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First-Principles Calculation of Semiconductor-Alloy Phase Diagrams
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Combining first-principles self-consistent local-density total-energy calculations with the cluster varia-
tion method, we calculate the phase diagram of a semiconductor alloy. It is demonstrated that inclusion
of both elastic and chemical interactions in the total-energy functional leads to new features, including
the appearance in the same phase diagram of ordering and phase separation, and strain stabilization of
both stable and metastable ordered phases.

PACS numbers: 61.50.Ks, 61.55.Hg, 64.60.Cn

The formation enthalpy of each perfectly ordered phase
is the equilibrium (eq) value of Eq. (1), i.e. , hH "
=BE "~[a,q~]. If we represent a substitutionally disor
dered (D) phase on a lattice with lattice parameter a (x )
as a superposition, with probabilities Pt" (x,T), of all
permissible local atomic arrangements' ' exhibited by
[A„B ], the excess free energy of the disordered phase
(at zero pressure) is '3

gP &»(x T ) =PH & &(x T ) —TgS t &(x 7. )

where ASt ~ is the excess configurational entropy [zero
if P "~(x,T ) were random], and AH t ~(x, T ) is the mix-
ing enthalpy (zero in the absence of interactions), given
by

AH (x,T) =g P " (x, T)AE " [a(x)]. (2)

Reaction of a compound A with another 8 leads in

general to the formation of ordered stoichiometric com-
pounds A„B,disordered solid solutions A„B~ of com-
position x, and jor phase separation. Correlating the
boundaries of these different regions in the tempera-
ture-composition (T,x) plane (or even their existence)
with the microscopic properties of the constituents A and
8 and their interactions has been an ongoing challenge
both in metallurgy' and in semiconductor physics.
The enormous data base of experimental phase dia-
grams' " presents, however, a number of conceptual
challenges to contemporary theoretical approaches.
These can be best illustrated by consideration of the
physical content of the energies appearing in a general
binary phase-diagram problem.

Consider perfectly ordered stoichiometric structures
[A„B ] (n+m =const) formed by distribution of A and
8 on a fixed lattice. Each structure (n, m ) can be
characterized by its lattice vectors [a] and the excess to-
tal energy as a function of [aI (measured with respect to
equivalent amounts of the constituents at their equilibri-
um lattice parameters a~ and att)

~E'"'(a) =E [A„B;[a]]
—nE [A;a~] —mE [8;att].

Here, P " (x,T) and {a(x)j are those that minimize'
the alloy free energy 2 =Po+hF at each (x,T) and
the subscript 0 denotes the ideal value.

One can conceptualize the physical content of the in-
teraction energy curves hE t"~(a) for a perfectly ordered
phase A„B by considering its formation from the con-
stituents A and 8 in two steps. ' First, place n+I A
atoms on the sites of A„B at the equilibrium lattice pa-
rameters a,tq~ of A„B (and the same for 8 atoms).
Since the equilibriUm volumes of pure A and pure 8 are
now changed, this step involves investment of an elastic
energy denoted by hF [nA, mB, a,q ]. Second, "flip" the
necessary number of A atoms in A„A and 8 atoms in

B„B on this fixed, "prepared" lattice to create A„B
(If in addition to A and 8 there is also a third, common
sublattice C, let this sublattice relax to its equilibrium
position in A„B C„+ ). The second step hence involves
"spin-flip" substitution (or "chemical" ) energies et"~ as-
sociated with interactions between A and 8 (e.g. ,

'

charge transfer, polarization, spin coupling) on a fixed
A, B lattice. ' This is the only term considered in con-
ventional coherent lattice models of phase diagrams. ' '
The formation enthalpy of the ordered compound is

/Ht"&=gF [ttA mB a "~]+e " (3)

+G[a(x)] —ThS' ', (4)
where G[a(x)] is the average alloy elastic energy. '

The first two terms of Eq. (4) reflect the dual coordi-
nates used in phenomenological models of solubility, '

compound stability, ' ' and mixing enthalpies, e.g. , the
Darken-Gurray and Miedema models.

Equations (3) and (4) can serve to illustrate many of
the various approaches adopted in the past to the phase-
diagram program. First, contemporary models of semi-
conductor phase diagrams have generally ignored the
n-dependent chemical energies e ", retaining various ap-

If there is no lattice mismatch (vanishing ha =a~ —att),
then e" simply equals hH ". Using AE "(a)=e"
+ [hE " (a ) —e " ] in Eq. (2), we have

gP &D&(x 7 ) =y P t&&(x 7 )e &n&
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proximations to the elastic energy G[a(x)] alone and
setting hS =0. This description precludes the ex-
istence of any ordered intermediate phases or order-
disorder transforrnations, in agreement with then-
available data, but in apparent conflict with recent ob-
servations. ' Second, a large class of models addressing
coherent phase diagrams (i.e., on the rigid lattice' ' '
common to A, B, and A„B( ) have naturally ignored
the elastic energy G [a (x )], tacitly assuming Aa =0.
The application of this general approach to the actual
solid solutions has three significant consequences. (i)
Tendencies of phase separation [c " & 0] and ordering
[e " & 0] in the same phase diagram become mutually
exclusive (in conflict with the data' "' ), unless one in-
troduces a rather artificial ad hoc mix of positive and
negative e(" s. (ii) In identifying s(") alone with the
enthalpy of formation AH " of the perfectly ordered
phase [Eq. (3)], it became impossible to reconcile the ob-
served order-disorder critical temperatures [decided by
the a " 's] with thermodynamic data [e.g. , AH " ]. For
example, adjusting' e of the CuAu system to the ob-
served' order-disorder critical temperature at x =

2 one
obtains e = —5.3 kcal, in substantial disagreement
with e(2) =AH( ) = —2. 1 kcal measured directly. ' (iii)
These approaches require that if AH ( ) & 0 (as is the
case for all isovalent semiconductor alloys ) no order-
ing can exist, and conversely, if ordering exists, ' one
must have hH &0, both in conflict with the data.
Recent calculations, combining statistical methods with
the calculation of the electronic pieces of c ", have
clearly illustrated this point.

To illustrate the consequences of the interplay between
elastic and chemical ordering energies for phase dia-
grams, we have combined a first-principles calcula-
tion' ' of AE ")(a) for the perfectly ordered structures
[A„B4 „C4I with a cluster-variation method' (CVM)
calculation of the probability functions P(")(x,T) and
the many-body (correlated) configurational entropies
AS (x,T). We hence treat chemical and elastic ef-
fects on the same footing, including both in the internal
energy and in the entropy. Using the In Ga& P semi-
conductor alloy as an example, we calculate AE (" (a ) of
Eq. (1) for the five In„Ga4 —„P4 Landau-Lifshitz fcc
structures' ' [corresponding to the ordering vectors'
(1,0,0)]. For n =0 and n =4 we use the F43m zinc-
blende structure (clusters of Ga4 and In4, respectively),
for n =1 and n =3 the P43m luzonite form (Ga3In and
GaIn3 clusters, respectively), whereas for n =2 we use
the P4m 2 structure (the GazIn2 cluster). We retain
only fourfold coordinated structures which obey the octet
rule (i.e., have eight valence electrons per anion-cation
pair). AE " (a ) are calculated self-consistently from
first principles in the local-density formalism, with use of
the momentum-space pseudopotential total-energy repre-
sentation and a plane-wave basis set. For each n and
lattice parameter a we have also optimized the cell-
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FIG. l. (a) Excess internal energies [Eq. (l)l of the ordered
phases, (b) the difference between actual and random cluster
probabilities at T =600 K, and (c) the interaction parameter
of the disordered alloy. [Thermal expansion, neglected here,
removes the degeneracy of the A(x, T) curves at x =0 and
x =1.] One mole is taken here as an atom pair.

internal coordinates, i.e., the position of the phosphorus
atom inside each tetrahedron; this was essential to obtain
minimum-strain ordered structures. ' The minima of
AE (")(a ) give the equilibrium lattice parameters a,q) of
the perfectly ordered phases and their enthalpies AH " .
We correct ' for our —0.2-A underestimation' of
Aa =at„p —aG p (hence, the elastic energies), by using
the observed value" of 0.42 A. While our CVM calcu-
lation does not utilize the separation of variables indicat-
ed in Eq. (3) [we use directly AE (")(a ) of Eq. (1)], for
purposes of analysis we display this decomposition by
calculating separately the elastic energy at equilibrium
AF[nAC, (4 —n)BC,a,„" ] for each ordered structure
from an elastic bond-bending and bond-stretching
valence-force-field model, ' and define c " from Eq.
(3) using our AH " . The resulting AE ")(a) curves are
depicted in Fig. 1(a), and exhibit stable ordered struc-
tures [i.e.,

' AH " & 0] with a " values of —2.57,—3.58, and —2.88 kcal/atom-pair, and AF [a,q) ] values
of 2.33, 3.29, and 2.64 kcal/atom-pair, for n =1, 2, and
3, respectively. Elastic energies are clearly nonnegligible
even at equilibrium. Furthermore, AE " (a) can change
sign as a function of a, a feature missing from both elas-
tic and simple Ising' ' models.

From [AE ")(a)] we calculate, using the CVM, the
enthalpies and entropies of all ordered and disordered
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FIG. 2. CVM phase diagrams in the tetrahedron approxi-
mation for (a) first-principles (elastic+chemical) energies of
Fig. 1(a), and (b) chemical energies only. Shaded areas
represent single ordered phases; dashed areas, miscibility gaps
of two disordered phases. D, P, y, and b denote disordered,
A3BC4 (n 1), ABC2 (n 2), and AB3C4 (n 3) phases, re-

spectively.

phases as functions of x and T, minimizing P(x,T) with
'respect to volume to find a (x,T ).

The calculated thermodynamic properties [Figs. 1(b)
and 1(c)] and phase diagram [Fig. 2(a)] obtained from
the data of Fig. 1(a) point to a number of qualitative
features. (i) Despite an ever positive AH( ) of the disor-
dered phase evident in Fi~. 1(c) [a calculated interaction
parameter Q(x, T)=BP D)(x,T)/x(1 —x) at T =1400
K and x =0.5 of 2.0 kcal/mole, compared with the value
3+ 1 kcal/mole inferred s from high-temperature data],
ordered phases [shaded areas in Fig. 2(a)] are predicted
to be stable at low temperatures [since h,H(" &0] in

contradiction with predictions of all elastic models,
but in agreement with recent observations of the A38C4
and AB3C4 (in InGaAs ' ') and ABCz (in GaSbAs ' )
ordered phases and with the earlier predictions of Srivas-
tava, Martins, and Zunger. ' This confirms the con-
clusions of Ref. 14: %'hereas the dominance of chemical

' interactions over elastic ones can stabilize at a,q some
ordered phases [i.e., hH(") &0] each having a single
type of local atomic arrangement, the elastic energy
G[a(x)] can destabilize the disordered system (which
has several local atomic arrangements), since at each
a (x ) one or more of these local arrangements are
strained relative to the ideal a (~). Consequently, (ii) this
elastic energy tends to favor, at each alloy composition x,
those local atomic arrangements which are least strained

at the corresponding lattice parameter a(x). This is evi-
denced by the substantial departure from randomness
("clustering" ) of P(")(x,T) for the imperfectly disor-
dered phase; e.g. , Fig. 1(b) exhibits a —20% enhance-
ment at T =600 K of the n =1,2,3 species at x = 4, —,',
and 4, respectively. This strain-induced selection of
species (not to be confused with et" -induced long-range
order) is likely to be quenched in as the sample is cooled,
leading to often observed " but unexplained growth-
temperature-dependent semiconductor alloy properties.
This clustering phenomenon might be pertinent to partial
order observed in low-temperature- grown samples. '

(iii) This (x,T)-dependence of P ")(x,T) introduces
similar dependences in AV(D) through Eq. (4) evident in
Fig. 1(c). While absent in all regular solution mod-
els, such hitherto unexplained dependence had to be
incorporated phenomenologically in detailed fits to mea-
sured phase diagrams. These models miss, however,
the strong composition variation of Q(x, T) [Fig. 1(c)],
resulting from the different bulk moduli (hence, elastic
energy) of the constituents. (iv) Despite the all-
attractive ordering energies e ", a miscibility gap for
disordered phases [dashed area in Fig. 2(a)] can appear
in the same phase diagram with ordering (shaded areas),
in contradiction with the predictions of simple Ising
models with fixed interactions. ' ' This often observed
phenomenon' ' manifests the system's ability to reduce
strain at low temperatures [Fig. 1(c)] through selection
of the least strained species [Fig. 1(b)l, compared with
an entropy-favored (but strained) nearly random distri-
bution P " (x,T) at higher temperatures.

To analyze the consequences of models which retain in
hE " only chemical ordering energies, ' ' '9 we show in
Fig. 2(b) the ~hase diagram calculated with the same
(attractive) je " j of Fig. 2(a), but omitting the elastic
energy G(a). Comparison of Figs. 2(a) and 2(b) illus-
trates the two main effects of elastic energy on systems
with attractive chemical interactions. First, strain leads
to stabilization of ordered stoichiometric compounds, as
evidence in Fig. 2(a) by narrower single-phase domains
(shaded areas) and broader two-phase domains relative
to Fig. 2(b). While this principle was recognized long
ago in structural chemistry (e.g. , Laves phases are stabi-
lized by large mismatch in bond lengths' ), simple alloy
models, ' have invariably characterized atomic size
mismatch as a universally destabilizing factor. Second,
the elastic energy is seen to lead to a miscibility gap
where two disordered phases exist [D and D' in Fig.
2(a), appearing near the GaP end due to its higher bulk
modulus]. This clarifies the known phenomenological
correlations between miscibility temperatures and size-
mismatch-induced elastic strain energy.

Since for many compounds there is an effective can-
celation between chemical and elastic effects [Eq. (3)] to
yield a rather small ' "formation enthalpy d,H(") [e.g.,
in isovalent semiconductors, 6 it can be as small as the
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errors in the calculated total energies '], it seems sensi-
ble to explore the phase diagram as a function of hH " .
Remarkably, we find that for positive but sufficiently
small /sH ")'s (e.g. , below hF [nA, mB, a,ql ]) there exist
low-temperature metastable ordered phases 4„84 „C4
at stoichiometric compositions inside the miscibility
gap. While the free energy of those ordered phases is

higher than that of the mixture of two disordered phases,
it is still lower than the energy of the single-phase disor-
dered alloy. Hence if phase separation is kinetically in-
hibited at low temperatures (e.g. , by coherent strain ef-
fects or insufficient diffusivity), these ordered phases
would be quenched in. It is a distinct possibility that
some of the ordered phases reported to occur inside mis-

cibility gaps at low temperatures' indeed correspond to
such metastably quenched phases.
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