Prediction of a low-spin ground state in the GaAs:V$^{2+}$ impurity system

H. Katayama-Yoshida* and Alex Zunger
Solar Energy Research Institute, Golden, Colorado 80401
(Received 11 October 1985)

All 3d impurities observed to date in tetrahedral semiconductors have a high-spin ground state, in agreement with Hund’s rule. Using first-principles self-consistent Green’s-function calculations for substitutional GaAs:V within the local-spin-density formalism, we predict that the as-yet unobserved ground state of GaAs:V$^{2+}$ is of the low-spin type. The origin of this unusual ground state is explained.

INTRODUCTION AND STATEMENT OF PROBLEMS

The 3d orbitals of a transition-atom impurity in a cubic semiconductor can be split by the crystal field (CF) into t_{2g} and e orbitals, each being further split by the exchange (X) interaction into spin-up $(t_{+,e+})$ and spin-down $(t_{-,e-})$ components (Fig. 1). Depending on the relative order of the orbital energies $e_{t^+}^n$, $e_{t^+}^o$, $e_{t^+}^s$, and $e_{t^+}^p$, the electronic ground state of the N impurity d electrons can correspond either to a maximum electronic spin S (“high spin” or “Hund’s rule state”) or to a lower spin (“low spin”). Electron-paramagnetic-resonance (EPR) measurements of S known to date for 3d impurities in Si, Ge, III-V, and II-VI semiconductors (over 90 different systems comprising various charge states of the impurities Ti through Cu in different host crystals), have shown exclusively high-spin ground states. This universality has suggested (see Fig. 1) that the one-electron exchange energies $\Delta_{CF} = e_{t^+}^n - e_{t^+}^o$ and $\Delta_{CF}^\neq = e_{t^+}^o - e_{t^+}^p$ uniformly outweigh crystal-field energies $\Delta_{CF} = e_{t^+}^n - e_{t^+}^o$. Electronic-structure calculations (see Fig. 1) on a number of representative systems have generally concurred with this conclusion. Recent careful analysis of the absorption spectra of 3d impurities in III-V and II-VI semiconductors has suggested, however, that whereas in a given semiconductor Δ_{CF} increases as the impurity’s atomic number Z decreases away from Mn (e.g., Mn\rightarrowCr\rightarrowV\rightarrowTi), the exchange splitting Δ_X (or, in general, the many-electron correction) decreases in the same direction in the periodic table. This has raised the possibility that the generally negative spin-reference parameter $\delta = (\Delta_{CF} - \Delta_X)/\Delta_X$ might change sign at the low-Z limit of the 3d series, giving rise to an unprecedented low-spin ground state in a semiconductor. To quantitatively examine this possibility, we have carried out first-principles spin-unrestricted self-consistent Green’s-function calculations for substitutional 3d impurities in GaAs. We find that the hitherto unobserved ground state of GaAs:V$^{2+}$ is of a low-spin symmetry, in violation of Hund’s rule. Results for other 3d impurities in GaAs will be discussed elsewhere; here we present our results for GaAs:V and discuss the electronic mechanism leading to its unusual ground state and the implications for theories of deep impurities in semiconductors.

For a fixed number $2 \leq N \leq 10$ of impurity d electrons, the ground-state configuration (n^s,m^p,p^p) in a spin-unrestricted formalism is the one which minimizes the total energy $E^{(N)}(e_{t^+}^n, e_{t^+}^o, e_{t^+}^s, e_{t^+}^p)$ (where $N = 10 - n - m - p$ and $n \leq 2$; $m, p \leq 3$, consistent with the degeneracies), giving thereby an observable net electron spin $S^{(N)} = S - m^s - N/2$. Occupying these levels in increasing order of their energies ($\Delta_X > 0$ and for substitutional tetrahedral symmetry $\Delta_{CF} > 0$) gives for $3 \leq N \leq 6$ more than one possible solution (Fig. 1): a low-spin ground state if $\delta > 0$ (the e^+ orbital is occupied in preference to t_{+}) or a high-spin ground state if $\delta < 0$ (the t_{+} orbital is occupied in preference to e^+). Each solution is characterized by its spin S, as well as by its g value and hyperfine coupling constant, and hence could, in principle, be identified in an EPR experiment. Since, however, the data on GaAs:V (see below) are still fragmentary, it has not been possible to determine if the ground state for $N = 3$ (V^{2+}) is low spin $e_{t^+}^n, e_{t^+}^o, t_{+}^p, t_{+}^s$ (4T_1, $S = \frac{1}{2}$), or high spin $e_{t^+}^n, e_{t^+}^o, t_{+}^p, t_{+}^s$ (4T_1, $S = \frac{1}{2}$).

ELECTRONIC STRUCTURE

We have calculated self-consistently the electronic structure of the V^{3+} $(N = 2)$ and V^{2+} $(N = 3)$ impurity at the ideal Ga substitutional tetrahedral site in GaAs within the self-interaction-corrected local-spin-density formalism. We have used our Green’s-function method described previously, retaining all core and valence orbitals of the impurity as spin-polarizable states. We have modeled the host crystal in a local pseudopotential framework, adjusting the pseudopotential to reproduce the observed band structure of pure GaAs. The spin-polarized local density of states (LDOS) of...
the impurity-induced e and t_2 levels are shown in Fig. 2, choosing the valence-band maximum (E_v) as energy reference. We find that V introduces a fully occupied t_2 bound state in the GaAs heteropolar gap at $E_v - 7.3\,\text{eV}$ (as well as an a_1 bound state 1 eV below it). In the energy range between E_v and $E_v - 6.5\,\text{eV}$ (the upper valence band of GaAs) we find three types of impurity-induced levels: the t_2 and e "crystal-field resonances" 5,9 (bonding and non-bonding V-As combinations, respectively) and the a_1 resonances (at $E_v - 1\,\text{eV}$, not shown in Fig. 2). The antibonding (a) counterparts of these levels appear as empty states in the conduction band, and include the t'^2 and e'^2 "dangling bond hydrids" 5,9 ($V\,p$ and d orbitals, strongly hybridized with Ga and As p orbitals) and a_1 resonances (at $E_v + 5.2\,\text{eV}$, not shown). Whereas the conduction-band resonances have small exchange splittings, we find in the band-gap region the strongly exchange split localized e levels. The energy-level scheme obtained here is similar to that inferred in spin-restricted calculations for 3d impurities in GaP. 9

\begin{center}
\textbf{GaAs:V$^{2+}$}
\end{center}

For the $N = 2$ case of GaAs:V$^{2+}$ there is no distinction between low- and high-spin states. We find the ground-state configuration to be $e\,^2_d\,^2_e\,^2_d'\,^2_e'$ (\(t^2_A\)) with an empty e-level in the gap at $E_v + 1.095\,\text{eV}$. The calculated ground-state properties of this system are summarized in Fig. 3(a): The calculated 4 spin ($S = 1$), g value (1.9582), and 35V hyperfine coupling constant ($A = -38.4\times 10^{-4}\,\text{cm}^{-1}$) are consistent with experiment 4 ($S = 1$, $g = 1.957$, and $A = \pm 54\times 10^{-4}\,\text{cm}^{-1}$, or $^{16}55\times 10^{-4}\,\text{cm}^{-1}$). The reduction of A from its value in ionic systems (e.g., $76.1\times 10^{-4}\,\text{cm}^{-1}$ for CaO:V$^{2+}$) and that of g from its spin-only value (2.0023) both indicate substantial covalency (since the g shift has a contribution 9 from the momentum matrix element of p and d orbitals, and hence increases with covalency). Consistent with this covalency, we find that the local (L) magnetic moment in the impurity subspace is $\mu_L = 1.30\mu_B$, far reduced relative to the total magnetic moment over the entire space, $\mu = 2S = 2\mu_B$. μ_L is contributed exclusively by the impurity-induced valence-band resonances (i.e., $\mu_{\text{imp}} = 0$) of e type ($+1.42\mu_B$) and t_2 type ($-0.12\mu_B$). We find a negative spin density at the impurity nucleus (a consequence of core polarization) and that most (65%) of the spin density is located on the impurity, the remaining 35% being delocalized outside the impurity.

\begin{center}
\textbf{FIG. 2.} Calculated local density of states (3d component only) of the V-induced e and t_2 levels is GaAs showing spin-up (+) and spin-down (−), bonding (b) and antibonding (a) levels. Occupation of gap levels is denoted by solid circles, shaded areas denote valence-band resonances, a_1 levels not shown (see text).
\end{center}

\begin{center}
\textbf{FIG. 3.} Calculated ground-state properties of the V$^{3+}$ [in (a)] and V$^{2+}$ [in (b)] impurity in GaAs. The hyperfine coupling constant A is in units of $10^{-4}\,\text{cm}^{-1}$.
\end{center}
subspace. This is consistent with a qualitative analysis16 of the electron-nuclear double-resonance (ENDOR) data,16 which suggest that most (79.7% - \(\chi\)% of the spin density is on the \(V^{3+}\) site, 20.3% is on the first two shells of neighbors, and an undetermined (but smaller19) amount \(\chi\)% is delocalized on further shells of ligands. The spin-allowed excited electronic states of \(V^{3+}\) should correspond in our model to the \(e_1\ell_2^\pi (\tilde{A}_1) \rightarrow e_1\ell_2^\pi (\tilde{T}_2)\) and \(e_1\ell_2^\pi (\tilde{A}_1) \rightarrow e_2\ell_2^\pi (\tilde{T}_2)\) transitions, observed for \(V^{3+}\) in a number of III-V semiconductors.2,17

\textbf{GaAs:V2+}

For the \(N = 3\) case of GaAs:V2+, an additional electron needs to be accommodated either in the \(e_-\) or in the \(\ell_\pi\) orbitals. We find that the ground state corresponds to the former, low-spin situation, i.e., to \(e_1\ell_2 \ell_2^\pi (\tilde{E})\). To check the stability of this calculated ground state relative to a possible high-spin ground state, we have calculated the energy difference \(\Delta E = E(\tilde{E}) - E(\tilde{4}\tilde{T}_1)\) by imposing on the self-consistent calculation an initial guess for the impurity potential which artificially favors the high-spin state (i.e., a large \(\Delta\) or \(\delta < 0\) in Fig. 1). This total energy difference can be approximated in the transition-state construct as the difference in orbital energies \(\epsilon_2^+ - \epsilon_2^-\), calculated at the intermediate occupation \(e_2^+ e_2^\pi^\downarrow e_2^\pi^\uparrow\). In all cases we find that at the self-consistency limit a low-spin \(\delta > 0\) solution is obtained, hence \(\Delta E > 0\). The following approximations in our calculation may affect this conclusion: (i) neglect of static and dynamic Jahn-Teller (JT) coupling (expected to be small in the \(\tilde{E}\) state of \(V^{2+}\), in analogy with the \(\approx 0.02\) eV JT energy18 of the \(\tilde{E}\) states of Ni2+ in III-V semiconductors), (ii) neglect of symmetric (outward) relaxations19 (expected to be stronger in the high-spin \(4\tilde{T}_1\) state than in the low-spin \(\tilde{2}\tilde{E}\) state, stabilizing the former), (iii) neglect of dynamic orbital (i.e., configuration mixing) correlation effects (calculated in Ref. 13 to be only around \(0.1\) eV both for \(4\tilde{T}_1\) and for \(\tilde{2}\tilde{E}\)), and (iv) the possibility that the strong \(\ell_2^\pi\) resonance of \(V^{2+}\) near the conduction-band minimum [Fig. 2(d)] will be stabilized by effective-mass effects, leading to a shallow high-spin bound state (inconsistent with the rather deep occupied acceptor level20).

No EPR or ENDOR data exist for GaAs:V2+; our predictions are given in Fig. 3(b). Interestingly, we find that, in contrast to \(V^{3+}\), most of the local magnetic moment in \(V^{2+}\) (\(\mu_L = 0.75 \mu_B\), \(\mu = 1.0 \mu_B\)) is contributed by the band-gap levels (\(\mu_{\pi} = -0.91 \mu_B\)), with only a small (negative) portion (\(\mu_{\nu} = -0.16 \mu_B\)) contributed by the valence-band resonances. The low-energy electronic excitations of \(V^{2+}\) correspond in our picture to the spin-forbidden \(e_2^+ e_2^\pi^\downarrow (\tilde{2}\tilde{E}) \rightarrow e_2^+ \ell_2^\pi^\downarrow (\tilde{4}\tilde{T}_1)\) and spin-allowed \(e_2^+ e_2^\pi^\downarrow (\tilde{2}\tilde{E}) \rightarrow e_2^\pi^\downarrow (\tilde{4}\tilde{T}_2)\) transitions. The optical spectra will be discussed elsewhere.17

Having obtained the predicted ground states of \(V^{2+}\) and \(V^{3+}\), we are in a position to calculate the ionization energy \(V^{2+} \rightarrow V^{3+} + e^-\), i.e., the acceptor level. Using the transition-state construct, this difference \(\Delta E(\ell_2 / \ell_2^\pi)\) in total energies \(E(\ell_2) - E(\ell_2^\pi)\) is approximated as the position of the \(e_-\) orbital calculated self-consistently at the intermediate \(e_2^+ e_2^\pi^\downarrow\) configuration. This gives an acceptor energy \(\Delta E(\ell_2 / \ell_2^\pi) = E_+ + 1.34\) eV (Fig. 2), close to the observed value20 \(E_+ = 1.38\) eV. The donor transition energy \(\Delta E(\ell_2^\pi / \ell_2) = E(\ell_2) - E(\ell_2^\pi)\) is located in our calculation inside the valence band (where the \(e_+\) resonance is; see Fig. 2), consistent with the fact that the internal excitations of \(V^{3+}\) are observed even if the Fermi energy is inside the valence band.20 Our results hence suggest that isolated substitutional V in GaAs cannot explain a midgap electrical level needed to rationalize its semi-insulating behavior;14 a complex involving V may be a more likely candidate.

\section*{DISCUSSION}

In an interacting electron system which sustains localized states, the effective one-particle energies depend on the occupation numbers of all levels in the system. Figure 2 shows indeed that occupation of the empty \(e_-\) level of \(V^{3+}\) by an electron (creating thereby \(V^{2+}\)) raises its energy by (the effective Mott-Hubbard energy) \(U(e^0) = 0.495\) eV and that of \(e_+\) by \(U(e^0) = 0.696\) eV (due to increased electron repulsion between \(e_+\) and \(e_-\)). The reason these effective Coulomb energies are so much smaller than the free ion value for V [17.4 eV (Ref. 21)] is that, in a semiconductor, charge redistributes itself in response to impurity ionization to minimize its effect (a "self-regulating response"22). This can be illustrated as follows: the two \(e_+^\dagger\) electrons of \(V^{3+}\) contribute an effective charge of 1.0 e to the impurity subspace \(\Delta Q_{VB}\) in Fig. 3(a), whereas the three \(e_-^\dagger\) electrons of \(V^{2+}\) contribute an effective gap charge of \(\Delta Q_{gap} = 2.11\) e, but the valence-band resonances diminish their amplitude on the impurity site (\(\Delta Q_{VB} = -0.19\) e), leading to a total valence charge of \(Q_{VB} + \Delta Q_{VB} = 1.92\) e, i.e., only 0.25 e more than in \(V^{3+}\). The strong hybridization evidenced by this behavior as well as by the reduction of \(\mu_\ell/\mu\) relative to \(\mu\) (i.e., \(\mu_\ell/\mu = 0.75\)) also holds the key to understanding the low-spin state of \(V^{2+}\). Since \(e^\pm\) orbitals in substitutional tetrahedral symmetry have lobes pointing to the nearest neighbors,1 they remain only weakly hybridized with their first neighbors throughout the 3d series (forming weak \(\pi\) bonds). Their localization is manifested by substantial exchange splittings, e.g., \(\Delta e = 1.03\) and 1.23 eV for \(V^{2+}\) and \(V^{3+}\), respectively. In contrast, since the lobes of the \(t_2\) orbitals point to the first-nearest neighbors, they are capable of forming stronger \(\sigma\) bonds whose degree of hybridization depends on the availability of host \(t_2\) LDOS at the energy of the respective impurity-atom \(d\) level. At the center of the 3d series the atomic \(3d\) orbitals are too deep to experience a high host \(t_2\) LDOS, but at the low-\(Z\) limit of the series, the shallower atomic \(3d\) orbitals have available to them a high LDOS of host \(t_2\) orbitals near the band edges. This leads to effectively hybridized and delocalized \(t_2\) levels in GaAs:V, hence vanishingly small exchange splitting \(\Delta e = 0\) (see Fig. 2). This large disparity in the degree of hybridization of \(e_+\) and \(t_2\) levels ("differential hybridization"12) at the low-\(Z\) end of the 3d series leads to a large crystal-field splitting \(\Delta_{CF}\) (i.e., relative to Mn), which for V exceeds \(\Delta e\), giving rise to a low-spin ground state. In contrast, in more ionic host crystals (i.e., II-VI's), the \(t_2\) orbitals are inside the (wider) band gap; hence they are more localized. This leads to a smaller \(\Delta_{CF}\) and larger \(\Delta e\), i.e., to a high-spin ground state. This delicate, occupation-dependent balance between \(\Delta e(n,m,p)\) and \(\Delta_{CF}(n,m,p)\) together with band-structure effects (correct energy dependence of the LDOS) need to be incorporated in impurity models to correctly describe ground-state spin multiplicities. This discussion suggests that as we move from 3d
to 4d and 5d impurities (e.g., V → Nb → Ta, or Cr → Mo → W) the increased covalency will further reduce Δ_{χ} (and, in general, the many-electron effects), leading to a prevalence of low-spin ground states.

We are grateful to A. M. Hennel for valuable discussions. This work was supported by the Office of Energy Research, Material Science Division, U. S. Department of Energy, under Grant No. DE-AC02-CH00178.

References 10 and 11 predicted as-yet unobserved low-spin ground states for interstitial Ti, Ti, V, and V+ impurities in Si.

2References 10 and 11 predicted as-yet unobserved low-spin ground states for interstitial Ti, Ti, V, and V+ impurities in Si.

12References 10 and 11 predicted as-yet unobserved low-spin ground states for interstitial Ti, Ti, V, and V+ impurities in Si.

14U. Kaufmann, H. Ennen, J. Schneider, R. Wörner, J. Weber, and F. Köhl, Phys. Rev. B 25, 5598 (1982). The low-spin state of V$^{2+}$ suggested by these authors was based erroneously on a fit of data pertinent to V$^{3+}$, not V$^{2+}$; see discussion in Ref. 2.

17M. Caldas, A. Fazzio, and A. Zunger (unpublished).

FIG. 2. Calculated local density of states (3d component only) of the V-induced \(e \) and \(t_2 \) levels in GaAs showing spin-up (\(+ \)) and spin-down (\(- \)), bonding (b) and antibonding (a) levels. Occupation of gap levels is denoted by solid circles, shaded areas denote valence-band resonances, \(a_1 \) levels not shown (see text).