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Prediction of a low-spin ground state in the GaAs:V2+ impurity system

H. Katayama-Yoshida and Alex Zunger
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(Received 11 October 1985)

All 3d impurities observed to date in tetrahedra1 semiconductors have a high-spin ground state, in agree-

ment with Hund's rule. Using first-princip1es self-consistent Green's-function calculations for substitutional

GaAs:V within the local-spin-density formalism, we predict that the as-yet unobserved ground state of
GaAs:V2+ is of the low-spin type. The origin of this unusual ground state is explained.

INTRODUCTION AND STATEMENT
OF PROBLEMS
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FIG. 1. Schematic energy-leve1 diagram for a d orbital in substi-
tutional tetrahedral symmetry, showing the low-spin (LS}
[8 (hcF —5„/4~)& 0] and high-spin (HS) (8( 0) cases.

The 3d orbitals of a transition-atom impurity in a cubic
semiconductor can be split by the crystal field (CF) into t2

and e orbitals, each being further split by the exchange (X)
interaction into spin-up (t+,e+) and spin-down (t, e )
components' (Fig. 1). Depending on the relative order of
the orbital energies ~,+, e, , ~,+, and &, , the electronic

ground state of the X impurity d electrons can correspond
either to a maximum electronic spin S ("high spin" or
"Hund's rule state") or to a lower spin ("low spin").
Electron-paramagnetic-resonance (EPR) measurements of S
known to date for 3d impurities in Si, Ge, III-V, and II-VI
semiconductors' ' (over 90 different systems comprising

various charge states of the impurities Ti through Cu in dif-

ferent host crystals), have shown exclusively high spin groun-d

states. This universality has suggested' (see Fig 1) th.at the
one-electron exchange energies (/s» = e,+ —4, and

&,
+ —e, ) uniformly outweigh crystal-field energies

(0cv e, —4, ). Electronic-structure calculations' " on a

number of representative systems have generally" con-
curred with this conclusion. Recent careful analysis of the
absorption spectra of 3d impurities in III-V and II-VI semi-
conductors" has suggested, ho~ever, that ~hereas in a

given semiconductor hcF increases as the impurity's atomic
number Z decreases away from Mn (e.g. , Mn Cr

V Ti), the exchange splitting 5» (or, in general, the
many-electron correction) decreases in the same direction in

the periodic table. This has raised the possibility "' that
the generally negative spin-reference parameter
5 (dcF —5»)/4» might change sign at the low-Z limit of
the 3d series, giving rise to an unprecedented low-spin

ground state in a semiconductor. To quantitatively examine
this possibility, we have carried out first-principles spin-
unrestricted self-consistent Green's-function calculations for
substitutional 3d impurities in GaAs. %e find that the hith-
erto unobserved ground state of GaAs:V'+ is of a low-spin

symmetry, in violation of Hund's rule. Results for other 3d
impurities in GaAs will be discussed elsewhere; here we

present our results for GaAs:V and discuss the electronic
mechanism leading to its unusual ground state and the im-

plications for theories of deep impurities in semiconductors.
For a fixed number 2 ~ X ~ 10 of impurity d electrons,

the ground-state configuration (n', m', p') in a spin-
unrestricted formalism is the one which minimizes the total
energy E™(e~~e2"t+ t3 r ) (where N = 10—n —m —p
and n «2; m, p «3, consistent with the degeneracies), giv-

ing thereby an observable net electron spin S'"
5 —m" —N/2. Occupying these levels in increasing order

of their energies (d» & 0 and for substitutional tetrahedral
symmetry' hcp) 0) gives for 3«N «6 more than one
possible solution (Fig. 1): a low-spin ground state if 8) 0
(the e orbital is occupied in preference to t+) or a high-

spin ground state if 8 (0 (the t+ orbital is occupied in

preference to e ). Each solution is characterized by its spin
S, as well as by its g value and hyperfine coupling constant,
and hence could, in principle, be identified in an EPR ex-
periment. Since, however, the data on GaAs:V (see below)
are still fragmentary, it has not been possible to determine if
the ground state for N =3(V'+) is low spin e+e' t+t ( E,
S = T), or high spin e+'e' t+ to (4T~, S = T).

ELECTRONIC STRUCTURE

%'e have calculated self-consistently the electronic struc-
ture of the V'+ (N = 2) and V'+ (N = 3) impurity at the
ideal Ga substitutional tetrahedral site in GaAs within the
self-interaction-corrected" local-spin-density formalism. %e
have used our Green's-function method described previous-
ly, '0 retaining all core and valence orbitals of the impurity as
spin-polarizable states. %'e have modeled the host crystal in
a local pseudopotential framework, adjusting the pseudopo-
tential to reproduce the observed band structure of pure
GaAs. The spin-polarized local density of states (LDOS) of
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FIG. 2. Calculated local density of states (3d component only) of the V-induced e and t2 levels is GaAs showing spin-up (+) and spin-

down ( —), bonding (b) and antibonding (a) levels. Occupation of gap levels is denoted by solid circles, shaded areas denote valence-band
resonances, a i levels not shown (see text).

the impurity-induced e and t2 levels are sho~n in Fig. 2,
choosing the valence-band maximum (E„)as energy refer-
ence. We find that V introduces a fully occupied t2 bound
state in the GaAs heteropolar gap at E„7.3 eV (as—well as
an ai bound state 1 eV below it). In the energy range
between E„and E„—6.5 eV (the upper valence band of
GaAs) we find three types of impurity-induced levels: the
ti and e "crystal-field resonances"'s (bonding and non-
bonding V-As combinations, respectively) and the ai reso-
nances (at E„1eV, no—t shown in Fig. 2). The antibond-
ing (a) counterparts of these levels appear as empty states
in the conduction band, and include the t'+ and t' "dan-
gling bond hybrids"'s (V p and d orbitals, strongly hy-
bridized with Ga and As p orbitals) and ai resonances (at
E„+5.2 eV, not shown). Whereas the conduction-band
resonances have small exchange splittings, we find in the
band-gap region the strongly exchange split localized e lev-
els. The energy-level scheme obtained here is similar to
that inferred in spin-restricted calculations for 3d impurities
in GaP.9

GaAs:V3+

For the N-2 case of GaAs:V3+ there is no distinction
between low- and high-spin states. We find the ground-
state configuration to be e+e t+t ( A2) with an empty e
level in the gap at E„+1.095 eV. The calculated ground-
state properties of this system are summarized in Fig. 3(a):
The calculated's spin (S-1), g value (1.9582), and s'V hy-
perfine coupling constant (A- —38.4x10 4 cm ') are
consistent with experiment'~ (S- I, g - 1.957, and
A - + 54x 10 ~ cm ', or'6 55 x 10 ~ cm '). The reduction
of A from its value in ionic systems (e.g.,5 76.1 x 10 ~ cm
for CaO:V'+) and that of g from its spin-only value
(2.0023) both indicate substantial covalency (since the g
shift has a contribution" from the momentum matrix ele-
ment of p and d orbitals, and hence increases with covalen-
cy). Consistent with this covalency, we find that the local

(L ) magnetic moment in the impurity subspace is
1.30@.~, far reduced relative to the total magnetic mo-

ment over the entire space, p. -2S-2p, ~. p, l. is contributed
exclusively by the impurity-induced valence-band reso-
nances (i.e., ti,»-0) of e type (+1.42ps) and t2 type
( —0.12ps). We find a negative spin density at the impuri-

ty nucleus (a consequence of core polarization) and that
most (65%) of the spin density is localized on the impurity,
the remaining 35% being delocalized outside the impurity
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FIG. 3. Calculated ground-state propc, rties of the Vi+ [in (a)J
and V2+ (in (b)] impurity in GaAs. The hyperfine coupling con-
stant A is in units of 10 4 crn
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subspace. This is consistent with a qualitative analysis' of
the electron-nuclear-double-resonance (ENDOR) data, '6

which suggest that most (79.7 —X)% of the spin density is
on the V3+ site, 20.3o/o is on the first two sheBs of neigh-
bors, and an undetermined (but smaller'6) amount X'k is
delocalized on further shells of ligands. The spin-allowed
excited electronic states of V + should correspond in our
model to the e+r+ ( A2) e+r+ ('T2) and e+r+ ('A2)

eo+ t2+ (3Tt) transitions, observed for V'+ in a number of
III-V semiconductors. '

tion inside the valence band (where the e+ resonance is;
see Fig. 2), consistent with the fact that the internal excita-
tions of V3+ are observed even if the Fermi energy is inside
the valence band. 20 Our results hence suggest that isolated
substitutional V in GaAs cannot explain a midgap electrical
level needed to rationalize its semi-insulating behavior ~ a
complex involving V may be a more likely candidate.

DISCUSSION

GaAs:U2+

For the N-3 case of GaAs:V2+, an additional electron
needs to be accommodated either in the e or in the t+ or-
bitals. We find that the ground state corresponds ta the
former, low-spin situation, i.e., to e+2e' to+ t, 'E. To check
the stability of this calculated ground state relative to a pos-
sible high-spin ground state, we have calculated the energy
difference QE-E'"(e~+e r' 'Tt) —E"'(e'e' to+, 'E) by
imposing on the self-consistent calculation an initial guess
for the impurity potential which artificially favors the high-
spin state (i.e., a large d, or 5 & 0 in Fig. 1). This total en-
ergy difference can be approximated in the transition-state
construct as the difference in orbital energies ~,+ —~, , cal-
culated at the intermediate occupation e+eo t+5. In 811

cases we find that at the self-consistency limit a low-spin
8&0 solution is obtained, hence LIE&0. The following
approximations in our calculation may affect this conclusion:
(i) neglect of static and dynamic Jahn-Teller (JT) coupling
(expected to be small in the 'E state of V'+, in analogy with
the —0.02 eV JT energy'I of the 2E states of Ni+ in II-VI
semiconductors), (ii) neglect of symmetric (outward) relaxa-
tions'9 (expected to be stronger in the high-spin 'T~ state
than in the low-spin E state, stabilizing the former), (iii)
neglect of dynamic orbital (i.e., configuration mixing) corre-
lation effects (calculated in Ref. 13 to be only around —0.1
eV both for 4Tt and for 'E), and (iv) the possibility that
the strong t+ resonance of V2+ near the conduction-band
minimum [Fig. 2(d)] will be stabilized by effective-mass ef-
fects, leading to a shallow high-spin bound state (incon-
sistent with the rather deep observed acceptor level20).

No EPR or ENDOR data exist for GaAs:V2+; our predic-
tions are given in Fig. 3(b). Interestingly, we find that, in
contrast to V3+, most of the local magnetic moment in V'+
(pq-0. 75ps, p, -1.0ps) is contributed by the band-gap
levels (y~~-0.9lps), with only a small (negative) portion
(pvs 0.16ps ) contributed by the valence-band reso-
nances. The low-energy electronic excitations of V~+ corre-
spond in our picture to the spin-forbidden e 2+ e ' ('E )—e+2t+' (4Ti) and spin-allowed e2~e ' (2E) e+2'r(~T}
transitions. The optica1 spectra wi11 be discussed else-
where. "

Having obtained the predicted ground states of V2+ and
V3+, we are in a position to calculate the ionization energy
V2+ ~ V3+ + e, i.e., the acceptor level. Using the
transition-state construct, this difference EE(d2/d3) in total
energies Et ~(e+2e' ) —Et2~(e+2eo ) is approximated as the
position of the e orbital calculated self-consistently at the
intermediate e2+ e configuration. This gives an acceptor
energy EE(d'/d3) -E„+1.34 eV (Fig. 2), close to the ob-
served value E„+1.38 eV. The donor transition energy
AE(d'/d') -E"'(e+' ) —E"'(e+' ) is located in our calcula-

In an interacting electron system which sustains localized
states, the effective one-particle energies depend on the oc-
cupation numbers of all levels in the system. Figure 2
shows indeed that occupation ef the empty e level of V'+

by an electron (creating thereby V'+) raises its energy by
(the effective Mott-Hubbard energy) U'~~ =0.495 eV and
that of e+ by Uj~. ~ 0.696 eV (due to increased electron
repulsion between e+ and e ). The reason these effective
Coulomb energies are so much smaller than the free ion
value for V [17.4 eV (Ref. 21)] is that, in a semiconductor,
charge redistributes itself in response to impurity ionization
to minimize its effect (a "self-regulating response"2). This
can be illustrated as follows: The two e+ electrons of V'+
contribute an effective charge of 1.67e to the impurity sub-
space [bgva in Fig. 3(a)], whereas the three e+'e' elec-
trons of V'+ contribute an effective gap charge of
Q~„2.11e, but the valence-band resonances diminish their
amplitude on the impurity site (hgva- —0.19e), leading to
a total valence charge of Q~, +hgva 1.92e, i.e., only
0.25e more than in V +. The strong hybridization evi-
denced by this behavior as well as by the reduction of p.L
relative to p, (i.e., p, q/p, 0.75) also holds the key to
understanding the low-spin state of V +. Since e orbitals in
substitutional tetrahedral symmetry have lobes pointing to
the next-nearest neighbors, ' they remain only weakly hybri-
dized with their f~rst neighbors throughout the 3d series
(forming weak m bonds). Their localization is manifested
by substantial exchange splittings, e.g. , 5„'-1.03 and 1.23
eV for V + and V +, respectively. In contrast, since the
lobes of the t2 orbitals point to the first-nearest neighbors,
they are capable of forming stronger cr bonds whose degree
of hybridization depends on the availability of host t2 LDOS
at the energy of the respective impurity-atom d level. At
the center of the 3d series the atomic 3d, orbitals are too
deep to experience a high host t2 LDOS, but at the low-Z
limit of the series, the shallower atomic 3d, orbitals have
available to them a high LDOS of host t2 orbitals near the
band edges. This leads to effectively hybridized and delo-
calized t'+ levels in GaAs:V, having hence vanishingly small
exchange splitting 5„=0(see Fig. 2). This large disparity
in the degree of hybridization of e and t2 levels ("differen-
tial hybridization"') at the low-Z end of the 3d series leads
to a large crystal-field splitting hcF (e.g. , relative to Mn),
which for V exceeds h~, giving rise to a low-spin ground
state. In contrast, in more ionic host crystals (e.g. , II-VI s),
the t'+ orbitals are inside the (wider) band gap; hence they
are more localized. This leads to a smaller b,cF and larger

i.e., to a high-spin ground state. This delicate,
occupation-dependent balance between 4q(n, m, p) and
hcF(n, m, p) together with band-structure effects (correct en-
ergy dependence of the LDOS) need to be incorporated in
impurity models to correctly describe ground-state spin mul-
tiplicites. This discussion suggests that as we move from 3d
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to 4d and Sd impurities (eg. , V Nb Ta, or Cr
Mo W) the increased covalency will further reduce Az

(and, in general, the many-electron effects), leading to a
prevalence of low-spin ground states.
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