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Small periodic cluster calculation on point defect problems in 
hexagonal layered solids 

Alex Zunger 

Department of Chemistry, Tel Aviv University, Tel Aviv, Israel 

Department of Theoretical Physics, Soreq Nuclear Research Centre, Yavne, Israel 
(Received 25 March 1974) 

A model is proposed for discussing deep defect levels in covalent solids, based on the representation 
of the one-electron energies of the crystal by the eigenvalue spectrum of a small periodic cluster of 
atoms. Calculations of this model by semiempirical MO-LCAO methods for a vacancy problem in 
hexagonal boron nitride and graphite and substitutional boron impurity in graphite, yield satisfactory 
results when compared with experimental EPR, thermoluminescence, and thermally-stimulated-currents 
data. 

I. INTRODUCTION 

The problem of describing the electronic states of de­
fects in semiconducting and insulating covalent solids 
has usually been treated either by the infinite perfect 
crystal band states that satisfy translational invari­
ancel - 3 or by the "defect molecule" approach that con­
structs the defect states from its local environment. 4.5 

While the former approach does not provide a way of 
introducing lattice relaxations around the defect site and 
has supplied only limited information regarding the 
charge distribution due to the defect states, the highly 
localized approach does not describe the location of 
these states relative to the band edges. An intermedi­
ate approach, adopted recently by Messmer and Wat­
kins,6 Larkins,7 and Zunger8 treated the deep defect 
problem by conSidering a large cluster of host atoms 
containing the defect and seeking the convergence limit 
of its one-electron energy states, formulated by LCAO 
molecular orbital theory, as a function of cluster size. 
For relatively large clusters, this yields the approxi­
mate location of the defect levels relative to the band 
edges and also provides a simple means for calculating 
the charge distribution of the defect orbitals and intro­
ducing lattice relaxations around it. However, the 
main disadvantages of this approach are as follows: (i) 
The boundary conditions employed for the finite cluster 
(usually hydrogen atoms satisfying the valence of the 
dangling bonds on the surface) result in unrealistic 
charge inhomogeneity over the cluster,7-9 making the 
calculation of properties that are sensitive to charge 
distribution questionable. Relaxation of these boundary 
conditions7•9 results in somewhat drastic effects on the 
location of the band edges and on the band width. (ii) 
The one-electron energy levels deduced from molecular 
cluster models for the ideal clusters do not exhibit a 
simple correspondence to energies in the Brillouin zone 
(B. Z.) of the infinite crystal6.7 unless special sym­
metries are considered. 9 Band structure calculations 
for infinite periodic crystals, employing the same LCAO 
approach, 6.9 yield results that differ significantly from 
those of the finite cluster calculations. 

We wish to present a model for the electronic levels 
in the solid by which it will be possible to treat both the 
electronic band structures of the ideal lattice and point 
defect levels, on the same level of apprOXimation, 
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thereby providing a correlative scheme between the band 
and defect levels. We also demand that it will be pos­
sible to treat within the suggested model small distor­
tions around the defect site and that the atomic charge 
distribution in the defect level will be amenable to sim­
ple calculation. We start by conSidering the ideal lat­
tice states. 

II. CRYSTAL ORBITAL APPROACH 

A common crystal orbital scheme consists of repre­
senting a crystal one-electron energy function as a com­
bination of Bloch functions <1>,. (K), where Il denotes the 
different atomic representations (sublattice sites and 
atomic orbitals). The Bloch function is taken as a com­
bination of atomic orbitals X,. (r- R,) centered on the 
atom in position R I : 

N 

<I> ,.(K) = M- 1 / 2 L elieiI/x,.. ('1'- R,) , 
1=1 

where N is the number of unit cells and Il = 1,2, .•. ,(1. 

The matrix elements of the Hartree-Fock one-electron 
operator F between different Bloch states are given by 

N 

FI';\(K)=L eiR'e§,,(x,.(r)!F!x;>.(r-Rn» , 
.=1 

where the first atom was taken to be at the origin. The 
overlap integral between Bloch states is likewise given 
by 

(3) 

The eigenvalue problem arrived at by applying the varia­
tion prinCiple is defined by the simultaneous set of (1 

equations for the ~oefficients CiA (K); i,). = 1,2, ... ,(1 and 
band energies EI (K) : 

(J 

L [F,.A (K) - Sl';\ (.K)E; (J?) ]Cu{J?) = 0 , (4) 
;>"1 

where CIA (K) are the expansion coefficients of the crys­
tal orbital in terms of the atomic basis set and i= 1,2, 
• •• , (1. It is important to note that the Hartree-Fock 
operator F is determined by the charge density con­
tributed by all electrons and is the,!efore dependent on 
the complete set of solutions {Cn (K)J where K are the 
vectors spanning the entire Brillouin zone. The solu-

Copyright © 1975 American I nstitute of Physics 1861 
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Hon of Eq. (4) for a particular Kn value therefore in­
volves the knowledge of the bond-charge matrix of nocc 

occupied levels, which determines F,,~ (K) : 
nocc 

Pu.(K) = L CMR)Ci~' (K) (5) 
1=1 . 

for the entire B. Z. and therefore the solutions {CIA (R)} 
have to be determined self-consistently. 

In conventional tight-binding (TB) approximation, the 
self-consistent coupling between various wave vectors 
via the matrix elements appearing in Eq. (2) is neglected 
and the latter equation is replaced by the perturbative 
expression 

F"A(K)=t e1j('Rn(x,,(r)!V(r-Rn)!Xx('r-R n» , (6) 
n.l 

where v(r- Rn) is the periodic potential, combined from 
free-atom (in covalent solids) or free-ion (in ionic and 
metallic solids) potentials. This approximation fails 
completely when the crystalline environment strongly 
changes the free-atom character of the potential at a 
given atomic site. These effects may occur in several 
systems, such as 

(0 solids where strong ionic-covalent bonding occurs 
in the unit cell made up of atoms with different elec­
tronegativities (such as the binary III-V crystals). In 
this case, partial interatomic charge transfer strongly 
modifies the free-atom character of the potential around 
an atomic site. 9 

(ii) hydrogen-bonded systems which exhibit consider­
able charge redistribution in the solid relative to the 
neutral free constituents, as manifested by partial ionic 
character (solid HF, KH2P04, etc.). 

(iii) homopolar covalent solids (such as graphite), 
where the spherical character of the atomic constituents 
in their free form is modified in the crystal due to the 
lower symmetry at the atomic site. 

It should also be mentioned that the construction of 
V(r- Rn} from isolated-atom potentials for calculating 
point defects levels in covalent solids is Similarly ques­
tionable when charge redistribution effects introduced 
by the defect site are considerable. 

Non-self-consistent TB calculations employing com­
puted matrix elements of free-atom potentials that have 
been performed on graphite10•11 and boron nitride (BN)12. 13 
yield poor agreement with experimental optical data and, 
therefore, a semiempirical approach was adopted. In 
this approach, either one scales the various matrix ele­
ments appearing in Eqs. (3) and (6) to yield best fit to 
some of the experimental data, 10.12 or one uses instead 
similar matrix elements appearing in molecular calcu­
lations that were already adjusted .to reproduce the opti­
cal spectrum of related small molecules. 11.13 This ap­
proach is deductive in nature and depends on the avail­
ability of sufficient experimental data. In the case of 
BN and graphite, the experimental optical data mainly 
consists of IT electron transitions and therefore the a 
matrix elements remained arbitrarily scaled. Also, the 
scaling factors or the molecular matrix elements em­
ployed can be determined only for the experimental in-

teratomic separation at normal pressure, and therefore 
the calculation of density-dependent properties such as 
equilibrium interatom separation and pressure depen­
dence of various electronic properties is impossible 
without further input. The use of free-atom potentials 
in non-self-consistent calculations also neglects a large 
part of the a-IT interactions in the above-mentioned 
solids. This might have a considerable effect on the 
a-IT band overlapping and on the computed atomic 
charges. 9,11 

The self-consistent approach to the energy band cal­
culation, based on the recompilation of the crystal po­
tential on the basis of the calculated band structure, has 
been carried out only in recent years. Stukel et al. 14 

presented a self-consistent APW calculation for binary 
sphalerite crystals; Rudge15 applied the self-consistent 
approach to APW method; and Brust16 suggested a self­
consistent pseudopotential approach. Herman et al. 17 

considered various combinations of first-principle and 
empirically adjusted OPW calculations, and Mattheiss 
et al. 18 have presented a charge-self-consistent APW 
approach for transition metal solids, in which the con­
tribution to the charge density of all occupied states be­
low the Fermi level is used for computing the crystal 
potential. Self-consistent tight-binding calculations 
have been performed on a group of organiC polymers by 
Del-Re et al., 19 Andre,20 Imamuara,21 Morakuma,22 
O'Shea and Santry,23 and Beveridge and Jano, 24 and on 
hexagonal boron nitride by Zunger. 9 It has been shown 
that in binary crystals consisting of atoms from differ­
ent rows in the periodic table, the iteration of the po­
tential to self-consistency changes the band structure by 
the order of 1 eV up to several eV, as compared to the 
unite rated results. The self-consistent method yields 
stabilized band structure and enables the calculation of 
interatom-distance-dependent properties. 9.15 Its de­
ficiency in the context discussed here lies in the fact 
that it relies heavily on the assumption of perfect peri­
odicity of the lattice and is therefore not suitable for 
considering local perturbations in lattice periodicity 
such as defects, lattice relaxations, etc. 

III. METHOD OF CALCULATION 

We present here a different method, intermediate be­
tween the truncated crystal picture and the self-consis­
tent band model, for treating both ideal crystal and de­
fects levels, similar to the crystal orbital approach 
treated recently by Davidson and Levine. 25 Instead of 
explicitly using the translational symmetry of the lattice 
to reduce the original aNX aN matrix secular equations 
to aXa from Eq. (4), we now retain the aNXaN basis 
and use a crystal orbital that is a linear combination of 
aN atomic orbitals: 

(7) 

where IJ. = 1, ... ,a denotes the atomic orbital's and n = 0, 
1, ... ,N - 1 numbers the atoms and i ranges from 1 to 
aN. 

We reqUire that the array of N atoms will form a 
"pseudomolecule" that is periodiC in space, and is char-
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acterized by a range of interaction TJ. The range of in­
teraction TJ is determined by the symmetry of the crys­
tal and by N alone (e. g., a cluster of N = 2TJ + 1 atoms 
can be used to represent a one-dimensional chain in 
which each atom experiences TJ order of neighboring in­
teractions). The secular equations are given by 

L [F ILn~m - S,.n.AmEI] C ILnl = 0 , (8) 
IL,n 

and the matrix elements, expressed in the"atomic basis 
set, are 

(9) 

Owing to the periodicity imposed on the finite cluster, 
the solutions E j form a subset of the full eigenvalue 
spectrum of the infinite (N - 00) lattice. The operator 
F is now expressed in real space rather than in it space, 
using the following form of the density matrix: 

nace 

PILn,'I.m = 2L C:nIC'l.m1 
I 

(10) 

It depends on the charge density contributed by all elec­
trons in naco levels as in conventional LCAO-SCF for­
malism. Once the atomic basis set is defined (usually 
valence atomic orbitals are used, i. e., = 2s, 2A" 2py, 
and 2P. orbitals for second row atoms) ami a method of 
calculating the matrix elements of F in atomic basis 
set (usually, as will be later noted, various levels of 
approximations are involved), the solution of Eq. (8) 
depends on the atomic positions in the cluster. Since 
the solutions E j '= EA•n are obviously invariant under rigid 
translations and rotations of the N atom cluster, it is 
sufficient to specify the interatom distance matrix D;~? 
and the interatom direction-cosine matrices E~:). (x), 
E;~: (y), and E~~, (z) (where p, pi number the atomic sites) 
relative to arbitrary x, y, z directions, in order to 
solve (8). The definition of the absolute coordinates of 
each atom with reference to a fixed origin is not re­
quired. 

This freedom is used by requiring that the four ma­
trices simultaneously fulfill the following two properties 
(that cannot be accomplished by the set of atomic co­
ordinates) : 

(0 They represent a periodiC N-atom cluster with in-
teraction range TJ(N). . 

(ii) The matrices are built according to the desired 
point symmetry of the investigated solid. 

As an example, a seven-atom one-dimensional linear 
chain with an interatom distance a, and directed along 
an arbitrary axis x, has 3 orders of interactions, and 
is described by 

0 1 2 3 3 2 1 

1 0 1 2 3 3 2 

2 1 0 1 2 3 3 

D(3) 
pp' = 3 2 1 0 1 2 3 

3 3 2 1 0 1 2 

2 3 3 2 1 0 1 

1 2 3 3 2 1 0 

0 1 1.0 0 0.0001 

-1 0 1.o eo •• o·1 

E~:1(x) = -1 - 1 0 1.0. I). 1 

-1 - 1 

-1 o 
while E;:!(y) and E;:Hz) are identically zero. 

The problem is thus reduced to the solution of a ficti­
tious N-atom molecule whose structure is given by the 
matrices D~~, E~1'.(x), E'~(y), and E!'])(Z), by a LCAO­
SCF one-electron method. Each atom on a given sub­
lattice experiences an identiCal crystalline surrounding 
in such a pseudomolecule and a full account of charge 
redistribution effects is taken via the self-consistent 
solution of Eq. (8). The deficiencies of the non-self­
consistent crystal orbital method [Eqs. (4) and (6)] pre­
viously mentioned are thus overcome. The resulting 
eigenvalues EA,n can of course be classified, in the case 
of perfect periodiCity, according to the wave vectors 
K n; n= 0, •.• ,N -1 by recognizing that 

C - C eiKn'Rn and 1:' E (K ) ILni - ILi L?.n = An, (11) 

where K n=(21T/Na)n. 

The method of obtaining EA(K,,) for a finite periodic 
cluster of N atoms is completely analogous to the self­
consistent procedure outlined in Eqs. (1)-(5), provided 
that only the subset Kn; n = 0, ... ,N - 1 is considered 
by the latter method. The values E,. Cltn) obtained by the 
former method converge to the limit of the appropriate 
band energies of the infinite lattice, obtained by the lat­
ter method, as the order of interaction TJ(N) increases. 
Note that in the sinall periodic cluster (SPC) approach, 
TJ(N) is determined by N and so are the f( n values that 
are possible in the N-atom periodic cluster, while in 
the crystal orbital method for infinite crystals, the num­
ber of summands in Eq. (2) (order of interaction) is in­
dependent of the number of K values used in constructing 
the operator F. We have, therefore, two convergence 
problems in the latter method, while in the SPC they 
are reduced to one. Equation (8) is therefore solved for 
a given structure, as a function of TJ(N), until conver­
gence of the solutions is achieved. Another advantage 
of the self-consistent SPC approach, as compared to 
self-consistent methods that completely utilize the 
translational symmetry of the lattice, lies in the fact 
that the former method employs N'crystal one-electron 
states that are homogeneously distributed in the B. Z. 
(where N' - 20-30 is the number of unit cells) for recalcu-
1ating the crystal potential in a given iteration, while in 
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the latter method, only one to four states were usually 
considered,14 and their choice from the complete B. Z. 
manifold is subjected to trial-and-error experiment. 

Usually, one chooses the size N of the finite periodic 
cluster so that the eigenvalues E~ (K n) reach the con­
vergence limit at this 17(N) and that high symmetry Kn 
points in the B. Z. (that are of interest in determining 
optical properties of the solid) will be included in the 
subset obtained. As previously demonstrated, 9 a two­
dimensional finite periodic cluster of D3h or D6h point 
symmetry such as hexagonal BN and graphite, respec­
tively, that is made up of 18 atoms (17=2) contains in its 
eigenvalue spectrum, among others, the rand P points 
in the B. Z. while the N = 32 cluster (17 = 3) also contains 
the Q points. The values E). (Kn) at these K" turn to be 
sufficient to determine a number of properties that are 
of interest regarding experimental optical data such as 
the work function, bandgap, the various bandwidths, and 
the band-to-band transition. The values of the one­
electron energies E). (Kn) and the atomic charges already 
reach the convergence limit at the interaction range of 
17 = 3. This requires a solution of a 128 x 128 secular 
determinant (Eq. 8) when four atomic orbitals are taken 
on each atom. 

Since, in Expressions (7) and (8), we have not ex­
plicitly introduced translational periodicity, it is pos­
sible to treat by this method problems where perfect 
periodicity is lacking and K n is not a good quantum num­
ber. Such are the problems of point defects and the 
stability of the lattice against local displacements of a 
particular atom from its lattice site (this might be in­
teresting when Frenkel pairs or lattice relaxations 
around a specific site or bond force-constants in the 
crystal are investigated). In this case, we do not ana­
lyze eigenvalues according to the K n's but still investi­
gate the parentage of the defect levels in terms of those 
of the ideal lattice. 

The calculations follow as in the perfect lattice case, 
except that a suitable row of the distance matrix D;;! is 
changed rand, accordingly, the E;;qx) , E},;~ (y), and 
E~;~(z) matricesl when a local displacement of an atom 
is investigated or the chemical identity of one atom is 
altered, when impurities are investigated. Employment 
of charge-self-consistent methods for computing the 
clusters eigenvalues and atomic charges accounts for 
the charge redistribution introduced by the defect. Lat­
tice relaxations around the defect are likewise easily 
introduced in the calculation. The calculation could be 
repeated at any desired interatom separation, thus pro­
viding a means of investigating crystal stability, cohe­
sion, etc. 

The matrix elements of Eq. (9) can be calculated in 
various levels of approximation. Owing to the complex­
ity of ab initio computations, we adopted the semiempir­
ical all-valence-electron methods that have been suc­
cessful in accounting for a variety of molecular prop­
erties (such as geometries, electric dipole moments, 
nuclear spin coupling constant, ionization potentials, 
heat of formation, and atomic charges) for computing 
these matrix elements. 

In our previous work, several of these approximations 

were examined on various electronic properties of boron 
nitride. In this work, we proceed with EXH (extended 
Hucke126) and IEXH (iterative extended Hucke127) ap­
proximations to the matrix elements, since these meth­
ods have proved to be the most successful. 

The results for electronic properties of boron nitride 
as calculated using IEXH approximation, and for graph­
ite as calculated by EXH approximation, were previ­
ously reported. 9 When we use the EXH approximation 
to evaluate the band structure of two-dimensional hex­
agonal boron nitride with a valence basis set (2s, 2 Px, 
2py , and 2P. orbitals per atom) without neglecting any 
overlap, Coulomb, and resonance matrix elements up 
to three orders of interaction, a band structure that is 
stable within less than 0.1 eV is obtained and the in­
homogeneity of atomic charges on each sublattice (that 
is pronounced in the truncated-crystal type of calcula­
tion) is completely suppressed. 

The full valence bandwidth is 19.1 eV (compared with 
20 eV measured by soft x-ray photoelectron emission, 28), 
the minimum of the lowest occupied band (the lowest r;: 
point that is mainly of nitrogen 2s character) is ob­
tained at Eo+ 19.0 eV (compared with the value mea­
sured by ESCA method relative to the Fermi energy Eo 
+ 19.4 eV), 29 and the 1111* band-to-band transition energy 
at the Q2 point in the B. Z. is calculated to be 6.29 eV 
(compared with the value of 6.5 eV as measured in di­
electric experiments, 30 and with 6.2 eV as measured in 
reflectance31). The highest occupied valence band state 
comes out in this calculation as a a state, and the high­
est 11 state falls 1. 2 eV below, while other calculations 
on the perfect solid12 ,32 reveal 11 character for the edge 
of the valence band. This behavior is also common to 
iterative extended Huckel and INDO (intermediate ne­
glect of differential overlap) calculations on the same 
system9 and was also previously observed to occur in 
similar calculations on the borazine molecule. 9,33 The 
bandgap thus obtained is 5.4 eV, while the direct 1111* 

gap at P; and P; point is 6.6 eV (compared with the ex­
perimental values of 5.83 eV,34 5.4 eV,35 and 3.6 eV28). 
The binding energy obtained in this calculation from the 
simple sum of the one-electron energies of the occupied 
bands is 6.0 eV (compared with the thermochemically 
measured value of 6.6 eV),36 and the equilibrium atom­
atom distance is calculated to be, under conditions of 
uniform stress, 1. 44 A (as compared with the crystal­
lographic value of 1. 446 A). 37 The corresponding results 
for EXH cluster calculation on graphite were previously 
reported9 and are in reasonable agreement with optical, 
crystallographic, and thermochemical experimental data. 

The proposed calculation of point defect states in these 
lattices is a simple extension of the ideal crystal treat­
ment. A vacancy or a substitutional impurity is placed 
in the periodic array of atoms and the new eigenvalue 
problem is solved again in the same LCAO frame. The 
defect site as well as every other atomic site will ex­
perience a "crystalline" environment extending out to 
2-3 orders of neighbors, which is an interaction range 
sufficient to ensure reasonable convergence of the Ham­
iltonian matrix elements. Any inhomogeneity of charge 
distribution over each sublaUice now reflects only the 
effects of the point defect, and the edges of the valence 
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and conduction bands are properly defined with respect 
to the true band edges obtained in the ideal cluster cal­
culation. The use of molecular orbital technique with 
atomic valence basis set enables calculation of the 
charge associated with each cluster orbital through 
standard population analysis. 38 Also, the fact that this 
model reasonably reproduces the ideal crystal equilib­
rium interatom distance when clusters without defects 
are considered (EXH formalism was shown39 ,4o to per­
form favorably in this respect when the electronegativity 
difference between the atoms considered is not too high) 
suggests that it could be used to investigate model lat­
tice relaxations around the defect site. 

Calculations with the described model were performed 
on a nitrogen vacancy in hexagonal boron nitride, a va­
cancy in graphite and a boron impurity in graphite. 

IV. NITROGEN VACANCY IN HEXAGONAL BORON 
NITRIDE 

Nitrogen vacancy defects in hexagonal boron nitride 
were investigated by EPRH - 43 thermoluminescence42 ,44 

and thermally stimulated currents. 44 The tenfold split­
ting of the EPR signal of irradiated boron nitride was 
assigned by means of isotopic enrichment experiments41 

to a three-boron center created by an unpaired electron 
captured among three equidistant boron atoms with equal 
charge on them. The anisotropy of the g factor and the 
splitting has suggested that this electron is in a 11 type 
state. 41

,43 The temperature dependence of these signals. 
together with thermoluminescence and thermally- stimu­
lated-currents measurements44 reveal a thermal activa­
tion of this trapped electron into the conduction band. 
The energy difference between the defect state and the 
conduction state is 1. o± 0.1 eV. Photoluminescence 
experiments suggest that these centers quench the photo 
emission through nonradiative recombination. 42 

Figure 1 shows some high symmetry 11 levels of the 
ideal crystal calculated by the 32 periodic atom cluster 
without the defect (1a) and those after creating a nitro­
gen vacancy (1b) as a function of B-N distance. Since 
the calculated defect level is of 11 symmetry, only these 
states are Shown, though the calCulations were per-

-4 (a) 

-6 

-8 
:;- --=------E~ 
.£ 

w -10 

-12 

formed with the full 11+ <T manifold, a need dictated by 
overlapping and charge redistribution effects between 
these bands. 9 

The highest occupied and lowest vacant ideal crystal 
11 states (Fig. 1a) appearing at the P point and forming 
the edges of the 11 valence and conduction bands extend 
over the nitrogen and boron sublattices, respectively, 
and are pure 2P. states due to symmetry requirements 
at the P point in the B. Z. 12 The lowest r state forms 
the bottom of the 11 valence band, while the Q state is the 
one exhibiting a Van Hove singularity in the joint density 
of states. 12 The number of free-atom states that col­
lapse into each of these crystal states depends on the 
number of atoms in the periodic cluster, while the en­
ergies of these states are changed only very little by in­
creaSing the cluster from 18 to 32 atoms. 

When a nitrogen vacancy is created (Fig. 1b), a new 
11 level is split from the conduction band and appears in 
the forbidden gap (Fig. 1b, dashed line). The charge 
carried by this 11 level rests symmetrically on the three 
nearest neighbor boron atoms and on the second coordi­
nation shell of boron atoms. Such a center is capable of 
revealing a three-boron-center EPR signal. Analysis 
of the experimental anisotropic hyperfine splitting 41 ,43 

using the free-atom value of (r-S
) for boron taken from 

atomic beam measurements45 reveals that the square of 
the LCAO wavefunction coefficient on each neighboring 
boron site is 0.023. When this coeffiCient is computed 
with the free-atom Hartree-Fock value of (r-S), 46 its 
value is 0.0187. This is to be compared with the cal­
culated value of 0.017 obtained from the defect cluster 
orbital of 17 atoms and of 0.020 obtained from the 31 
atom cluster. It should be mentioned, however, that 
the use of free-atom values of (r-S) to analyze the ex­
perimental hyperfine splitting is only approximate, and 
actually the value appropriate for an atom carrying its 
real charge in the solid should be employed. This 
agreement suggests that the wavefunction in the defects' 
neighborhood is reasonably reproduced by this model. 

The total electronic charge on the three neighboring 
boron atoms is increased upon creating a nitrogen va­
cancy, in both the 11 and <T manifolds, making the net 

(b) 

=,.....---E~ 
FIG. 1. One-electron energy 
levels of ideal (Ia) and defect 
(Ib) boron nitride clusters as 
calculated by EXH method. 

-14 P'-7 Q
2 

~--~--------~E~ 

r; 

7== -=====-~--E~ 

-16 
1.0 2.0 3.0 1.0 2.0 3.0 

J. Chern. Phys., Vol. 62, No.5, 1 March 1975 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.138.65.149 On: Tue, 14 Jul 2015 17:57:24



1866 Alex Zunger: Point defects in solids 

atomic charge on these atoms less positive than that of 
a distant boron atom. Since such charge redistribution 
effects could not be adequately described by noniterative 
methods such as extended Huckel, this effect was cal­
culated with a charge-self-consistent method. Applying 
the iterative extended Huckel LCAO method to the 18 and 
17 atom clusters (for the experimental internuclear 
separation of 1.446 A and with atomic orbital energies 
used in the previous paper)9 reveals that the net atomic 
charge on each of the three boron atoms surrounding 
trigonally the vacant site decreases from its "normal" 
value of + 30e to + O. 26e, the main effect being due to 
accumulation of 11 charge. This charge redistribution 
is due to the lack of me electronegativity effect of the 
central nitrogen atom in the vicinity of the three boron 
atoms. It should be mentioned that the 11 charge on a 
normal boron atom (+ O. 50e) is in accord with the value 
suggested by nuclear quadropole resonance experiments 
on hexagonal boron nitride47 (0. 45e). Similar experi­
ments on damaged boron nitride have not yet been per­
formed. 

The gap between the defect orbital energy and the edge 
of the conduction band is 1. 1 eV in this calculation, 
being close to the value obtained by simple extended 
Huckel method. The defect state is of at symmetry 
(bonding between the three boron 2pz orbitals) and 
therefore interacts with the conduction r; state and the 
valence Pi state. The former crystal state undergoes a 
downwards shift, while the latter degenerate state ex­
tending over the nitrogen 2 pz sUblattice is split in the 
presence of the defect. The Pi state extends only on the 
boron 2pz sublattice and is therefore unaffected by re­
moving a nitrogen atom. Owing to the interaction with 
the ideal crystal states, the defect charge distribution 
extends over a significant radius around the defect site. 
The close similarity between this charge distribution 
as obtained with the 17 and that with the 31 atom clusters 
indicates that 2-3 orders of neighbors are perhaps suf­
ficient to describe this effect. On the other hand, a de­
fect molecule treatment including only nearest neighbor 
orbitals4 seems insufficient to account for the coupling 
of the defect with the crystal. 

The energy difference between the defect state and 
the P a bottom of the conduction state in the EXH ap­
proximation is 1. 39 eV and 1. 38 eV in the 17 and 31 
atom clusters, respectively. (In the proposed method 
of calculating point defects, one obtains a superlattice, 
giving rise to a defect band. The small (-0.01 eV) 
difference between the defect energy levels of 17 and 
31 atomic clusters indicates a very small dispersion of 
this band. 1 Since there are no experimental data to in­
dicate the degree of relaxation of the lattice around the 
defect, we performed only model relaxations. An in­
ward relaxation of 10% along the at symmetry-adopted 
deformation direction48 increases the gap between the 
defect state and the conduction edge to 1. 51 eV, while 
an outward relaxation lowers this gap to 1. 20 eV, the 
charge on the atoms remaining relatively unaffected by 
these changes. Temperature-dependent EPR measure­
ments together with thermoluminescence and thermally­
stimulated-currents data suggest a gap of 1. 0 ± O. 1 ey44 
between the defect state and the conduction edge, a value 

that agrees favorably with the value predicted by the 
cluster calculation. 

Calculations on a nitrogen vacancy employing open 
two-dimensional finite clusters, surrounded by hydro­
gens at the boundary, 9 reveal a nonmonotonic behavior 
of the energy of the defect state as a function of cluster 
size. This energy ranges between 0.94 eV for the 
BaN7Ha cluster through 0.93 eV for the B12Nl1H12 cluster 
to 1. 1 eV for the B14NI3H14 cluster, when the same 
LCAO parameters are used. Inhomogenity of the 
charges over each sublattice introduces uncertainties 
both in the results for the ideal cluster and in the defect 
problem. These effects due to charge inhomogenity oc­
cur even in open clusters that are made up of identical 
atoms6 and complicate considerably the interpretation of 
the results,6.7.11 while the periodiC cluster approach 
presented here is free of these limitations. 

V. VACANCY IN GRAPHITE 

Another familiar defect encountered in layered hex­
agonal structures is the isolated vacancy in graphite. 
Various workers have estimated the energy of its forma­
tion. The energy EO! required to form such a vacancy is 
equal to Ey - E s , where Ey is the energy required to re­
move an atom from its proper trigonal site to infinity, 
and Es is the energy gained when this atom is attached 
to the surface (which in turn equals the experimental 
sublimation energy 7.44 e V). 49 Kanter50 estimated Evf 
to be 2.8 eV by measuring the activation energy of self­
diffusion and using the experimental value of the sub­
limation energy and the calculated value for vacancy 
migration,50.51 assuming that self-diffusion in graphite 
is due to vacancy migration. Baker and Kelly52 were 
able to obtain the value of EO! from observations on the 
formation of vacancy loops by quenching followed by 
annealing as 3.3 'l' 0.9 eV. A much larger value (7.0 eV) 
was suggested by Hove53 from specific heat measure­
ments and also by Hennig from quenching experiments54 

(> 6.6 eV). Coulson et al. 4 have calculated EO! using the 
experimental value of E s and neglecting lattice relaxa­
tions and changes in hybridization around the vacant 
site. Their values are 10.74 eV or 13.05 eV, depend­
ing on the choice of empirical parameters. It was 
argued that rehybridization effects taking place around 
the vacant site could significantly lower these values, 
thereby decreasing the discrepancy between the theoret­
ical values and the experimental results of Baker and 
Kelly52 and Kanter. 50 Relaxations around the vacant site 
were not discussed, since their contribution to the acti­
vation energy is probably not very large, owing to the 
strong localization of the a-bond structure. 

The energy of vacancy formation was calculated with 
the periodiC model neglecting relaxation effects and the 
small influence of the van der Waals interlayer inter­
action. Although periodiC clusters of 18 and 32 atoms 
do not exactly reproduce the total one-electron energy 
per atom of the infinite cluster, since only a limited 
number of high symmetry one-electron states are in­
cluded in its eigenvalue spectrum, previous calculation 
on the convergence of the total 11 one-electron energy as 
a function of cluster size9 indicated that this property 
converges rapidly and is already very close to the con-
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vergence limit at the size of 18 to 32 atoms. The total 
1T+ (J one-electron energy is supposed to converge simi­
larly with cluster size. The calculations on the ideal 
cluster and on the cluster with a vacancy were per­
formed with the iterative scheme IEXH, thereby allow­
ing for self-consistent-charge redistribution and hy­
bridization effects. The results for the ideal cluster of 
graphite were similar to those of the noniterative cal­
culation, since the iteration procedure converges within 
one cycle (demanding a convergence criterion of 0.01 e 
between successive iterations) owing to the homopolarity 
of the cluster and identical arrangements of atoms 
around each site. In this procedure, the hybridization 
state of each atom is not postulated but comes out of 
the charge-self-consistent treatment. The calculation 
of Evf thus yields (taking the experimental value of Es 
and the free atom parameters of the original work of 
Rein et al. )15 values of 2.94 eV for the 17-18 atom clus­
ter and 3.00 eV for the 31-32 atom cluster, which com­
pare favorably with the experimental results of Kanter 
and with that of Baker and Kelly. The charge distribu­
tion over various atomic sites changes only slightly 
when a vacancy is created. The three carbon atoms 
surrounding the vacant site assume positive net atomic 
charge of 0.2 e, while the next nearest neighbors to the 
vacancy are only very slightly perturbed from their 
ideal cluster state. The vacancy itself could act as an 
electron trap that could capture a conduction electron. 
This is the usual picture adopted to explain transport 
and electron dynamics experiments of irradiated graph­
ite. The charge transferred to the vacancy from its 
neighbors is mainly 1T charge, the trigonal (J frame being 
only slightly changed from its ideal cluster configura­
tion. This is contrary to the behavior of the charge dis­
tribution around the three boron atoms surrounding 
trigonally a nitrogen vacancy in hexagonal boron nitride, 
where the electronic charge carried by these atoms is 
increased relative to a distant boron atom due to the 
lack of electron-withdrawing forces of a central elec­
tronegative nitrogen. This difference in behavior of an 
isolated vacancy in graphite and in boron nitride origi­
nates from the difference in electronegativity between 
the atoms in the unit cell in the latter case. 

VI. SUBSTITUTIONAL BORON IMPURITY IN GRAPflTE 

Another point defect particular to graphite is the 
boron impurity, which is the sole impurity element 
that has been shown to enter the carbon lattice sub­
stitutionally. Its behavior has been the subject of many 
experimental studies involving different properties. 55 

The substitutional boron impurity in graphite was 
treated in the periodic cluster approach by C17B models. 
The main features of this defect that were investigated 
are the charge distribution changes introduced by it, the 
bonding properties of a boron atom in a D..,. site, and the 
appearance of a defect orbital. 

Upon introdUCing a boron atom in a trigonal site of 
the carbon periodic cluster, solving the new eigenvalue 
spectrum, and performing population analysis on the 
resulting wavefunctions, the carbon atoms surrounding 
the defect site are shown to transfer 1T charge to the 

boron and to pull a larger amount of (J charge away. 
The carbon atoms thus assume a negative net atomic 
charge (- O. 126e on the nearest neighbors to the boron 
and - O. 03e on the second shell), while the boron atom 
becomes positively charged, owing to its lower elec­
tronegativity relative to carbon. A neutral defect of 
this sort creates a positively charged acceptor that is 
capable of trapping conduction electrons. 55 Soule56 sug­
gested from the observed magnetic susceptibility curves 
of boron-doped graphite a 67% degree of ionization of 
the boron atoms (that are assumed to occupy substitu­
tional sites) and a 75% degree of ionization from the 
measurement of hole carrier concentration in Hall ex­
periments. The population analysis of the cluster wave­
functions in our model reveals a 56% ionization of an 
isolated boron impurity (at zero temperature), which 
compared reasonably with these results. 

The 2p orbitals of the boron that are degenerate in the 
isolated atom split in the D3h crystal field to a doubly 
degenerated in-plane orbital (forming a part of the (J 

manifold) and to a perpendicular 1T orbital. These states 
are shown to be stabilized relative to the free-atom 
levels and tend to delocalize over the first and second 
carbon atom shells surrounding the defect. A defect 
cluster orbital, which is singly occupied in the neutral 
cluster, is created upon introducing a substitutional 
boron atom. The wavefunction of this state is of 1T 

character and gets contributions from the central boron 
site and from the first and second shells of carbon atoms 
surrounding it. The charge carried by this state is dis­
tributed symmetrically on the three nearest and six next 
nearest carbon atoms. Such a defect should exhibit a 
four-line signal in the EPR hyperfine interaction due to 
the boron center, similar to the one-boron center ob­
served in irradiated boron nitride41 and to the boron cen­
ter observed in irradiated crystals of BeO/B. 57 So far, 
EPR experiments on boron-doped graphite 58 have con­
centrated on the spin resonance due to the mobile charge 
carriers contributed by the skelton lattice and not by 
impurity states. 

VII. SUMMARY 

Small periodiC clusters of hexagonally arranged 
atoms that have previously been shown to provide a good 
choice of molecular skeleton for calculating the elec­
tronic LCAO eigenvalues of ideal layered hexagonal 
solids via semiempirical quantum mechanical methods 
are used to calculate point defect states in these solids. 
The uniformity of charge on each sublattice of the ideal 
cluster and the possibility of investigating model re­
laxations and charge redistribution effects with all­
valence electron quantum mechanical methods, achieved 
by this model, suggest that it could be used favorably 
for realistic defect problems. 

lG. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954); 
96, 1208 (1954). 

2F • Bassani, G. Iadonisi, and B. Preziosi, Phys. Rev. 186, 
735 (1969). 

3K• H. Bennemann, Phys. Rev. A 137, 1497 (1965). 
4C. A. Coulson, M. A. Herrnaes, M. Leal, E. Santos, and 

J. Chem. Phys., Vol. 62, No.5, 1 March 1975 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.138.65.149 On: Tue, 14 Jul 2015 17:57:24



1868 Alex Zunger: Point defects in solids 

S. Senent, Proc. R. Soc. Lond. A 274, 461 (1963). 
5B • S. GouraryandA. E. Fein, J. Appl. Phys. 33, 331(1962). 
6R • P. Messmer and G. D. Watkins, Phys. Rev. B 7, 2568 

(1973); R. P. Messmer, Chern. Phys. Lett. 11, 589 (1971). 
1F • P. Larkins, J. Phys. Chern. Solids 4, 3065, 3077 (1971). 
8A. Zunger, J. Phys. Chern. Solids (to be published) (1974). 
9A. Zunger, J. Phys. C 76, 96 (1974). 
1°F. Bassani and G. P. Parravicini, Nuovo Cimento 50, 95 

(1967). 
HC. A. Coulson and R. Taylor, Proc. Phys. Soc. Lond. A 65, 

815 (1952). 
12E • Doni and G. P. Parravicini, Nuovo Cimento A 63, 117 

(1969). 
13R • Taylor and C. A. Coulson, Proc. Phys. Soc. Lond. A 65, 

834 (1972). 
U D • J. Stukel, R. N. Euwema, and T. C. Collins, Phys. Rev. 

179, 740 (1969). 
ISW. E. Rudge, Phys. Rev. 181, 1024 (1969); 181, 1033 (1969). 
16D. Brust, Solid State Commun. 9, 481 (1971). 
l1F • Herman, R. L. Kuglin, C. D. Kuglin, J. P. Van Dyke, 

and S. Skillman, Methods Comput. Phys. 8, 193 (1968). 
18 L • F. Mattheiss, J. H. Wood, and A. C. Switendick, Methods 

Comput. Phys. 8, 110 (1968). 
19G• Del Re, J. Ladik, and G. Biczo, Phys. Rev. 155, 997 

(1967). 
20J • M. Andre, J. Chern. Phys. 50, 1536 (1969). 
21A • Imamura, J. Chern. Phys. 52, 3168 (1970). 
22K• Morakuma, J. Chern. Phys. 54, 962 (1971). 
23S• O'SheaandD. P. Santry, J. Chern. Phys. 54,2667(1971). 
24D • L. Beveridge and I. Jano, J. Chern. Phys. 56, 4744 

(1972). 
25S• G. Davidson and J. D. LeVine, Solid State Phys. 25, 1 

(1970). 
26R • Hoffman, J. Chern. Phys. 39, 1392 (1963); 40, 2474 

(1964). 
21R • Rein, H. Fukuda, H. Win, and G. A. Clark, J. Chern. 

Phys. 45, 4743 (1966). 
28V • A. Formichev, Sov. Phys.-Solid State 13, 754 (1971). 
29K. Hamrin, G. Johansson, U. Gelius, C. Nordling, and K. 

Sigbahan, Phys. Scr. 1, 277 (1970). 
30R • Vilanov, C. R. Acad. Sci. B 272, 1066 (1971). 
31W. J. Choyke (unpublished data). 
32J • Zupan, Phys. Rev. B 6, 2477 (1972). 

33p • M. Kuznesof and D. F. Shriver, J. Am. Chern. Soc. 90, 
1683 (1960). 

34W. Baronian, Mater. Res. Bull. 7, 119 (1972). 
35S• Larach and R. E. Shrader, Phys. Rev. 104, 68 (1956). 
36JANAF Internation~l Tables (Dow Chemical, Midland, Michi-

gan, 1965). 
31R • S. Pease, Acta Crystallogr. 5, 356 (1952). 
38R • S. Mulliken, J. Chern. Phys. 23, 433 (1955). 
39G • Blyholder and C. A. Coulson, Theor. Chim. Acta 10, 

316 (1968). 
40 L • C. Allen and J. D. Russel, J. Chern. Phys. 46, 1029 

(1967). 
41G• Romelt, Proc. Int. Symp. Lattice Defects Tokyo, 407 

(1966). 
42M. B. Khusidman and V. S. Neshpor Fiz. Tverd. Tela 10, 

1229 (1968) [Sov. Phys.-Solid State 10, 975 (1968)); Poroshk. 
Metall. 8, 72 (1970). 

43A • W. Moore and L. S. Singer, J. Phys. Chern. Solids 33, 
343 (1972). 

44A. Katzir, J. T. Suss, and A. Halprin, Phys. Lett. A 41, 
117 (1972). 

45G• Wessel, Phys. Rev. 92, 1581 (1953). 
46C. M. Hurd and P. Coodin, J. Phys. Chern. Solids 28, 573 

(1967). 
41A. H. Silver and P. J. Bray, J. Chern. Phys. 32, 288 (1960). 
48A • Sussman, Proc. Phys. Soc. Lond. 79, 758 (1962). 
49H • T. Knight and J. P. Rink, J. Chern. Phys. 29, 449(1958). 
50D • M. Kanter, J. Chern. Educ. 33, 272 (1956). 
51G • J. Dienes, J. Appl. Phys. 23, 1194 (1952). 
52C. Baker and A. Kelly, Nature (Lond.) 193, 235 (1962). 
53J • E. Hove, Industrial Carbon and Graphite (Soc. Chern. Ind., 

London, 1958), p. 501. 
54G • R. Hennig, Appl. Phys. Lett. 1, 55 (1962). 
55A. Marchand, in Chemistry and Physics of Carbon, edited by 

P. L. Walker (Marcel Dekker, New York, 1971), Vol. 7, p. 
155. 

56D. E. Soule, Proceedings of the 5th Carbon Conference, Uni­
versit Park, PA, 1962 (Pergamon, London, 1962), Vol. I, 
p. 13. 

51A • R. Reinberg, J. Chern. Phys. 41, 850 (1964). 
58G • Wagoner, private communication to J. W. McClure and 

Y. Yafet, cited in Ref. 56, Vol. 1, p. 22. 

J. Chem. Phys., Vol. 62, No.5, 1 March 1975 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.138.65.149 On: Tue, 14 Jul 2015 17:57:24


