free-
dom I u ' '

I to attain their relaxed (i.e., equilibrium)
values,

B. Decomposition of b
&

into three physical contributions [ ABC2, a (0.5), u'„„'„1]~[ABC2,a (0.5), u,'q ] . (21a)

[BC,aac ]~ [BC,a (0.5 ) ],
yielding a volume-deformation (VD) contribution

(i) (E) (i)
bvD 2[EAC(oAC )+EBC(oac )]

—2[E'A'c(a (0.5) )+sac(a (0.5) ) ] (19b)

to the optical bowing. Although we calculate b v D
directly from the band structure, this contribution could
also be calculated from the observed hydrostatic band-
gap deformation potentials y ~c ——d c zc /din A zc

(i) (i)

(where OAC is the unit cell volume) of the pure com-
pounds AC and BC. This yields

To gain insight into the microscopic mechanism con-
trolling optical bowing, we follow Zunger and Jaffe,
Martins and Zunger, and Srivastava et al. ,

4 " and
decompose the overall process of Eq. (17) into three
steps, each calculated separately for the n =2 cluster.

First, we compress and dilate the lattice constants of
AC and BC into that a (x =0.5) =a,'q' pertinent to the
50%-50%%uo alloy, i.e., we perform the formal reactions

[ AC, a Ac ]~[ AC, o (0.5)]

(19a)

The contribution of this structural (S) equilibration to
the bowing is hence

bs ——4EABC (a(0.5),u„'„„))

4EAac (o (0.5), u,'q'—) . (21b)

A relaxation of the in ternal degrees of freedom is
equivalent to a "frozen phonon. " Notice that this
structural deformation can induce a charge rearrange-
ment too (a polarization effect '"). If charge rearrange-
ment attendant upon such a deformation in the alloy
could be neglected, bs could be evaluated in principle
from phonon deformation potentials of the constituents '

and the knowledge of u eq 0 pz'fe] in the alloy. However,
polarization effects induced by such structural deforma-
tions may be large (and may, in fact, change the sign of
bs calculated without them). We hence calculate bs (as
well as bvD and bCE) directly from the self-consistent
band structure.

The sum of the reactions of Eqs. (19a), (20a), and (21a)
gives the net reaction

[AC, a c]A+[BC,a c]~a[ABC&,a (0.5), u,'q'], (22a)

and the corresponding total bowing [sum of Eqs. (19b),
(20b), and (21b)]

(i)
bvD ——6 ln

] AC ~BCa~c aac
(~ AC+ ~BC )

a
(19c) 2[EAc(o Ac )+ &ac(&ac )]

—E ABC (o (0.5), u q ) (22b)
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as in Eqs. (4) and (18). This provides a model for b" in
terms of three microscopically defined quantities

~I bvD+~cE+~s (23)

i.e., a hydrostatic effect on the band structure, a charge
exchange at constant bond lengths, and an internal
structural relaxation effect. Each term is calculated sep-
arately from a self-consistent band-structure model to be
described next.

III. DETAILS OF CALCULATION

A. Band structures

We use the self-consistent potential-variation mixed-
basis (PVMB) band-structure method of Bendt and
Zunger. (Plane-wave pseudopotential methods con-
verge unacceptably slowly for systems with bound 3d or-
bitals such as those encountered in Zn chalcogenides. )

The crystal potential is represented by the nonrelativistic
local-density formalism, using the exchange-correlation
functional of Ceperley and Alder as parametrized by
Perdew and Zunger. The basis set consists of a corn-
bination of symmetrized plane waves and localized orbit-
als. The latter are obtained numerically by solving a re-
normalized atom problem for the Zn, S, Se, and Te
atoms using the same density functional utilized for the
crystal, but confining the atoms into a Wigner-Seitz cell
with radii of 2.24, 1.88, 2.06, and 2.32 a.u. for Zn, S, Se,
and Te, respectively. Hamiltonian matrix elements are
computed within this mixed basis with no shape approx-
imations. We find that practically no precision is lost if
we freeze the core orbitals 1s, 2s, and 2p for Zn and Se
(the 3s and 3p cannot be frozen without substantial loss
of precision), 1s for S, and 1s, 2s, 3s, 2p, 3p, and 3d for
Te. Special care is taken to represent the two crystal
structures used here —zinc blende and CuAu I—
equivalently: since the optical bowing is calculated as a
difference between the band structures of these two
different crystal structures, it is imperative that all be
represented computationally to within the same (perfect
or imperfect) precision. For example, at the limit
4 =B, the band structure AACz in the CuAu I struc-
ture (four atoms per cell) must be numerically equal to
the (folded) band structure of AC in the zinc-blende
structure (two atoms per cell). This can be assured if (i)
the same localized-orbital basis set is used for all struc-
tures, (ii) the plane wave bases have the same kinetic en-

ergy cutoff [i.e. , (G/2a) ], where G is the maximum
momentum] in all structures and for all lattice constants
used (rather than the same number of basis functions),
and (iii) equivalent (i.e. , those obtained by folding) k
points (rather than any special k points) are used for
all structures. We sample the Brillouin zone by using
the special k points (2~/a)( —,', —,', —,

'
) (weight —,

'
),

(27r!a)( —,', —', —,
'

) (weight —,
'

) for the zinc-blende lattice, and
the equivalent k points (2~/a)( —,', —„', —„' ) (weight —,

'
) and

(2~/a)( —,—,', —,
'

) (weight —,
'

) for the CuAu I lattice, and
(2'/a)( —,', —,', —,

'
) (weight 1) for the Cu3Au-1ike lattice. In

addition, the density of fast-Fourier-transform points per

unit volume is kept similar in all cases. These con-
structs are tested by performing a band-structure calcu-
lation of AC both in the zinc-blende and in the CuAu I
(i.e., A AC&) structures obtaining the same band eigen-
values.

Our coordinate-space basis set consists of 9, 4, 9, and
9 localized (numerically optimized) orbitals for Zn, S, Se,
and Te, respectively. The kinetic energy cutoff for the
plane-wave basis is such that 208, 241, and 296 plane
waves are included for ZnS, ZnSe, and ZnTe, respective-
ly, 443, 530, and 501 plane waves are included for
ZnzSSe, ZnzSeTe, and ZnzSTe, respectively, and 1003
plane waves are included for Zn4S&Te and Zn4STe3 at
the alloy a (0.5) lattice constants. The total basis set
size is hence 221, 259, 314, 474, 566, 532, 1060, and 1070
basis functions for ZnS, ZnSe, ZnTe, ZnzSSe, ZnzSeTe,
ZnzSTe, Zn4S3Te, and Zn4STe3, respectively. To diago-
nalize these large Hamiltonian matrices we use the resid-
ual minimization method ' which requires a direct diag-
onalization of only small matrices (100—300), does not
require storage of the full Hamiltonian matrix, and pro-
duces eigensolutions to within a prescribed tolerance
(usually a residual around 10 ) with a computational
effort linearly proportional to the number of eigensolu-
tions sought (usually valence plus a few conduction
bands), rather than to a third power of the total matrix
size as common in Householder-Choleski methods.
Self-consistency in the potential is obtained within a
tolerance of 0.3 mRy. The self-consistency iteration cy-
cle is accelerated significantly by use of the Jacobian up-
date method. The number of fast-Fourier-transform
points ranges between 4096 and 19683 (depending on
structure and volume). With these computational pa-
rameters we achieve an overall precision of -0. 1 —0.2
eV for core states, -0.03 eV for valence states, and
—0.03 eV for conduction states.

The local-density approximation which we use is
known to underestimate significantly the band gaps of
nonmetals if the latter are estimated from band eigenval-
ues rather than from total energies. We have, however,
formulated the problem in such a way [Eq. (18)] that ab
solute band gaps are not needed, but rather their
difjerences [Eqs. (19b), (20b), and (21b)] or pressure
derivatives [Eq. (19b)] appear. Such quantities can be
obtained within the local-density approach to a far
better accuracy than the band gaps themselves.

B. Evaluation of structural parameters

The evaluation of Eqs. (19b), (20b), and (21b) requires
knowledge of the lattice constants abc and abc of the
end-point compounds, that [a (0.5)] of the ABC& sys-
tem, as well as c//'a and upq We obtain these as follows.
We use the experimental lattice constants for the zinc-
blende compounds (given in Table III). Since Vegard's
rule is satisfied reasonably well by the Zn chalcogenide
alloys, ' we use for a (0.5) the average of the end-point
compounds, also given in Table III.

We model the ABCz compound by the CuAu I struc-
ture (Fig. 1) having the unit cell vectors
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TABLE III. Lattice parameters, cation displacement parameter [Eq. (29)], and bond lengths for
50%-50% alloys, as obtained from an elastic valence force field (VFF) for (i) interpolation of impurity
data for a =a( —') to the alloy range ("alloy limit" ), and (ii) direct optimization (u, a, c) of the CuAuI
structure ("crystal limit" ). The lattice parameters used for ZnS, ZnSe, and ZnTe are 5.409, 5.668, and
6.089 A, respectively.

Quantity
Alloy
limit

Zn~Se
Crystal

limit

Zn2SeTe
Alloy Crystal
limit limit

Zn2STe
Alloy Crystal
limit limit

a (A)
'Ll

c/a
Roc (A)
Rac (A)
5E ' (meV/pair)

5.539=a
0.237
1.000
2.358
2.441

10.2

5.525
0.236
1.004
2.351
2.442
9.7

5.879=a
0.230
1.000
2.481
2.614

25.1

5.868
0.229
1.001
2.472
2.616

24.4

5.749 =a
0.217
1.000
2.385
2.604

71.7

5.696
0.215
1.013
2.365
2.600

67.4

a) ——( —,', ——,',0)a,

az ——( —,', —,', 0)a,

a3 ——(0,0, 1)ria

and the atomic positions

rg ——(0, 0,0)a,
rg ——( —,', O, g/2)a,

rc) ——( —,', —,', gu)a,

rc, =( —,', —,', g(I —u})a .

(24)

(25)

Here, g=c/a is the tetragonal ratio and u is the internal
structure parameter ("cation displacement" ). The two
fundamental bond lengths in this structure,

R „c(a, u, 7I ) = [—,
' + ri u ] ' ~ a,

R~c(a, u, g)=[—,'+q (u ——,') ]'~ a,
are related by the cation displacement parameter

u =(Rgc —Rgc)/a ri + —,
'

(26)

(27)

Since the binary alloys show no evidence of the existence
of a unique axis we assume c/a—:1 [in fact, optimization
of the strain energy E' '(a, c, u ) as a function of all three
parameters yields at equilibrium c/a =1.00+0.01]. The
structural parameters of Eqs. (21b) are obtained by a
minimization of the deformation energy in a valence-
force-field (VFF) model. It has been demonstrated
previously " that whereas the value of the total ener-

gy of A„B C„+ at equilibrium depends both on the
(strain) deformation energy (included in our VFF) and
on the chemical energy (not included), the position of the
minimum (i.e., a,q

and u, q ) depends almost exclusively
on the strain energy alone. Indeed, the values of u, q

for
AICraAs2 (Ref. 58) and InGaP2 [Ref. 48(a)] calculated
from total energy minimization within the self-consistent
pseudopotential method agree to 1% with those ob-
tained in a VFF model. We use the interpolated values
of u,'q' obtained from a valence-force-field calculation
for the limits AC:B and BC:A. The corresponding u,'q'

values are given in Table III in the column labeled "al-
loy limit, " and are seen to deviate considerably from the
equal bond condition (u = —,'). Alternatively, one can
calculate I u,'q', a,'q', c,' '

I in an ordered CuAu I-like
ABC2 crystal by directly optimizing the total bond
stretching and bond bending deformation energy. The
results corresponding to this procedure are also given in
Table III and denoted as "crystal limit. "

Table III illustrates a number of points. First, the
bond lengths obtained by extrapolating those pertinent
to the impurity limits AC:B and BC:A (alloy limit) are
close to those obtained by a full structural optimization
of the ABC2 crystal (crystal limit). The small
differences that exist confirm previous results "which
indicated that the bond lengths in ordered crystals are
somewhat closer to the ideal bond lengths
R ~

——(&3/4)a tt than are the bonds in disordered or
impurity systems [see Fig. 1 in Ref. 48(a)]. Second, since
bond lengths in ordered systems are closer to ideality,
the energy of ordered systems is lower than that of
disordered systems as indicated in Sec. I A. This is illus-
trated in the last line of Table III, giving the deforma-
tion energy b,E' ' [i.e. , the elastic piece of the formation
enthalpy of the n =2 ordered structure]. The large elas-
tic strain energies in ZnSe Te&, and more so in

ZnS Te& „are expected to lead to significant clustering
(nonrandomness) in these alloys. Third, the tetragonal
ratio c/a at equilibrium is invariably close to 1.0, i.e.,

tetragonal distortions are minimized. Fourth, variations
of u (and to a lesser extent c/a) lead to bond lengths
which differ considerably from those implied by VCA
[i.e. , (&3/4)a( —,')]. For example, the VCA bond length

R zn s is 2.40 and 2.49 A in ZnzSSe and Zn2STe, respec-
tively, whereas in our optimized system it is 2.36 and
2.38 A, respectively, considerably closer to the ideal
value (2.34 A) in pure ZnS. Hence, the VCA geometry
corresponds to a nonequilibrium system with exceeding-
ly large deformation energies hE' '. Finally, compar-
ison of the equilibrium lattice constant obtained from
full optimization to its Vegard value a =a ( —,

' ) indicates a
small downward bowing [i.e., k in Eq. (lb) is negative],
e.g. , deviations of —0.014, —0.011, and —0.033 A for
Zn2SSe, Zn&SeTe, and Zn2STe, respectively, at x = —,'.
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TABLE IV. Character table for D2d. TABLE VI. Character table for C .

Il
I p

I3
I 4

I g

Mi
M2
M3
M4
Ms

Cp

I
1

1

1

—2

JC4(2)

I
—I

1

—1

0

C, (2)

1

1

—1

—1

0

JCp(2)

1

—I
—I

I

0

C2 C2

Our calculated bond lengths R~c and Rzc of Table
III agree remarkably well with recent EXAFS measure-
ments on ZnSe Te

&
alloys: These experiments

yield, for x = —,', Rz„s,——2.472 A (calculated value in

Table III: 2.472 A) and Rz„r, ——2.617 A (calculated
value in Table III: 2.616 A). This excellent agreement
obtained for bond lengths (hence for the anion displace-
ment parameter u) lends support to our structural mod-
el. (The formation enthalpies of n =2 ordered alloys, of
which AE' ' in Table III represents the elastic piece,
have not been measured experimentally. )

C. Folding of bands and interacting bands

The choice of the CuAuI structural model removes
some of the constraints previously imposed on alloy cal-
culations within the VCA (Sec. I B). First, since in the
CuAu I structure each Zn atom is surrounded by two
different pairs of anions (e.g. , S and Se), the top of the
valence band is no longer restricted to be non-s-like (as
in the zinc-blende case), hence bowing of the spin-orbit
splitting is allowed. Second, coupling between certain
zinc-blende bands is permitted, since each k vector in
the CuAu I structure is describable by a (superlattice-
like) folding of the k vectors of the zinc-blende lattice
[see Eq. (28) below]. Third, the existence of an internal
structural parameter [u of Eq. (27)] makes it possible to
assign different lengths to the two bonds Rzc and Rzc,
without violating Vegard's rule for the lattice constant.
Fourth, no averaging of the potentials of the alloyed sub-
lattices is necessary, hence charge redistribution between
them can be described self-consistently.

It is useful to compare the band structure of ABC2 to
those of its parent compounds AC and BC in steps.
First, suppose we neglect any non-zinc-blende com-
ponent in the crystal potential of the ABC2 system and
assume c/a =1 and u = —,'. At this limit the bands of
ABC2 can be obtained by folding the zinc-blende (ZB)
bands into the tetragonal Brillouin zone. Each k vector
(a, b, c) in the tetragonal zone then corresponds to two

ZB k vectors (a, b, c) and (a, b, c+1). At high-symmetry
points we have the correspondence relations (denoting
states of ABC2 by a bar)

M~L, +L
R~L +L,
A+ W+ 8',

etc. , where the x, y, and z directions are parallel to the a,
b, and c axes of the crystal, respectively. Placing the ori-
gin of the coordinate system on the anion, the mapping
for common-cation ABC2 systems gives L

&

~l"
] +M ]

+M2 and X3~1 ~+I ~. (The converse is true for
common-anion systems: L3~I ~+M] +M2 and X]~I ~+I ~). This mapping could create extra degenera-
cies at points such as M and R, where the states result
from folding of two zinc-blende bands at equivalent k
points. Note that this folding introduces "pseudodirect"
states, e.g. , at the I point in the conduction band one
will find both I „(I„)and I „(X~,); had I &, (X~,. ) been
the lowest, the band gap would be "pseudodirect. "
Second, introduce the perturbation b, V(r) = V„,(r)—Vz8(r). This perturbation has three components: (i)
the contribution due to 3 &B, (ii) that due to u& —,', and
(iii) the effect of c/a&1. Any of these interactions can
lift degeneracies present following the first step (e.g. , the
I 4 and I & states at the valence-band maximum I » be-
come nondegenerate; the same is true for M, and M2
evolving from X, ). In the usual VCA band structure of
an alloy both folding (first step) and coupling (second
step) effects are missing (although, clearly the disparity
between diferent VCA-ZB states, such as I, and X, ,
still exists). One expects that disorder effects will
broaden somewhat the folded and interaction-split bands
calculated here; however, in the cases where large sp1it-
tings are predicted for the ordered systems, we expect
them to survive disorder broadening and hence be ob-
served experimentally even in disordered samples. Simi-
lar considerations apply for folding of the ZB or CuAu I
states into Cu3Au states. Denoting the l state of Cu3Au
by I. , we have

Crt

Rl
R2
R3
R4

JC;

I
—1

I
—I

1

—I
—I

1

TABLE V. Character table for C2„.

JC2

l ~l +X„+X +X. (Cu&Au —zinc-blende),
(29)I"-I +M (Cu Au —CuAuI) .

Further discussion of the symmetry and folding effects
can be found in Ref. 88(a). The notation for the symme-
try labels used for the CuAu I—like structures is defined
in Tables IV —VI. The labels used for the zinc-blend
structure follow the convention of Parmenter. "
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IV. ELECTRONIC STRUCTURE
OF ZnS, ZnSe, AND ZnTe

A. Band structures

Figure 2 depicts the self-consistent nonrelativistic
band structures of ZnS, ZnSe, and ZnTe at their experi-
mental lattice constants (Table III), calculated with the

X W L K

, (&).. ' K

Ceperley-Alder exchange correlation. Table VII
gives band eigenvalues at high symmetry points in the
Brillouin zone. (Our results for ZnS differ from our pre-
viously published results which used the signer corre-
lation only due to the different choice of exchange corre-
lation. ) The results for ZnS and ZnSe are similar to
those obtained by Wang and Klein (using the Wigner
correlation), although some differences exist (interpreted
in Ref. 82 to arise from insufficient convergence of the
basis set used by Wang and Klein). The present results
for ZnTe agree well with the results obtained by the full

-6- .%~77iuuuA'~u/ai ~~-8- Zn 3d

-10-

Kq

-12
Xg Li h K)

10

2

-2
ID

-4C
5 y

jx3 V2

'b'/

8

-10

-12 r,
Xt y,

Zn 3d

10

0'

Xs V2

x&

-10
fq

-12

Zn 3d
~~z7PPP~ WriPi~ iw~

Xq V)

X W

FIG. 2. Nonrelativistic self-consistent local-density band
structures of (a) ZnS, (b) ZnSe, and (c) ZnTe calculated with
the Ceperley-Alder exchange correlation. Dashed lines show
doubly degenerate bands; shaded areas denote the fundamental
band-gap regions. The origin of the coordinate system is on
the anion site. Results are also summarized in Table VII for
high-symmetry points. All gaps are direct.

, 7 -..-=-- . ~ 7
FIG. 3. Logarithmically spaced charge-density contours for

the valence bands of (a) ZnS, (b) ZnSe, and (c) ZnTe in the (110)
plane, given in units of e/a. u. '. The solid circles represent the
core regions inside which the high charge density is truncated for
clarity of display.
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Transition

TABLE VIII. Observed and calculated interband transition energies (in eV) for cubic ZnS, ZnSe, and ZnTe.

or energy
separation Expt.

ZnS
Calc. Expt.

ZnSe
Calc. Expt.

ZnTe
Calc.

Photoemission
ri. ~res.
X„-r„,
L)„~l )s„
I (d)~I )s,
X3v ~risv
Xs.~res.

rts,

—13.5'
—12.0'
—12.4'
—10.11'
—5.5'
—2.5'
—1.4'

—13.06
—11.88
—12.17

——7.4
—4.80
—2,30
—0.94

15.2+0.6
—12.5+0.4'
—13.1'
—10.33'
—5.3+0.3
—2.1+0.3
—1.3+0.3'

—12.86
—11.79
—12.06

——7.6
—4.82
—2.20
—0.87

—13.0'
—11.6'
—12.0'
—10.01'
—5.5'
—2.4'
—1.1'

—11.16
—9.97

—10.25
——8.1

—5.14
—2.27
—0.94

ReAectivity
L3, ~L),
rlsv ~risc
r„.-r„
Xs, ~X),
'Reference 98.
Reference 99.

'Reference 100.
Reference 97.

5.81'
8.35'
3.80'
6.6'

4.17
6.45
1.96
5.48

4.91'
7.80
2.82'
6.oo"

'Reference 101.
'Reference 102.
~Reference 103
"Reference 104.

3 ~ 50
5.77
1.45
5.08

3 45d, e

4.82'
2.39g

5 45'

2.89
4.21
1.89
4.49

ZnS
t 15v

SSeZn Zn Se ~)

~15v

10

ZnS
Xiv

SSe Zn2
~1v (X1v)

(e) Zn Se
X1v

-3 f03

SSe Zn2 (b)r

FIG. 4. Electronic charge density in the (110) plane (logarithmically spaced contours, in units of e/a. u. ) of high symmetry
valence-band states in ZnS (left), ZnSe (right), and the corresponding states in relaxed SSeZnq (center).
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linear augmented-plane-wave (FLAP W) method (Table
VII), using the same exchange-correlation functional
(columns 5 and 6 in Table VII). The largest difference is
in the position of the Zn 3d bands (0.3 eV deeper in the
present calculation). Our results show significant
differences relative to older (non-self-consistent) orthogo-
nalized plane-wave (OPW) calculations of Herman
et al. and the Korringa-Kohn-Rostoker (KKR) results
of Eckelt et al. , as well as with respect to the empiri-
cally adjusted pseudopotential calculations. They
are more similar to the results of the self-consistent
OPW calculation of Stukel et al. ' Comparison of the
calculated and observed interband transition ' ener-
gies (Table VIII) shows the expected underestimation
of the local-density model. In particular, ionization of
an electron from the d band (e.g. , in a photoemission ex-
periment) is expected to lead to a downward relaxation
relative to the band model results.

B. Eft'ect of cation d states on the fundamental band gaps
in II-VI compounds

In comparing the direct I », I &, band gaps c. in a
sequence of materials which do not have a d state inside

the valence band one notices a gradual decrease as the
anion becomes heavier, e.g. , GaP (2.4 eV)~GaAs (1.S
eV) ~GaSb (0.81 eV), or InP (1.42 eV) ~ InAs (0.43
eV)~lnSb (0.24 eV). This was traditionally explained'
in terms of the decrease in the p orbital ionization ener-
gies of the anion in this series (i.e., P~As~Sb). In
contrast, when a chemically active d band exists inside
the valence band (II-IV compounds, see Fig. 2) there is
an additional contribution to the band gap, which was
not recognized by simple s-p orbital models (both tight-
binding '' and pseudopotential ): The cation d or-
bital transforms in the Td site symmetry as
I »(d)+I, ~(d) having hence a common representation
with the anion p orbitals [transforming as I ~5(p)].
These I ~5(p) and I,q(d) unperturbed zero-order states
can therefore interact, forming a bonding-antibonding
pair, the latter being the valence-band maximum (VBM)
at I . This interaction hence repels the VBM upwards
by —

I
(I is(d)

I

I
I
I &5(p) &

I
'y(Fd E~

—), reducing there-
by the band gap relative to analogous systems with no
active d electrons (e.g. , III-V compounds). This reduc-
tion in the band gap becomes pronounced when the en-
ergy denominator c.d

—c~ becomes small. Since the

MJ ~~ SSaZn,
io- 1 4c (Xsc)

10-3

10

zri s {a}
,~ ~1c

S Se Zn2 {b}
I 1c (I 1c)

znse {~}
r1c

FIG- 5. Same as Fig. 4, but for conduction bands. The shaded regions highlight the interstitial space with large electron-density am-
plitudes.
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sulfur p orbital is far deeper (i.e., has a higher ionization
potential) than the Se p or Te p orbitals, the band-gap
reduction is strongest for ZnS, and weaker in ZnTe. In
Cza or In containing III-V materials the cation 3d orbital
is deep enough ( -F., —18 eV) to make these effects
small (although non-negligible on the scale of the smaller
gaps of III-V systems). Calculations based on s-p orbit-
als only ' miss this efFect, producing spuriously
large band gaps for II-VI's (unless the empirical band-
structure parameters are readjusted). Such is the case in
Harrison s tight-binding model' which overestimates
the I », I „band gap by a factor of 3 (see Fig. 6.8 in
Ref. 105). This effect is naturally smaller in Cd chal-
cogenides since the Cd 4d orbital is deeper than the Zn
3d orbital. This p-d repulsion mechanism was previously
used to explain the anomalously small band gaps in
copper chalcogenides CuB "'S2, Cu8 "'Se2, and
CuB"'Te2 (where B '=Al, Ga, In) relative to the analo-
gous zinc chalcogenides ZnS, ZnSe, and ZnTe. This ex-
plains also why the decrease in the band gaps in going
from A Se to A'Te (A"=Zn, Cd, Hg) is far smaller
than in going from B'"As to B"'Sb [e.g. , the direct band

gaps are ZnSe (2.8 eV)~ZnTe (2.4 eV); CdSe (1.85
eV)~CdTe (1.60 eV); HgSe ( —0.2 eV)~HgTe ( —0.3
eV) compared with the far larger change in GaAs (1.5
eV) ~GaSb (0.8 eV)].

The substantial efFect of the cation d orbitals on the
charge densities of II-VI materials is discussed in Sec.
IV D.

C. Relativistic effects

Relativistic efFects can change the trends in the band
gaps in the ZnS~ZnSe~ZnTe series. In a nonrelatiuis-
tic calculation (columns 2, 3, and 4 in Table VII) we fmd
the direct band gaps ZnS (1.96 eV) ~ZnSe (1.45 eV)
~Zn Te (1.89 eV), i.e., a nonmonotonic change between
ZnSe and ZnTe (due to the relative unimportance of the
p-d repulsion effect in ZnTe discussed above). However,
relativistic corrections (column 7 in Table VII) sub-
stantially lower the band gap of ZnTe (in proportion to
ZnS and ZnSe), restoring the monotonic decrease in the
band gaps in their series observed experimentally.

10

(/f 10

ZnSe (d)
X $0-3

1v
SeTeZn, (+)
I 1v (Xlv)

Zn Te (f)
Xqy

Sere Zn, (b)

0

I:— --L

FDIC&. 6. Electronic charge density in the (110) plane (logarithmically spaced contours in units e/a. u. ) of high-symmetry valence-
band states in ZnSe (left), ZnTe (right), and the corresponding states in relaxed SeTeZn2 (center).
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D. Charge densities

1. Total valence densi ties

Figure 3 depicts the calculated valence charge densities
of ZnS, ZnSe, and ZnTe in the (110) plane of the zinc-
blende lattice. The results for ZnSe are similar to those
obtained by Wang and Klein in their self-consistent
linear combination of Gaussian orbitals (LCGO) calcula-
tion. The results diff'er considerably, however, from those
obtained in empirical pseudopotential models. In
particular, since the Zn d potentials (hence bands) are
missing in most plane-wave pseudopotential studies, these
models have consistently underestimated the cation char-
acter of the I, q valence-band maximum [compare Fig. 3
here with Fig. 2 of Ref. 96(a) and Fig. 18 of Ref. 96(c)).

2. Band-by-band charge densities

It is interesting to consider the resolution of the total
valence-band charge densities of Fig. 3 into their band-

by-band components (Figs. 4 —9). The bottom of the
valence band occurs at the I ~„point. This state is com-
posed primarily of anion s orbitals, as can be seen from
the charge densities depicted in Fig. 4(a) (for ZnS), Fig.
4(c) (for ZnSe), and Fig. 6(c) (for ZnTe), exhibiting a gra-
dual delocalization, characteristic of the orbital expansion
in the S 3s~Se 4s~Te 5s sequence, The conduction-
band state I [,. is complementary to I ]„, in being its anti-
bonding counterpart: Its charge density for ZnS [Fig.
5(a)], ZnSe [Fig. 5(c)], and ZnTe [Fig. 7(c)] exhibits a
node along the anion-cation bond direction. However,
whereas the bonding I ~„has most of its contribution
from anion s orbitals, the antibonding I ~, has also a size-
able contribution from the cation s orbitals. Note that the
I [, state is highly localized around the anions and cannot
be thought of as a "nearly free electron" band, as are
higher-energy conduction bands.

The valence-band state X[, is seen to be an anion s
state (with some cation p character) in ZnS [Fig. 4(d)],
ZnSe [Fig. 4(f)], and ZnTe [Fig. 6(f)]. Its antibonding
counterpart is the conduction-band state L[, shown for

)- D
-io-3=-- Se TeZn2 -'

:10

Z

z.se (') (b) ~ 1P- '

zn ~e (C)
1c(i 1c) 1p & 1p ~ qp~

10 3

FIG. 7. Same as Fig. 4, but for conduction bands. The shaded regions highlight the interstitial space with large electron-density am-
plitudes.
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ZnS [Fig. 5(d)], ZnSe [Fig. 5(f)], and ZnTe [Fig. 7(fj]
[having chosen the origin of the coordinate system to be
on the anion site, the X~ (X3) state has s-d character on
the anion (cation) and p-d character on the cation (anion)].
The important distinction between the bonding-
antibonding X~, -Xt, pair is that in the Xt, state (much as
in the I ~„state) charge is centered on atoms, whereas in
the X~, state most of the charge is between the atoms i.e.,
on the interstitial sites. We see for example that the X~,
state has most of its amplitude [shaded areas in Figs. 5(d),
5(f), and 7(f)] on the interstitial region between the cations
The conduction band X3, is complementary to X~, in that
it has most of its amplitude in the interstitial volume be-
tween the anions [shaded areas in Figs. 5(g), 5(f), and 7(i)].
Very little charge resides on the atomic sites in X&, and
X3 . Simple tight-binding models ' that use a minimal
basis set and confine these basis functions to atomic sites
cannot' properly describe the charge distribution of X~,
or Xq, (although empirical parametrization of the Hamil-
tonian can be used to fix the band energies). [Note that
having chosen the origin of our coordinate system at the
anion site, Eq. (25), we find the X&, state in ZnS and
ZnSe to be lower in energy than the X3„hence X~, and
X3, interchange their roles relative to Ref. 106, where the

origin was chosen to be on the cation site. ]
The top of the valence band occurring at the I »,,

state is seen in Fig. 4(g) (ZnS), Fig. 4(i) (ZnSe), and Fig.
6(i) (ZnTe) to be formed of anion p orbitals and Zn 3d
orbitals. The direct I »„~l ], transition hence couples
initial and final states with amplitude on the same
(anion) sublattice I.n contrast, simple tight-binding

105models which describe the conduction band minimum
I ], primarily as a cation-like state suggest the
I », ~I &, direct transition to couple the anion sublat-
tice (I », ) with the cation sublattice (I &, ), i.e., to be a
two-center excitation. While this is a valid description
in the extreme ionic limit (e.g. , NaCl, where I &, is
indeed a cation state), we see that this is an incorrect
description in the semiconducting limit, even for the rel-
atively ionic zinc chalcogenides.

E. Effect of cation d states

Recently, Wentzcovitch et a1. ' ' have performed an
empirical nonlocal pseudopotential calculation for ZnSe
and displayed the calculated band-by-band charge densi-
ties. Their results are generally similar to ours; however,
since they omitted the Zn d pseudopotential in their cal-

ZnS
ri5

CPgjjql)

Zfl T8
~15v

)P-3 ~SWo q P-3

)(,1~~~~0$~&~1)~~~

(d) '10-3
Zn Te

&iv

Zn S (I)
r,„

i0-*& (

,

STeZn, (b)
{Iiv)

p-3

r"'L
FICx.. 8. Electron charge-density in the (110) plane (logarithmically spaced contours, in units of / . e'a) uof high-symmetry valence

band states in ZnS (left), ZnTe (right), and the corresponding states in relaxed STeZn~ (centerj.
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culation, the p-d repulsion effect present in our work (see
Sec. IV A) is missing. This results in a spurious
enhancement of anion and cation p character relative to
cation d character in states such as the VBM [compare
their Fig. 1(a) with our 4(i)], and in a displacement of
cation d character in favor of cation p character in states
such as the X&, [compare their Fig. 3(c) with our 5(f)].

The ability of empirical pseudopotential and
tight-binding ' methods to reproduce the global
features of the electronic structure of II-VI compounds
without including the cation d band (uIhich is inside the
ualence band) may seem paradoxical. Our analysis re-
veals, however, the mechanism of this success. As dis-
cussed in Sec. IV B, the omission of the cation d levels
from the spectrum eliminates the p-d repulsion with the
anion p states. All other things being equal, this would
have substantially increased the direct band gap, (as the
anion p band is not repelled upwards in the absence of
lower d bands). Using, however, the adjustable parame-
ters available in such empirical methods, it is still possi-
ble to fit the band gaps by loueri ng the conduction

bands. Since the latter involve mostly cation states, this
could be accomplished by using weaker cation potentials
than would have been required in the presence of the
cation d states. Indeed, cation atomic levels calculated
from such interpolated pseudopotentials yield s and p
binding energies that are 1 —3 eV too small. However,
using such spuriously weak cation potentials invariably
reduces the cation content of the valence-band charge
density, as observed by comparing the present all-
electron charge densities with those obtained by empiri-
cal pseudopotential methods. It hence appears that
good fits to energies, along with some misrepresentations
of charge densities are common features of empirical
pseudopotential calculations of such systems. The evi-
dence for the existence of significant cation character in
the valence band of II-VI materials (in addition to the
obvious d states observed in photoemission; see Table
VIII) is nonetheless compelling, and includes their in-
direct effect on band gaps (Sec. IV B), doping behavior
(Sec. IV B), the existence of substantial valence-band
offsets in common-anion II-VI pairs' ' (e.g. , CdTe-

h;''
z. jlI 10 3,'
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i,103-
'10-3
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- -& s Te

=10 ~~ I- I4c(
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FIG. 9. Same as Fig. 8, but for conduction bands.
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TABLE IX. Calculated electronic x-ray structure factors (in e/mol), for group-(i) reflections [Eq.
(36)]. The total number of electrons per mole is denoted p(Ca=0). Origin at the anion site for the ZB
structure and at the X-anion in the ZnzXY ternary. Experimental results are given for ZnSe.

[111]

[200]
[002]

[220]
[202]

[311]
[113]

[222]

[400]
[004]

[331]
[313]

ZnS
p(0) =46

28.47

13.04

31.48

11.16

26.26

18.91

ZnSe
p(0) =64

39.00

3.04

47.16

31.21

2.63

40.22

27.23

ZnTe
p(0) =82

52.46

18.38

62.38

42.96

15.63

54.01

38.02

ZnSe
expt. '

p(0) =64

39.6+0.4

3.7+0.14

47.4+0.5

32.3+0.5

2.9+0.15

40.6+0.45

27.4+0.5

ZnpSSe
p(0) = 110

66.06

10.07
9.42

78.57
77.99

51.92
51.07

8.17

66.37
64.41

44.92
44.20

Zn~SeTe
p(0) = 146

90.72

21.31
22.80

109.43
108.07

73.51
72.10

19.32

94.09
89.53

64.63
63.44

Zn~STe
p(0) = 128

76.79

4.99
9.19

93.45
89.66

61.15
56.75

7.31

79.66
67.34

53.39
49.66

[420]
[402]
[204]

[422]
[224]

[333]

[S11]
[115]
[440]
[404]

9.21

23.07

16.56

16.58

20.69

2.86

35.63

24.27

24.25

32.07

14.39

48.38

34.35

34.34

44.05

3.0+0.2

35.1+0.45

32.2+0.4

6.55
6.09
4.73

58.12
56.85

39.14

39.75
37.93

52.59
51.09

17.03
18.11
21.28

82.84
79.86

57.07

58.05
55.14

75.97
72.41

4.37
7.36

15.83

67.93
59.99

44.56

47.73
39.78

63.99
54.43

'Reference 110.

HgTe), ' and their direct observation in x-ray studies of
charge densities (e.g. , see Figs. 2 and 3 in Ref. 109).

F. X-ray scattering factors

The first four columns of Table IX show the calculated
x-ray scattering factors p(h, k, l) for ZnS, ZnSe, and ZnTe
at the Miller indices h, k, and l allowed by the zinc-blende
lattice (i.e., all even or all odd). The fifth column gives
the observed" results for ZnSe (taking into account the
Debye-Wailer correction). The agreement with our calcu-
lation is very good. We are unaware of similar experi-
mental results for ZnS and ZnTe and hence oAer our cal-
culated data (Table IX) as predictions.

G. Hydrostatic deformation potentials

Using our calculated band structure at diAerent lattice
parameters, we compute the deformation potentials

(I) dE"
V d 1 Q

Table X depicts the calculated deformation potentials for
a few interband transitions i, where comparison with ex-
periment"' " is also given. These are used below to
calculate the volume deformation contribution [bvD of
Eq. (19b)] to the optical bowing.

V. ELECTRONIC STRUCTURE
OF Zn2SSe, ZnpSeTe, AND Zn2STe

IN THE CuAU I STRUCTURE

A. Band structures

Figure 10 depicts the band structures of the three
equimolar ordered alloys ZnqSSe, Zn2SeTe, and Zn2STe
in the CuAu I—like structure, using the structural parame-
ters of Table III. Table XI gives the band energies at
high-symmetry points. At the limit A =B, u = —,', and
c/a =1, the CuAuI unit cell corresponds exactly to a
doubling of the zinc-blende unit cell along the c axis. As
such, the states of the CuAu I structure can be traced to
those of the ZB structure by folding of the Brillouin zones
[Eq. (28)]. The splitting of such states in the actual ABC'
band structure represents the electronic disparity between
A and B. Figure 10 shows a few such instances.
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TABLE X. Calculated and observed hydrostatic deformation potentials [Eq. (30)] for ZnS, ZnSe, and
ZnTe.

System
I ]s.~~].

Expt. (eV) Calc. (eV)
~]st ~&]c

Expt. (eV) Calc. (eV)
~]s.

C ale. (eV)

ZnS
ZnSe
ZnTe

4.0'
5 4'
5.8b

4.0
4.2
5.8

—1.4' 1.8
—2.0
—2.5

+ 0.2
0.0
1.0

'Reference 1 1 1 ~

Reference 1 12.
'Reference 1 13.

(i) The bottom I &, of the valence band of ABC2 at I
shows two distinct bands, corresponding roughly to the

and 8 anion s bands. The corresponding charge den-
sities are shown for SSeZn2 in Fig. 4(b) (the I ~, state de-
rived from the ZB I „state) and Fig. 4(e) (the 1 „state
derived from the ZB X„state) Cl.early the lowest band
has more amplitude on the S site. This asymmetry be-
comes very pronounced in SeTeZn2 [see Fig. 6(b) for
I „(I&,. ) and Fig. 6(e) for I &, (X&, )] and for STeZn, [see
Fig. 8(b) for I"t, (I „) and Fig. 8(e) for I,„(X,„)]. In
contrast, a VCA description results in a single anion s
band at I, representing approximately the average of
I &, of the two constituents. While a VCA description
does produce a splitting between I ]„, and X],, this split-
ting does not reflect the disparity between the two
anions. Instead, it reflects the fact that whereas I"„, is a
pure (average) anion state, X„can mix in some cation p
character. We find that the I

&U -X]„splitting for ZnS,
ZnSe, and ZnTe is 1.1+0.1 eV (Table VII), and that bs
and bcE (both due to non-VCA effects) are the largest
contributions to the relative b

&
for these states, particu-

larly in SeTeZn2 and STeZn2 (Table XII). Hence VCA

for the alloys is expected to produce a similar ( —1.1 eV)
splitting. When the average VCA alloy is ordered, the
I &, and X&, VCA states map into the two I

&
states of

CuAu I (lowest two bands in Fig. 10). The excess split-
ting of these two states (beyond the VCA 1 „-X„split-
ting) now refiects the potential difference between the
anions. We find this 1,„, (I „)-to-I „(X„,) splitting to be
(Table XI) 1.2, 2.4, and 2.6 eV for Zn2SSe, Zn2SeTe, and
Zn2STe, respectively, i.e., considerably larger than the
expected VCA value (1.1 eV) for the last two systems.
There can be no doubt that the VCA description of such
states as having equal amplitudes on both anion sites is
invalid. Such large additional splitting could be observ-
able in photoemission experiments (none are available
for these systems, to our knowledge).

(ii) At the bottom of the VB at M, two equivalent
zinc-blende X„, states fold in (and split) to form the non-
degenerate M ] and Mz states. The splitting is found to
be 0.4, 2.4, and 2.7 eV in Zn2SSe, Zn2SeTe, and Zn2STe,
respectively. (Note, however, that the doubly degenerate
M state just above the Zn 3d band, arising from the fold-
ing of the zinc-blende X3 states, does not split either in
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TABLE XI. Calculated band eigenvalues at the I point in the CuAu I Brillouin zone (in eV), relative to the valence-band max-
imum. The zinc-blende labels of the various levels are used to illustrate how the I +X levels of ZB map into the I point of CuAu-
I. Degeneracies are indicated in parentheses. Values of u, q are from Table III. The Zn 3s and Zn 3p energies are —121.02 and—78.79 in ZnS, —121.29 and —79.04 in ZnSe, and —121.86 and —79.60 in ZnTe.

Level
(ZB labels)

Core levels
Zn 3s(2)
Zn 3p(6)

0 =4l

—121.12
—78.87

Zn2SSe

&eq

—121.17
—78.92

Zn2SeTe

—121.63
—79.38

Qeq

—121.71
—79.44

El=41

—121.58
—79.33

Zn~STe

Meq

—121.76
—79.52

s bands
I l, (1)
Xl, (1)

—12.96
—11.79

—13.01
—11.85

—12.34
—10.59

—12.77
—10.36

—12.31
—10.77

—13.12
—10.49

Zn d bands

J r, „,(1)
i r,.(2)

X3, (1)
Xs, (2)

X4, (1)
XI, (l)

—7.74
—7.73
—7.60
—7.49
—7.35
—7.35
—7.29
—7.08

—7.78
—7.78
—7.65
—7.53
—7.40
—7.40
—7.33
—7.12

—8.11
—8.08
—8.03
—7.87
—7.94
—7.93
—7.86
—7.45

—8.18
—8.16
—8.12
—7.96
—8.03
—7.98
—7.91
—7.49

—8.17
—8.15
—7.98
—7.91
—7.82
—7.80
—7.77
—7.45

—8.34
—8.30
—8.19
—8.07
—8.04
—8.02
—7.98
—7.61

I ls
r,.(1)
I s. (2)

Upper VB
Xg, (1)
Xs, (2)

—4.79
—2.23
+ 0.01

0.00

—4.84
—2.33
—0.06

0.00

—5.01
—2.24
—0.05

0.00

—5.10
—2.46
—0.14

0.00

—5.01
—2.28
—0.11

0.00

—5.23
—2.81
—0.37

0.00

Conduction
r„(1)
X,', (1)
X3,(1)

r
'

r„(1)
I r„(2)

1.72
3.06
3.77
6.11
6.11

1.61
3.06
3.70
6.08
6.07

1.51
2.76
2.71
4.97
4.92

1.18
2.86
2.62
4.85
4.87

1.64
3.04
2.94
5.28
5.20

0.97
3.13
2.67
5.02
5.04

VCA or in the ordered compound considered here. )

(iii) The lowest conduction bands at the R point (de-
rived from the ZB L point) show a large R)-R4 splitting
of 0.37 eV in SSeZn2, 1.19 eV in SeTeZn2, and 1.59 eV in
STeZn, .

The splittings noted in (ii) and (iii) would vanish in the
VCA. Their experimental observation could therefore
serve as an indication of ordering.

(iv) The valence-band maximum at I consists in
ABC~ of the crystal-field split I „(doubly degenerate)
and I 4, (singly degenerate), both arising from the zinc-
blende I », state (triply degenerate). Since the I 5, -I"4,
splitting is rather small ( &0.004 eV, see Table XI), its
resolution may be obscured both by spin-orbit and alloy
broadening effects.

B. Charge distribution

Figure 11 depicts the total electronic charge density of
SSeZnz, SeTeZn~ and STeZnz in the (110) plane. They
appear similar to a superposition of the valence charges
of the constituent binary semiconductors displayed in
Fig. 3. The picture changes qualitatively when one con-

siders the charge densities of individual bands (Figs.
4—9). We see strong localization elfects on individual
anion sublattices, which breaks the tetrahedral site sym-
metry assumed in VCA models. In particular, the CBM
at I „acquires in addition to its s character (characteris-
tic of the ZB constituents) also some anion p character
(through mixing with the unperturbed I )q, state of the
ZB partners) and the I ), (X), ) and I 4, (X3, ) states show
strong cross-hybridization of s and p character. Indeed
the I (, (X), ) and I (X4)3states have almost lost in the
ternary system all resemblance to their parent states in
the ZB constituents.

C. X-ray scattering factors

Using the atomic positions in the CuAuI structure
given in Eq. (2S) and the reciprocal lattice vectors corre-
sponding to Eq. (24), the x-ray structure factor for this
ABC2 unit cell is given as

X ( 1 +e i~(h +k))— (31)

~c.A.«)= —,'[f~ +fge

+Jcec —i(n/2)(h +k +4upl)i ~ + —im(h 4ugl) ))—(1+e
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Here, h, k, and l are indices along Cartesian axes such
that h, k, and gl are integers, g=c/a, and the cation
displacement parameter u is given by Eq. (27). In the
"ideal" CuAuI structure, g=1 and u = —,'. This struc-
ture becomes the (double) zinc-blende lattice for 3 =B
(where also g= 1 and u = —,'). f„,f~, and fc are atomic
structure factors. Nonzero reflections are seen to occur
only if h and k are both odd or both even. In the zinc-
blende (as well as the VCA) limit where ( /IB ) replaces
A and B, Eq. (31) becomes

(+) {(f +f e
—i{rr/2){h+k+l))

4

~ ( 1+e —rr{h +k{+ —in{h +I)+ —in{k +1)) (32)

The factor to the right vanishes unless h, k, and l are all
odd or all even. %'e refer to this set of reflections as
"group (i)," or "zinc-blende allowed, " and give their cal-
culated values for ZnS, ZnSe, and ZnTe, as well as for
their 50%-50% binary alloys in Table VI. Note also
that for zinc-blende materials there is a degeneracy
SzB(h, k, l)=SzB(k, l, h)=Sza(h, l, k), whereas for group
(i) reflections in the CuAu I structure [i.e. , u, q general,
3 &B, but (h, k, r{l) are all odd or all even] we have

(~) f + { g e
—i {rr/2'){h +k +4urll)CA =. W

—~Ce

~ ( 1+ —irr{h —4upl)
)

—i (~/P)(h + 0 +&a gI]

( 1
—in{h —4uql)

) (33)

hence this degeneracy is lifted (see Table IX). For u = —,
'

and g=1, this reduces to the scattering factors of the
zinc-blende components AC and BC. For u = —,', all
group-(i) reflections with the same h +k +1 have the
same scattering factor. All reflections of the CuAuI
structure that are not part of group (i) are referred to as
"group (ii)," or "zinc-blende forbidden. " They include
the (even, even, odd) and (odd, odd, even) cases, and are
given in Table XIII for both u = —,

' and for the equilibri-
um value u,„(Table III). The general expression for
group-(ii) reflections is

(~) f f +f —i {rr/2){h +k 4u+l)ri

+ ( 1 + —in{h —4ur{l {)

For u = —,
' and 2) = 1, group-(ii) reflections reduce to

(34)

(35)

and hence provide a direct measure of the chemical
disparity of the alloyed elments. Note also that the
phase of S(CJ) is unimportant although the relative
phases of the component terms may substantially affect
the magnitude of S(Cx). An interesting consequence
occurs, for example, for group-(i) reflections when u = —,

'

and g=1 in the CuAuI structure. According to Eq.
(33), for this case

S{i)(~) (f +f —i{n/2){h +k +I)
)

+(f +f l {n2/) {+hk+{)) (36)

The phase factor is —1 when h +k + t =2(2j + 1),
where j is an integer. In this case the magnitude of
S(Cjr) is

FICx. 11. Total valence-band charge density in relaxed (a)
SSeZn2, (b) SeTeZn2, and (c) STeZn2. The contours are
displayed in the (110) plane, are logarithmically spaced, and are
given in units of e/a. u.

S«)=
I fr+fr 2fcI—

which is equal to the magnitude of the difference of the
magnitudes of SzB(Cy) for AC and BC if either f„fc-
or f~ fc is negative. —
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TABLE XIII. Calculated electronic x-ray structure factors (in e/mol) for group-(ii) reflections [Eq.
(34)], i.e., the superstructure reflections which vanish in the zinc-blende limit. Origin at the X anion
in the Zn. XY ternary.

Beam &eq

ZnqSe Zn~SeTe
1

4 &eq

ZnpSTe

[001]
[110]
[201]
[112]
[003]
[221)
[310]
[203]
[312]
[401]
[223]
[330]
[114]
[332]
[421]
[403]
[005]
[314]
[510]
[423]
[205]
[512]

12.81

16.87

19.67

17.20

25.09
11.15

14.41

4.19

14.89

9.92

21.70

12.68

17.07

13~ 12

14.88

19.10

1.08

15.07
11.27

3.62

22.61

11.69

17.37

16.87

15.76

15.47

14.65

14.67

14.42

13.73

13.50

12.88

12.89

12.66
12.69
11.97
12.12

11.45

11.43

11.29

11.26

10.82

10.83

10.68

10.04

16.20

20.71

18.41

29.43

8. 1 1

13.25

2.03

15.79

7.24

25.50

11.73

21.06
13.94
15.56

22.65

8.39
18.71

10.59

1.02

28.28

12.62

16.95

16.19

14.70
14.38

13.48

13.55

13.26

12.63

12.43

11.86

11.88

11.70
11.69

11.10

11.24

10.71

10.68

10.58

10.58

10.25

10.26

10.16

22.75

33.07
40.49
35.34

53 ~ 71

19.25

27.74

3.05

30.50

17.21

46.57

24.52

36.41

26.98

30.64

41.27

5.66

32.34

22.03
3.40

47.65

24.30

34.32

33.07

30.48

29.88

28. 19

28.27

27.73

26.44

26.03
24.86

24.89

24.51

24.51

23.20

23.50

22.32

22.29

22.04
22.02

21.26

21.27

21.03

Observation of group (ii) reflections in pseudobinary
alloys of zinc-blende components can serve as an indica-
tion of ordering. Such refiections were recently observed
for GaAs-A1As alloys.

VI. OPTICAL BOWING

A. The single-cluster ABC& model

Table XII depicts our calculated bowing coe%cients
for ZnS Sei, ZnSe Te], and ZnS Tel using the
ordered ABC& structure as a model for the 50%-50% al-
loy. We also give the breakdown of the total bowing b
into its volume deformation [Eq. (19b)], chemical elec-
tronegativity [Eq. (20b)], and structural [Eq. (21b)] com-
ponents.

A few conclusions are apparent.
(1) Relaxing the cell-internal degrees of freedom ( u ) in-

creases the bowing b: The structural contribution bs is
generally positive, and overwhelms the other two contri-
butions. '' It correlates with the atomic size mismatch
of the alloyed atoms, i.e., using Pauling's tetrahedral ra-
dii of 1.04, 1.14, and 1.32 A for S, Se, and Te, respective-
ly, the S-Se and Se-Te and S-Te size mismatches are
0 10, 0 18, and 0 28 A, respectively, hence b s(S-
Se) & bs(Se-Te) & bs(S-Te).

(ii) The chemical electronegativity contribution bcE is

generally (but not always) negative and scales with the
electronegativity mismatch of the alloyed atoms. Using
Pauling's electronegativities of 2.5, 2.4, and 2. 1 for S, Se,
and Te, respectively, we have an electronegativity
mismatch of 0.1, 0.3, and 0.4 for S-Se, Se-Te, and S-Te,
respectively, hence

~

bcE(S-Te)~ & ~bcE(S-Se)~.
(iii) The volume deformation contribution bvo is posi-

tive for the S-Te system, having the largest lattice con-
stant mismatch, and is far smaller for the S-Se system
with the smallest lattice constant mismatch in this series.
These findings suggest that the order contribution
b&

——bvD+bcE+bs to the total bowing scales both with
the electronegativity difference A7zz and with the atom-
ic size difference AR zz. In fact, a plot of b versus
A7~zARzz for II-VI and III-V alloys is nearly linear,
with an intercept at zero. This suggests that previous
claims that the scaling of b with Ag are indicative of
disorder eff'ects (as suggested by Van Vechten and Ber-
stresser ) are not well founded.

(iv) The bowing parameters b„k of Table X were given
relative to the top of the valence band (the I &, state).
These b„k(VBM) values could easily be converted to
bowing parameters b„k(core) relative to deep core states
(e.g. , the Zn 3s or Zn 3p) simply by noting that

b, k(core)=b„k(VBM) —b„„(VBM) .
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For example, using for n k the X&, state and the Zn 3s
core, we have b values from Table X of
0.33—0.05 =0.28 eV, 0.90—0.54 =0.36 eV, and
2.13—1.29=0.84 eV for ZnS„Se&, ZnSe, Te&, and
ZnS Te& „, respectively. In the particular case where
nk is the I 5, state we see that the bowing of the VBM
relative to the deep core states is simply —b,„„,(VBM).
Hence we predict a negatiue bowing of the VBM of
—0.05, —0.29, and —1.29 eV for ZnS Se&

ZnSe Te&, and ZnS Te&, respectively. In contrast,
Table X shows that for all valence states nk (except X3„
for ZnS Te~ „) one has b„k(VBM) & b„. „,(VBM), hence
we predict positive bowing of valence-band states with
respect to core states. This prediction awaits testing by
core photoemission experiments.

It is interesting to observe that the bowing parameters
of the deep core states of the different common cation
states (e.g. , Zn 3S, Zn 3p) are nearly equal in each alloy.
Furthermore, we find from Table XI that the difference
between the Zn 3s and Zn 3p band energies is nearly the
same in all materials, e.g. , 42.23 eV in ZnS, 42.25 eV in
ZnSe, 42.26 eV in ZnTe, 42.25 eV in SSeZn2, 42.23 eV in
SeTeZn2, and 42.23 eV in STeZnz. This suggests the
possibility that these core states are placed at the same
energy separation from the intrinsic vacuum level in all
of these materials (note that this is simply a particular
example of the "vacuum pinning rule" for impurities
suggested by Caldas et al. " " ). Hence, differences in
core binding energies (relative to their VBM) of two ma-
terials can be used to approximate the intrinsic valence-
band offsets.

It is interesting to note how the different contributions
to the bowing affect the various band states. Figures
12—14 depict the variation of various high-symmetry
band energies with volume deformation and structural
relaxation. Considering the ZnS-ZnTe example of Fig.
14, we see that dilating ZnS from its equilibrium lattice
parameter to that pertaining to STeZn2 causes an up-
ward shift of its bonding valence-band states (relative to
the VBM) and a downward shift in the antibonding con-
duction bands (except X„which has an inverted defor-
mation potential; see Table X). The band energies of
ZnTe respond to compression of the lattice parameter in
just the opposite way: The valence-band energies shift
downwards and the I &, conduction band shifts upwards.
Note that ZnTe becomes an indirect-gap semiconductor
under such a compression (Figs. 13 and 14). The relatiue
hydrostatic deformation potentials [Eq. (19c)] then deter-
mine whether bvD is positive (most states in ZnSe-ZnTe
and ZnS-ZnTe, see Table X), or negative (most states in
ZnS-ZnSe). Having prepared ZnS and Zn Te in their
final equilibrium volume, we now bring the two constitu-
ents together to form the relaxed alloy. Figures 12—14
(center panel) then show how the prepared states in-
teract: The I &, state of compressed Zn Te is lowered
substantially by interacting with the I &, state of dilated
ZnS which is nearly unshifted. This asymmetry contrib-
utes largely to the optical bowing of Zn2STe. Note that
the interaction of the compressed and dilated ZB bands
almost always repels them in opposite directions, result-
ing in a positive contribution to the bowing. In contrast,

the prepared X&,, states in ZnS-Zn Te and ZnSe-Zn Te are
pushed in the same (upward) direction, resulting in a
negative bowing.

To summarize our predicted bowing parameters, we
show in Fig. 15 the variation of the lowest I &5,

I „(I„), I,~„, I „(X„), I,5„, I 4, (X3, ), and
I », ~I &, (I,~, ) band gaps in alloys of ZnS-ZnSe-ZnTe
using for the end-point materials the best-known values
(rather than those obtained by the density-functional cal-
culation).

We will now consider in greater detail the individual
contributions b s and b v D to b &. The structural-
relaxation contribution can be expanded in a power
series:

bs=a~, a, c(u —4)+&~,a, c(u —~) + (39)

b, =a~ ~(u ——,
' )+P„+~(u ——,

' )'+ (40)

where we indicate the symmetric nature of f3 by the sum
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FIG. 12. Variation of band energies of ZnS and ZnSe at
high-symmetry points showing the stepwise formation of the
states of the ordered alloy.

If A and 8 are interchanged, and (u ——,') is replaced by
( —,

' —u), the energy levels (and bs) of ABC2 must remain
unchanged. Thus, a is antisymmetric and P is symmetric
under this operation. In the simple limit of a zinc-blende
compound where 2 =B, this result can hold only if a van-
ishes. Hence a must depend on the difference between A
and 8, so that Eq. (39) can be written as
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FIG. 15. Predicted variation of the few lowest interband
transition energies in ZnS-ZnSe-ZnTe alloys, using our calcu-
lated bowing parameters {Table XII) and the experimental
band gaps of the end-point materials.

"15.—f
15v

-X1v ~ ~ ~ t ~ ~ ~ X5„

-4—
X3v5 v

3 +B in the subscript.
It is also worth noting that for u =u,', c/a= 1, and

R~c and Rsc near their ideal (zinc-blende) values we
have

X3„

X „—l0—
-11—

iv

-1 r

~ ~ ~ ~ ~ ~ ~r

"———+3(R~c —Rac)/2tt . (4l)
~

$
~ ~ ~ rrr~ ~

FIG. 13. The same as Fig. 12, for ZnSe and ZnTe.
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FIG. 14. The same as Fig. 12, for ZnS and ZnTe.

Hence Eqs. (39} and (40) are equivalent to an expansion
in powers of the lattice mismatch, AR /a.

It is interesting that in nearly all cases bs is positive
(Table XII), the exceptions being the I „,(X„, ) and
I ~, (X~, ) states in Zn2SeTe and Zn2STe, and the
I ~, (X„) state in Zn2SSe. An examination of the band-
by-band charge-density plots (Figs. 8 and 9) suggests the
reasons for this. For purposes of discussion, we will
consider the case of Zn2STe, Figs. 8(b}, 8(e), 9(b), and
9(e). In the I „,(I „, ) state the majority of the charge re-
sides in the ZnS bond, and very little charge resides in
the ZnTe bond. This asymmetry is the major contribu-
tor to bs for this state. We should point out the reduc-
tion of the u parameter from —,

' to u, q
of the CuAu I

structure results in bringing the center and leftmost Zn
atoms in the charge-density plots closer together, while
the center and rightmost Zn atoms move farther apart.
In a zinc-blende compound (/I AC2), which has a sym-
metric charge distribution (since u, = —,'), reduction of u

would raise the energy of the rightmost AC bond and
lower that of the leftmost AC bond by an approximately
compensating amount, resulting in relatively little
change in the band energy of the I"~„state relative to
that of the top of the valence band {which also has sym-
metric charge density). Thus one would expect
a„z——0 and f3„+tt « I; hence bs-—0 in that case. In
contrast in Zn2STe, the large asymmetry between the
Zn —S and Zn —Te bonds would cause the band energy
of I q„(I &, ) to drop (relative to the more symmetric VB
maximum) as u is reduced below —,', since the energy in

the Zn —S bond will drop by a much larger amount
than the energy of the Zn —Te bond increases. Thus,
the bowing should be large and positive. In contrast, the
I „,(X„,) state is complementary to I „(I „, ) in that the
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majority of the charge lies in the Zn —Te bond, with
much less in the Zn —S bond. Hence, the bowing
should be negative in this state.

In the conduction bands, a slightly different argument
must be used since the states are antibonding between
nearest-neighbor atoms. Here the large interstitial
charge density provides an attractive force between pairs
of Zn atoms. In the zinc-blende case, the symmetry re-
sults in compensating energy changes with changes in u,
so that bs=0 as in the valence states. In ZnzSTe the
large asymmetry in I &, (I „)causes the energy (relative
to the VB maximum again) to drop with decreasing u,
since the largest portion of the charge lies between the
1eftmost pair of Zn atoms. Thus, this state should exhib-
it positive bs The. I „(X„)state is complementary,
having most of its charge between the rightmost pair of
Zn atoms, so that its bs is negative.

These arguments hold as well in Zn&SeTe, but for the
state I &, (X&, ) in Zn2SSe other effects apparently dom-
inate, since the states are much more nearly symmetric.

The volume-deformation contribution bvD has been
given in terms of deformation potentials previously [Eq.
(19c)]. Values calculated from the deformation poten-
tials shown in Table X typically agree with those calcu-
lated directly from Eq. (19b) to within 20%%uo for ZnzSSe,
10%%uo for ZnqSeTe, and 1% for ZnzSTe.

B. Corrections due to multiple clusters

So far we have modeled the properties of the 50'Fo-
50'7o alloy by those of the ordered ABC2 structure. As
discussed in Sec. II A, part of the disparity between the
calculated ordered contribution b& (Table XII) and the
experimental bowing b,„„, (Table II) would arise from
disorder, e.g. , the existence at the composition x=0.5 of
"minority clusters" AC, BC, 33BC4, and AB3C4 with
nonvanishing probabilities P'"'(x, T). One could model
this disorder contribution to the bowing by considering
the band-gap energies e„'"'(A„B4 „C~,a(0.5)) of these
clusters, evaluated at the 50'7o-50% alloy lattice parame-
ter a(0.5). We have carried out this procedure for
ZnSo 5Teo 5 by calculating the band structures of ZnS,
ZnTe, Zn2STe, Zn4S3Te, and Zn4STe3 at the lattice pa-
rameter a(0.5)=5.749 A. As before, we optimize all cell
internal degrees of freedom at this lattice parameter,
finding u ' '(0. 5) =0.2681 for Zn4S3Te and u ''(0. 5)
=0.2328 for Zn4STe3. The average band gap at
a =a(0.5) arising from these clusters is then

e(0.5)= yP'"~(x =O. S)

Xe'" (A„B „C,a(0. 5), u "'(0.5)),

where P'"~(x) are the occurrence probabilities at x=0.5.
The total bowing is calculated from Eq. (4) for state i

as

b'„', =4[—,'E"( AC, a„)+—,'E"(BC,a ) —E"(0.5)], (43)

whereas the contribution of the minority clusters is sim-
ply the amount by which b'„', deviates from b,' [Eq. (23)
and Table XII] calculated from ABC' alone:

Pg"'(x) = x n(1 )4 —n

Pl
(45)

To estimate, however, an upper bound for disorder con-
tributions to b, we have used these random probabilities
PR"'(x) in Eq (45. ). We find for ZnSO&Teo& the following
results for the three lowest conduction states (using the
same zinc-blende notation as in Table XII):

b„,(I ~, )=2.94 eV, b~t(I „)=—0.89 eV;

b„,(X~, ) = —1.45 eV, b&~(X~, ) =0.26 eV;

b„,(X3, )=1.31 eV, bt, (X„)=—0.39 eV .

iVote that disorder effects tend to raise the band gap,
hence reducing the magnitude of the bowing parameters
relative to the prediction of the completely ordered model
These results are in better agreement with experiment:
b,„,(I „)of Table II is 3.0 eV, closer to b„,(I „)=2.94
eV than to the ordered contribution b&(I ~, )=3.83 eV of
Table X. This would suggest a maximum contribution
of disorder, in the extreme case of ZnS-ZnTe [having an
enormous lattice mismatch, hence the largest devil, tions
of P "'(x) from P„'"'(x)] of b»(I &, )Ib„,(I &, ) of 30%%uo.

We expect in general the disorder contribution to be
considerably smaller, as the cluster probabilities P'"'(0.5)
are considerably smaller than P~"'(0.5) for all n~2.
Note that the increase in the lowest band gap (decrease
of its bowing parameter) upon disordering of an ordered
structure, evident in our results (b» &0), is also observed
experimentally in superlattices:" disordering of (or-
dered) III-V superlattices (catalyzed by introduction of a
fast-diffusing impurity such as Zn) is indeed observed"
to increase the band gap.

VII. SUMMARY AND CONCI. USIONS

We have presented first-principles calculations of the
electronic structure of ZnS, ZnSe, and ZnTe in the zinc-
blende structure, and Zn&SSe, Zn2SeTe, and Zn2STe in a
CuAuI —derived structure. The optical bowing in zinc
chalcogenide alloys is well represented by the use of the
ABC2 ordered structure, which has the same local atom-
ic arrangement as the predominant one in the alloy at
composition x=0.5. We conclude that the disorder con-
tribution b&& to the bowing parameter is small, particu-
larly in the case of alloys with a large size mismatch, for
which the tendency to order is strong. This is consistent
with the results of CPA calculations, which show small
disorder contributions in other alloy systems, as well as
with the large disorder contributions required to fit ex-
periment in earlier VCA-based calculations.

The "intrinsic" bowing b& for many transitions involv-

(44)

The central difhculty in this procedure is the estima-
tion of the probabilities P '"'(x ) of occurrence of
A, B4 „C4 at a given composition. First-principles cal-
culations of the phase diagram of lattice-mismatched al-
loys indicate that P'"'(x) deviate substantially from the
random (R ) probabilities
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ing the top of the valence band has been decomposed
into three components, bvD, bcE, and bs, showing that
bowing arises principally from the structural relaxation
bs possible in locally ordered structures, with decreasing
contributions (in order) due to charge exchange in the
unrelaxed structure, bcE, and volume deformation of the
end-point compounds, bvD. The origin of the
structural-relaxation contribution bs apparently lies in
the fact that the asymmetry in the charge density in
most of the individual valence and conduction states is
greater than that of the valence-band maximum so that
band energies with respect to the VB maximum change
significantly in response to the structural relaxation.
The asymmetry responsible for this is a manifestly non-
VCA effect and increases with increasing size and elec-
tronegativity mismatch between the anions.

The folding of the bands of the zinc-blende structure
into the smaller Brillouin zone of the CuAuI structure
has implications which should be manifest in photoelec-
tron spectroscopy experiments. For example, the folding
of one of the zinc-blende X points into the zone center
results in a pair of distinct bands at the bottom of the

valence band at I" having an energy difference of 2.6 eV
in Zn2STe, which should readily be measurable. Other
measurable effects result from the splitting of states
which would otherwise be degenerate (due to folding) if
the two anions were identical (e.g. , in the VCA). As an
example, we cite the two lowest bands at M (derived
from two of the zinc-blende X points), which are split by
2.7 eV in Zn2STe.

As a consequence of the success of the ordered-
structure approach used here, the VCA violations ap-
parent in the charge-density plots and the band struc-
tures, and the empirical nature of the previous VCA-
based calculations, we conclude that the success of some
of the VCA calculations in reproducing the experimental
bowing parameters is artificial, and that other applica-
tions of the VCA to semiconductor alloys should be re-
examined.
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