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FIRST PRINCIPLES CALCULATIONS OF SEMICONDUCTOR ALLOY PHASE DIAGRAMS:
ORDERED TERNARY PHASES

A. A. MBAYE* and ALFX ZUNGER, Solar Fnergy Research Institute, Golden, CO
80401

ABSTRACT

Combining the self-consistent local density total energy approach with
the Cluster Variation Method, we demonstrate that inclusion of both elastic
and chemical interactions in the total energy functional leads to new
features in the phase diagram of AXB]_ alloys, including the appearance on
the same phase diagram of ordering an phase separation. Strain stabili-
zation of both stable and metastahle ordered phases is also predicted.

INTRODUCTION

Mixture of a compound A with another B leads in general to formation of
ordered stoichiometric compounds Aan, disordered solid solutions Ay By of
composition x, and/or the coexistence of different phases. The study of
phase diagrams and their correlation with the microscopic properties of the
constituents A.and B has been on ongoing challenge in metallurgy [1-4] and
semiconductor physics [5-9]. However, many of the features of experimental
phase diagrams [10-11] are not understood on the basis of existing
theoretical models [4-9], The limitations of these models are in general
related to the unsatisfactory description of one or both of the
contributions to the alloy free energy F=AN-TS, namely the internal energy
(AH) or the entropy (S) associated with the alloy state of order. In
semiconductor physics, only the high temperature part (near the solidus) of
the phase diagrams has been considered in detail, where the simple solid
solution concept [4-9] has proven to give a reasonable description of the
experimental data. However, recent observations of ordered phases in
semiconductor alloys, such as in ternary Gaj_ Al As [12a], Ga)_yIn.As [12b],
and ﬂaAS]_xth [12¢], grown at low temperature cannot be explained by models
[13] based on the use of the randon disorder approximation, and the neglect
of chemical energies responsible for alloy ordering, To study the solid-
solid phase diagrams of semiconductor alloys we therefore propose a new
approach based on a combination of first principles calculations of the
alloy {aternal energy [14] with the Cluster Variation Method (CVM) ([15]
which allows an accurate calculation of the state of order (configurational
entropy).

THEORETICAL MODEL

Consider the ordered stoichiometric structures {Aan (n+m=constant)
formed hy distributing A and B on a fixed lattice. Fach structure is

characterized by 1ts structural parameters {a o } and the excess total
energy (measured with respect to equivalent amounts of the constituents at
their equilibrium lattice parameters aj and ap):

BE(n)(a) = E[Aan ;al - nE[A;aA] - mE[H;aE] . (1)

The formation enthalpy of each ordered phase is the equilibrium (eq) value
of Eq. (1), i.e., au(n) = pp(d [aeg l. Consider a substitutionally dis-
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represent its state of order by a superposition with probabilities P ,T)
of all permissible local atomic arrangements [16,17] exhibited by {Annm},
[where P(“)(x,'!‘) (arsd a(x) are tho?e that minimize the free energy [17]].
Calculation of (P o (x,T)} from {AF n)(a}} then allows to obtain the phase
diagram of the underlying alloy using any of the statistical mechanics
techniques available for such TIsing problems [16-17]. In the fourfold
coordinated face centered cubic (fce) binary alloys A,B,_.C treated here,
limiting the short range order to nearest neighbors on the fcc lattice
results in five A B,_,C, (0<n<4) ground state ordered structures [18]. For
a (ziven value a(x) of the alloy lattice parameter, the cluster energies
AE n)(a) are obtained from the total energy of the associated ordered
structure A B, __Cyp. [{l general this energy can be separated into two
pieces: the first e'®) is volume [or a(x)] independent, and termed
"chemical,” Yh%le the second AF{(nA,mB,a), volume-dependent, 15 called
Velastic”. &'M) is related to the equilibrium charge transfer, polarization
;elaxaticn of the C-sublattice and spin-coupling in A B, _.Cs4 [18]. We thus
ave

pE{0)(a) = () + AF(nA,mB,a). (2)

The compound enthalpy of formation is then anln) - E(n) + AF(aé“)), where
a{n) is the equilibrium lattice parameter of A B,_ C;. From Eq. (2) one can
express the mixing enthalpy of the disordered alloy as

D x,y = § e . 1e™ + glato] , (3)
n
where Gla(x)] = E P(n){x,T)AF[nA,mB,aéz)] is the average alloy elastic ener-

gy and AF is th8 volume deformation energy of AC and BC to aég). The two

terms of Fq. (3) reflect the dual coordinates used in phenomenological
models of solubility [2,8], compound stability [1,3], and mixing enthalpies
[3], e.q., the Darken-Gurray [2] and Miedema [3] models.

Many approximations have been previously adeopted in treating the alloy
phase diagram problem (Eq(s5 2 and )t the first class of models neglects
the chemical energies (g‘"/=0) and retains only the elastic part Gla(x)].
This {includes approaches such as the elastic model of Fedders and Muller
[7]. This approximation precludes the existence of ordered structures [12]
or order-disorder transformations, despite its reasonahle description of the
then-available data (miscibility gap, enthalpy of mixing). A second class
of models neglects the elastic energy Gla(x)] and Seduces the alloy problem
to a_peneralized Ising problem [19]. Ordering [r:(rl ¢0] and phase separation
[e("t »>0] can he separately described with this framework (but not their
appearance on the same phase diagram). Balzarotti aad co-workers [19] have
treated both chemical and elastic contributions to the free energy, hence,
pioneering modern approaches to this problem. However, having chosen posi-
tive chemical energies €' (in the absence of a first-principles estimate
for them), no ordered phases or order-disorder transformations were con=
sidered, in apparent conflict with recent observations [12]. 1In the preseat
work, we 1llustrate the consequences of both elastic and chemical (ordering)
energies on alloy phase diagrams using an ab-initio quantum mechanical cal-

culation of the total energy of the A B, _,C4 which includes on the Same
basis chemical and elastic energies. This calculation {s hased on a filrst
principles total energy minimization within the non-local pseUdODOtE"“"l

representation of the local density formalism [18].

In the variational approach of Kikuchi [15], the entropy is obtained,
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within a given clustexi ?pproximation, from the associated cluster configu~
ration probabilities p{(J (%x,T). The choice of the size of the basic cluster
fixes the number and type of the possible ordered structures present at T=0
K. In the case of A1_xB4C alloys, these so-called ground state ordered
structures are the multinary compounds A“Bmcn_m. We have used the first non
trivial CVM-approximation for the FCC-like, A,R;_,C alloys i.e., the FCC-
tetrahedron approximation (n#+m=4). The lloy entropy 1s a function of the
point (x;), pair (y”) and quadruplet [P ‘”(x,T); J = ijk1, i,1,k,1 = AC or
BC} given as [20]:

=—k[2Z P 1lnP_- 6 1 +
S [ : J,n‘J giyij ny-ij 5%){1111211' (4)

where x; and yij arg linear sums of the P{J)'s [17]. From the configura-
tional ‘variables PJ)(x,T), one defines the probabilities P(“)(X,T) of
having n atoms B in the cluster. Minimizing the free energy F=AH-TS, of
Egs. (2) and (4), with+ respect to the P Ihig results in a set of self-con-
sistent equations P = f(P) which allow complete determination of the cluster
probability distrubution (B) once the energetics [AE n)(a)} is given. Fur-
thermore, the CVM allows description of preferential ordering on the four
sites (i,i,k,1) of the te(tra‘nedron through introduction of different sym-
metry relations on the PJ)'s assoclated with ordering 1in the different
compounds AnPag‘_nCﬁ. It therefore permits the calculation of the free ener-
gies of both ordered and disordered phases and hence allows the study of
both phase separation (miscibility gaps) and ordering processes.

APPLICATIONS AND DISCIISSIONS

Using Gaj_,In,P alloys as an example, we calculate AE(“)(a) of Eq. (1)
for the structures GaP, GajInPy, GalnPy, GalnyP, and InP (n=0,1,2,3 and &,
respectively), in the Landau-Lifshitz fce structures [17,18]., These exhibhit
all nearest-neighbor local atomic arrangements around the common (phos-
phorus) atom, i.e., for n=0 and n=4 we use the FZ3m zinchlende structure
(clusters of Gay and In,, respectively), for n=l and n=3 the P&3m Luzonite
form (Ga.j[n and Galng clusters, respectively), whereas for n=2 we usge
the PAm2 gtructure having a CuAu-1 cation sublattice (the GapIny cluster).
The aR(")(a) are calculated self-consistently in the local density
formalism, using the momentum space pseudopotential total energy
representation [14] and a plane wave basis set with only atomic numbers and
positions as 1input [1R]. While our CVM caleulation does not utilize the
separation of variables indicated in Eq. (2) [we use directly AE(™)(a) of
Eq. (1) shown in Fig., la], for purposes of analysis we display this
decomposition as follows: we use here et = Aﬁég) + AEE,SI + AESE%, all
evaluated at aen (notation of Ref. 18), calculated [18] from Ffirst
principles total energy method (first two terms) and the VFF method (last
term). In Ref. 18 we calculated the elastic energy AF[aég ] = AE‘SB using

the first-principles computed lattice constants ag_g). This underestimates

the lattice mismatch arnp = agap (N0.213 A) relative to experiment (0.42 A),
hence the elastic energy of Ref. 18 is underestimated too. Here, and 1in
Ref. 21 we correct this by using the experimental lattice parameters. Note
that consequently AF[aér% ] = 3.29 is larger than the value of Ref. 18 (0.87)
In which theoretical lattice constants were used, The values of AF[aé“)]
&L‘G(!;'l 2.33, 3.29, and 2.64 Kecal/pair (3rd column of Table I in Ref. 23), and
AEyrR = —1.47, -2.36, and -2.03 Kcal/mole for » and 3,

n=1, 2
EESgectively- The total formation energy is an(®) = ¢(a) 4 AF[a(“)] =
{ar n) + Ap(D) n n) [2)_ =
“CE ‘pol + AEQpEZ + [AF, b }. Hence, our AH =-0,29 is smaller than
the value of -1.65 derived in Ref. 18 (for the chalcopyrite structure) using
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a smaller Aa. We will see (Fig. lc below) that the new aa(™) yalues produce
rood agreement with the measured AH n)(x) without any adjiustment of

a
ARMDY Inspection of Table I here shows that the elastic energies are
clearly non-negligible even at equilibrium, Furthermore, AR “)(a) can

change sign as a function of a (Pig. la), a feature missing from both elas-
tic [5-9] and simple Ising [17,20] models.

The calculated thermodynamic properties (Fig. 1lb,c) and the phase dia-
gram, (Fig. 2a) indicate that (i) Despite an ever positive mixing enthalpy
AH M=pix, T)x(1-x) [Eq. (3)] of the disordered phase evident in Fig. 1le
(the calculated @ at T=1400 K and %x=0,5 is 2.0 Kcal/mole, compared with the
value 3*1 ¥Kcal/mole inferred [5,6] from high-temperature data), ordered
phases (shaded areas in Fig. 2a) are predicted to be stable at low tempera-
tures [since anln <0], in contradiction with the predictions of all elastic
models [5-9] and Ref. [19], hut in agreement with recent observations of the
AqBC, and ABjC, (in InCaAs [12b]) and ABC, (in GaSbAs [12¢]) ordered phases
and with the early predictions of Srivastava et al. [18]. (ii) The elastic
energy tends to favor, at each alloy composition x, those local atomic ar-
rangements which are least strained at the corresponding lattice parameter
a(?). This 1is evidenced by the substantial departure from randomness
AP “)(x,T) of the disordered phase: e.g., Fig. 1lh exhibits a ~20% enhance-
ment at T=600K of the n=1,2,3 species at x=1/4, 1/2, and 3/4, respec-
tively. This can explain the observed [5,11] growth-temperature-dependent
alloy properties (e.g., width of Raman lines, carrier mobilities, and ex-
citon trapping rates). (iii) This - (x,T)-dependence of pln (x,T) introduces
similar dependences in s(P)  through Eq. (3) evident in Fig. lc. While
absent in all regular solution models [5-8], such hitherto unexplained de-
pendences had to be 1incorporated phenomenologically in detailed fits to
measured phase diagrams [9]. (iv) Despite the all-attractive ordering ener-
gles €'™, a miscibility gap for disordered phases (dashed area in Fig. 2a)
can exist together with ordering (shaded areas), in contradiction with the
predictions of simple Ising models with fixed interactions [16,8?]

To analyze the consequences of models which retain in AR ) only chem-
ical ordering energies [16,17,20], we show in Fig. 2b the phase diagram
calculated with the same (attractive) [s{“)} of Table I, but omitting the
elastic energy G(a). Comparison of Fig. 2a and 2b illustrates the three
main effects of elastic energy on systems with attractive chemical interac-
tions: First, strain leads to stabilization of ordered stoichiometric com-
pounds: narrowver single-phase domains (shaded areas) and broader two-phase
domains relative to Fig, 2b. Second, the elastic energy is seen to lead to
a miscibility gap where two disordered phases exist (D and D' in Fig. 2a).
Third, while the overall topological resemblance of the coherent phase dia-
gram of Fig. 2b to many experimental data [10] (or to Fig. 2a) has led many
authors to adjust {e{™)} to the observed critical temperatures, this leads
to spuriously small values [21] of AH n) and considerably overestimates
solubilities [4].

In order to characterize systems with small repulsive AH(n)'S we have
recalculated the phase diagram using the same elastic energy of Fig. 2a but
with positive AH(M) values. Tn addition to a broad miscibility gap (Fig.
?c¢), we find, remarkably, metastable multinary ordered phases inside the
miscibility gap at stoichiometric compositions. They disappear, for any
value of [AA'T/}, when the elastic energy 1is eliminated (i.e., as assymed in
simple Ising models). Thus, we conclude that unstable species (AHAT >0)
can be induced metastably at low temperatures by large elastic energiles.
The large reorientation activation bharriers and small atomic diffusion con=
stants at low temperatures characteristic of semiconductors [5] may hence
lead to the quenching—in of such phases. It is a distinct possibility that
some of the ordered phases reported to occur inside the miscibility gap at
low temperatures [12] indeed correspond to such metastably quenched phases.
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Table I: Components of Eq.
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(3) for GayIn,_,P;. FEnergies in Kcal/atom

pairs, lattice constants in A.

System Aﬂ(n) AF(a(n)) E(n) a(n)

eq eq
n=0 GaP 0.0 0.0 0.0 5.450
n=1 GajInP, =0.244 +2.33 =2.57 5.5545
n=2 GalnP, -0.29 +3,29 -3.58 5.659
n=3 GalngyP, -0.243 +2 .64 -2 .88 5.7635
n=4 InP 0.0 0.0 0.0 5.868

Lattice Parameter (3)
555 566 5.77
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Fig. 1: (a) excess cluster
energies; (b) cluster proba-—
bility differences (actual-
random) at 600K; (c¢) inter-
action parameter of alloy,
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i
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Composition X

Fig. 2: CVM phase diagram: (a) first
principles energies; (b) chemical
energies only; (c) elastic-energy
dominant. Shaded areas: single ordered
phases; dashed: miscibility gap.
D=disordered, B=A3BC,, y=ABC,, 6=AB3C4,
respectively.
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