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Calculation of structural properties and vibrational frequencies 
of a- and y-N2 crystals 
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The effects of the zero-point energy, residual forces and torques on the molecules, and molar density. 
on the calculated lattice frequencies and structural properties of solid a- and 'Y-N2' are investigated. 
An intramolecular potential and a parametrized 12-6 atom-atom intermolecular potential are used to 
calculate lattice modes, intramolecular modes, sublimation energy, equilibrium unit cell parameters, 
Griineizen coefficients, and P - V data. The second virial coefficient is also reasonably reproduced. 
The a-to-y phase transition is not revealed by the employed intermolecular potential. 

I, INTRODUCTION 

Lattice dynamics studies of atomic and molecular 
solids make use of one of two approaches: (a) the F-G 
method1,2 and various shell models3,4 which use a pa­
rametric form to construct the force constant matrix 
and (b) the potential approach5- 12 which constructs the 
dynamical matrix from an explicit analytical form of the 
interaction potential. Only those physical properties 
which are determined by the second derivative of the po­
tential with respect to atomic or molecular displace­
ments (force constants), such as lattice frequencies, 
Griineizen coeffiCients, vibrational heat capacity, etc. 
may be reproduced by employing a parametric form for 
the force constant matrix. The unit cell dimensions and 
the position of atoms inside the unit cell used by the pa­
rametric approaches to construct the dynamical matrix 
are assumed and not derived self-consistently from the 
employed model. On the other hand, the potential ap­
proach is capable also of predicting properties that are 
explicitly determined by the potential itself or its first 
derivatives, such as unit cell parameters (a, b, c, a, (3, 
and 1'), atomic positions, cohesion energy, P- V data, 
etc. 

Lattice dynamics investigations of molecular solids 
have recently assumed a renewed interest due to the ac­
cumulation of extensive experimental data on both first 
and second derivatives dependent properties. Potential 
approach calculations on structural and dynamical prop­
erties of molecular solids have recently been carried out 
on simple molecular solids such as H2 , 13a OCS, 13b 

CO2 , 12.14,15 N2
5- 12 and on more complicated organiC crys­

tals such as naphthalene and anthracene, 16 paraffins, 17 
and pyrazine. 18 In this paper we present the results of 
a potential approach calCUlation of lattice dynamics and 
related properties of a and I' nitrogen. The approxima­
tions usually assumed in previous potential approach 
calculations are first critically examined. These ap­
proximations are: (a) the neglect of zero-point effects 
in the determination of the equilibrium crystal struc­
ture, (b) the calculation of the dynamical matrix without 
completely relaxing the forces and torques on the mole­
cules, and (c) the neglect of effects introduced by trun-
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cating the lattice sums, on the Calculated lattice fre­
quenCies and unit cell parameters. A detailed examina­
tion shows that these approximations may significantly 
influence the calculated results and that the basis on 
which proposed potentials have previously been accepted 
may be unjustified. 

The elaborations presented here are used to suggest 
and test a refined potential for crystalline N2• The ex­
perimental data used to test this potential are: 

(1) Ramanl9
•
20 and infraredll

•21 lattice mode frequen­
cies of a-N2 and Raman22 frequencies of 'Y-N2' 

(2) The intramoleCular modes of a-N2
23 and 'Y- N 2' 22 

(3) The Griineizen coefficients of the optical modes of 
a-N2

24 and 'Y-N2' 25 

(4) The unit cell parameters of a_N2
26 and 'Y- N2' 27 

(5) The equilibrium position, at a given external pres-
sure, of the atoms in the unit cell of a-N2

26 and 'Y-N2' 27 

(6) The low temperature isotherm of a-N2 •
28 

(7) The crystal cohesion energy of a_N2• 29 ,30 

(8) The virial coefficient of N2 gas. 31.32 

IsotopiC 14Nj!5N effects on structural and dynamical 
properties are also discussed. 

Previous potential approach calculations (performed 
only on the a phase) employed one of the following forms 
of the potential: 

(1) Pure quadrupole-quadrupole (Q-Q) interaction. 
This was used by Goodings and Henkelman,7 Jacobi and 
Schnepp, 8 and Raich 9 to compute the lib rational frequen­
cies. It was shown to represent the anisotropic forces 
in solid nitrogen reasonably well but since the Q-Q in­
teraction forms only a small fraction7,33 of the total in­
teraction potential, it is inadequate for computing the 
crystal cohesion energy. Also, since this potential lacks 
isotropiC contributions, it cannot be used to reproduce 
translational lattice modes, crystal pressure, and equi­
librium unit cell parameters, satisfactorily. Gruneizen 
coefficients are also poorly reproduced with this poten-

Copyright © 1975 American Institute of Physics 
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Hal. 24 

(2) Q-Q potential plus spherical (dumbbell model) 
Lennard-Jones 12-6 potential. This potential repro­
duces well the translational lattice modesll but fails to 
reproduce the lib rational modes unless the quadrupole 
moment is treated as an adjustable variable. 19 The 
anisotropy of both the short- range repulsion and the 
long-range dispersion is not adequately represented by 
this potential. 

(3) Q-Q potential plus parametric short-range repul­
sion plus dipole-dipole dispersive attraction. 7.33 This 
potential, depending on four parameters, is physically 
very reasonable but has failed to reproduce lattice libra­
Hons when gas phase data were used to adjust the pa­
rameters. 

(4) Atom-atom anisotropic potential. This has been 
used by Donkersloot and Walmsley, 5 Kuan, Warshel, 
and Schnepp,6 Jacobi and Schnepp,12 and Ron and 
SchnepplO to compute both structural and dynamical 
properties of a-N2 and has so far yielded the best agree­
ment with experiment. This potential form will conse~ 
quently be used in this paper both for examining methods 
of calculation and for computing structural and dynami­
cal properties. 

In Sec. II of this paper the computational scheme em­
ployed will be presented. In Sec_ III we examine some 
of the related approximations commonly used in the 
literature. Sections IV and V present the results ob­
tained with our derived potential for a and y nitrogen, 

II. METHOD OF CALCULATION 

The Born-Oppenheimer (B-O) surface for the ground 
electronic state of a molecular solid is a multidimen­
sional function of the position vectors of the atoms in 
the unit cell (r •• f .,), where 8 runs over the molecules in 
the unit cell (8 = 1,2 ••• 0"), t runs over the different 
atoms in a molecule (t= 1, 2 ... T), and [ indexes the unit 
cells (1= 1,2 ••• N). It is convenient to express the B-O 
surface as the sum of intermolecular (Ulnter ) and intra­
molecular (Ulntra) potentials. 

U( Ir ... t .,} ) = Ulnter + Ul mra • 

If an atom-atom distance-dependent potential is adopted 
to express the intermolecular interactions, Ulnter is 
given by 

_"!"'f.; ~ ( 0,,' ) UIDter - 2 Vlnter D. t ",'t' , 
(I Bt ,'s t' 

(2) 

where D~;~:'t' is the distance between the atom t in the 
8 molecule located in a central unit cell (l = 0) and atom 
t' in molecule 8' (t* t' if 8 = 8' and [' = 0) at the unit cell 
['. Ulnt .. is the interaction potential between atoms 
which belong to different molecules, The reference 
level for Uhler is infinite intermolecular separation. 
Ulntra is given by 

1 a 
U lntra = - ~ V .. , 

a~ 
(3) 

where 

V .. =t t 'lltntra(t4,t.t') '.1 f':a1 
(4) 

and 

where d ... tot , is the intramolecular interatomic distance. 
The reference level for the intramolecular potential V. 
is the ground electronic state of the isolated molecule 
at equilibrium. V. determines the intramolecular vi­
brations of an isolated molecule. The crystal field 
Ulmer may cause the removal of degeneracy in the intra­
molecular modes (site splitting), the coupling of the vi­
brations of the a molecules in the unit cell (Davydov 
splitting), and also induce the infrared or Raman activ­
ity of normal modes. 

In its most general form U( {r ... t ,,}) depends on the 
translations and rotations of all the molecules in the unit 
cell, their internal conformation (in the case of a di­
atomic molecule this is reduced to the bond length), and 
the unit cell parameters a, b, c, a, {3 and y (30"T+ 6 de­
grees of freedom in all). The treatment of the dynamics 
of molecular solids can be considerably simplified if, 
instead of introducing translational, rotational, and in­
ternal coordinates, the dynamical matrix is expressed 
as derivatives of the potential with respect to 3aT atomic 
Cartesian coordinates {r., k = 1.., o"T}. 17.34 In this repre­
sentation, the dynamical treatment can be simplified 
because the kinetic-energy matrix is given in the Carte­
sian system of coordinates as a Simple function of atom­
ic masses. The extra 6 degrees of freedom are the in­
dependent components of the lattice vectors {~, 
p= 1. ., 6}. The sets of {rk } and {~} form a (30"7+ 6) di­
mensional vector which will be denoted {p}. 

We now define the procedure of calculating the crystal 
unit cell parameters, lattice frequencies, crystal cohe­
sive energy and atomic positions within the unit cell as 
a function of volume, as well as the method of calculat­
ing the crystal pressure and Griineizen coefficients. 

An initial crystal configuration is generated by assum­
ing a set of unit cell parameters (a, b, c and a, (3, y) and 
the positions of the atoms in one reference molecule. 
The other moleCules in the central unit cell are gener­
ated by applying factor group operations to the first 
molecule. The whole crystal is then generated by trans­
lations of the central unit cell. 

Since the interaction potential U( {r •. t .,}) is usually 
anharmonic, the dynamical force constants matrix de­
pends on the configuration of the atoms in the solid. For 
any given external hydrostatic pressure, the dynamics 
should be computed at the equilibrium positions of all 
atoms and unit cell parameters. At T= 0° this reduces 
to finding the minimum of the crystal internal energy 

(5) 

as a function of the 3aT + 6 degrees of freedom. Here 
(UlDtra + Uhter) [Eqs. (1)-(4)1 is the static internal energy 
Usb!, while Udyn is the excess zero-point energy (ZPE) 
in the solid, relative to the free molecule. It is given 
by the sum of uJ;!er and uJ;!ra where (for a linear mole­
cule) 

5 f" u lnter = - G(w)w dw 
d", 2 0 ' 

(6) 

J. Chern. Phys., Vol. 62, No. B, 15 April 1975 
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where G(w) is the lattice frequency distribution, nor­
malized to unity, and 

U~~~ra = ~ [1 ~ g(w)w dw - ~ w?] • (7) 

Here g(w) is the distribution function of intramolecular 
modes and w? is the free molecule vibrational frequen­
cies of mode i. 

The minimization procedure is performed in several 
steps: 

(1) We first require that the net force on each atom 
will vanish and that the condition of uniform stress on 
the unit cell at static equilibrium is established at any 
given volume V. The first condition is achieved by solv­
ing the set of equations: 

(8) 

The second condition implies the diagonalization of the 
stress matrix 

(9) 

at a given volume. The capital letter of the stress com­
ponent indicates the direction of the force and the sub­
script indicates the normal to the plane to which this 
force is applied. The corresponding forces are related 
to derivatives of the static interaction energy U stat (V) 
with respect to the unit cell degrees of freedom and are 
given by V Rp Ustat . 

To solve these equations, we employ the first deriva­
tive minimization steepest-descent method and the sec­
ond derivative Newton-Raphson method. 35 The required 
derivatives are analytically computed from the chosen 
form of the interaction potentials. The summation in 
Eq. (2) is extended to 20 shells of interacting molecules. 
It should be stressed that we do not assume orthogonality 
(a = (3 = r = 90°) of the unit cell axis or equality of some 
unit cell axes (e. g., a= b= cor a= b). The iteration pro­
cedure is terminated when the difference between two 
derivatives in successive iterations does not exceed a 
required tolerance (usually 10-15 kcal/A.). The mini­
mization of the stress components is performed for a 
range of unit cell volumes. At the termination of the 
minimization process of Eqs. (8) and (9) we calculate: 

(i) The set of atomic coordinates for a given unit cell 
volume at static equilibrium {r:q}. 

(ii) The static crystal interaction energy at static 
equilibrium positions of all atoms and unit cell varia­
bles for volume V, U:.t(V). 

(iii) The static pressure Pat at (V) at a given volume 
(from the numerical derivatives of the static energy). 

(2) After the configuration of the minimum static en­
ergy has been reached for a given volume, the lattice 
frequencies WI (q) are computed for this configuration 
throughout a finite mesh of wavevector points in the 
Brillouin zone (BZ), by solving the secular equation 

IF(q) - 41T 2W 2(q)MI = 0 . (10) 

Here F(q) is the 3aTx 3aT dynamical matrix expressed 
by the second derivatives of U::at (V) with respect to the 
dynamic variables {r~} and evaluated at their equilibrium 
values {r:

q
}. M is a diagonal matrix whose elements are 

the atomic masses of the atoms in the unit cell (in 
atomic units). From the dynamical calculation as a 
function of volume, we compute: 

(i) The ZPE as a function of volume UZPE(V) = U~~·r 
+ U~;~ra from Eqs. (6) and (7). 

(ii) The dynamical contribution to the pressure Pdrn(V) 
by numerically differentiating the zero-point energy 
with respect to volume. 

Combining these results with the results of the previous 
step, we obtain both the calculated total crystal energy 
Utot (V) according to Eq. (5) and the calculated total pres­
sure Ptot = Pstat(V) + PdyD(V) for a series of volumes cor­
responding to a series of different crystal configura­
tions. The calculated frequencies at various volumes 
in the q = 0 states are used to compute numerically the 
optical Gruneizen coefficients 

(11) 

for the 5a - 3 optical lattice modes. Sufficiently small 
increments in V are considered and the standard error 
introduced by deviations from linearity of r j at the vol­
ume range conSidered, is smaller than 0.05. 

(3) We next turn our attention to the calculation of 
lattice parameters, atomic position coordinates, and 
lattice frequenCies, which will be compared with experi­
ment. For phases that are stable at zero pressure, we 
search for the volume for which our calculated total 
pressure satisfies: Ptot(V) = O. The unit cell volume 
Veq (pt ot = 0) which satisfies this condition is taken to be 
the equilibrium zeropressure volume for this phase. 
The lattice parameters corresponding to this volume 
are computed from: 

V Rp{Ustat + UdyJv=v"q = 0 (12) 

and compared with experiment. 

For phases that are stable only at high pressures we 
require the calculated Ptot (V) to satisfy the equation 

(13) 

where p.XP(V) is the experimental pressure under which 
the desired property was measured (e. g., The unit cell 
parameters of r-N2 were measured under p.XP = 4015 
± 145 atm 27 and the Raman spectrum was observed at 
PUP = 4500 atm 22). This yields V.q(Ptot = p.XP ) and the 
lattice parameters {Rp, p= 1. .. 6} corresponding to this 
volume. The lattice parameters and lattice frequencies 
thus obtained are compared with experimental data. 

The interaction potential employed in the calculation 
must yield the correct crystal class (e. g., a = b = c and 
a = (3= y = 90° for a-N2) within a tolerance of 0.01 A. and 
0.5°. If it does not, the potential is rejected. 

(4) For the unit cell configurations corresponding to 
the zero pressure phase and to the experimental pres­
sure under which the lattice frequenCies of the high pres­
sure phase were measured, we minimize the energy with 

J. Chem. Phys., Vol. 62, No.8, 15 April 1975 
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respect to the atomic position coordinates: 

(14) 

obtaining the set of equilibrium dynamical variables {rk } 

at a given external pressure. At these configurations 
the lattice dynamics [Eq. (10)] of both phases is com­
puted. The resulting frequencies are compared with the 
experimental results. 

From the lattice frequencies evaluated ·at this step we 
also compute the ZPE Ud",(Veq) from Eqs. (6) and (7) 
and the static interaction energy U. tat (Veq). The sum of 
these energies is compared with the cohesive energy 
found experimentally. 

The final atomic positions computed from Eq. (14) are 
compared with those measured crystallographically at 
the corresponding pressure. 

It should be mentioned that at this step we neglected 
the indirect effect of the zero-point energy on the dy­
namical matrix. The latter was calculated from second 
derivatives of the static energy (evaluated at the static 
+ dynamic equilibrium) and not of the total energy. This 
neglect of self-consistent phonon treatment;36-38 does not 
cause serious errors in our case since it was verified 
that: 

a2UZPE(VeQ) « a2 Ustat(Veq) 
ark ark' ark ark' 

(15) 

On the other hand, the first derivatives of UZPE with re­
spect to the unit cell vectors aUZPE/aR, are not negli­
gible compared with the corresponding first derivative 
of the static energy aUstat/aRp and therefore it is impor­
tant to include zero-point effects when determining equi­
librium unit cell parameters. The effect of aUZPE/aR, 
on the equilibrium unit cell parameters is composed of 
contributions both from intramolecular and intermolecu­
lar vibrations, the former being of importance only in 
molecular crystals made up of large molecules. 

The zero-point energy has an important direct effect 
on the lattice frequencies since these change very sig­
nificantly (see below) when they are computed at the 
minimum of U.tat (steps 1 and 2) instead of at the mini­
mum of the total energy (step 4). 

Recent computations9
•
8•39 examining the effects intro­

duced by quantum lattice dynamiCS, suggest that the de­
viation of lattice frequencies calculated by classic dy­
namics is within 10%. Deviations from nonadditivity of 
pair forces in an isotropic solid were shown not to ex­
ceed 1%.40 Multipole expansion of anisotropiC potentials 
at large distances41 indicate that three center terms ac­
count for 10% of the corresponding contributions of the 
isotropic potential. Thus nonadditivity errors are ex­
pected not to exceed 1%. Our results are therefore to , , 
be considered within these limits of accuracy. 

In previous computations of lattice dynamiCS and 
structural properties of molecular solids, one or more 
of the following approximations were usually adopted: 

(i) The lattice dynamics were computed at values of 
unit cell parameters which minimize U.tat (step 2)··6.12 
and not utot (step 4). 

(ii) The dynamics were computed without relaxing the 
forces and torques on the molecules [as in step 4, Eq. 
(14)] but rather at fixed pOSitions of the atoms in the unit 
cell (usually the experimental).5 The atomic pOSitions 
employed for the dynamical calculation are thus not con­
sistent with the employed potential function. Since this 
potential is anharmonic, the resulting frequencies could 
be affected by this approximation. 

(iii) The interaction radius (number of neighboring 
shells) used to minimize U. tat (step 1) with respect to 
unit cell parameters, was taken to be relatively small. 12 

The influence of these approximations on the lattice 
frequencies and equilibrium structure, will be examined 
in the following section. 

During the computational work, it was found that the 
computing time could be considerably shortened without 
a significant loss in accuracy, if instead of solving the 
dynamical equation [Eq. (10)] for many points in the BZ 
[for computing UdYII (V)], we solve only for q = O. The 
Einstein model is then adopted for the 5a - 3 optical 
modes [considering each optical branch i as an Einstein 
oscillator with different frequency WI (q = 0) evaluated at 
q = 0], and a Debye model is adopted for the 3 acoustical 
modes, employing an acoustical Debye frequency, equal 
to the lowest optical frequency at q = 0 

1 Sa-3 

UZPE (app)= -2 L: hwl(q=O)+E~·[WI(q=O)], (16) 
a 1.1 

where Wi (q = 0) are the optical frequencies and w, (q = 0) 
is the lowest one. When UZPE was computed according 
to Eqs. (6) and (7) with a gross mesh of 30q points along 
each prinCiple direction, it was found that 

(17) 

did not exceed 5% for any volume examined. This is 
about 1% of the total energy and thus within the accuracy 
limit of our theoretical approach. Consequently, the 
calculations of Sec. TIl examining previous approxima­
tions are performed using the above-mentioned approxi­
mation, while in Secs. IV and V the ZPE was calculated 
according to Eqs. (6) and (7). 

The interaction pair potential chosen in this work is 
of the form: 

( 0.1 1 ( a )12 ( a )51 
Vlnter Dst.s't,)=E DO"" - DO., , 

st ," t stra't' 
(18) 

:vhere a and E are two adjustable parameters and D~; ~'t' 
IS the nonbonded interatomic distance. It should be 
mentioned that the choice of power 12 to express the re­
pulsive part of the potential has no theoretical justifica­
tion but is customary in these studies. As a matter of 
fact, other powers from 7 to 14 are being considered 
with the aim of elUCidating their effects on pressure-de­
pendent properties (GrUneizen coeffiCients, P- V data, 
a-to-y phase transition, etc.). 

For the intramolecular part of the potential we chose 
either a simple harmonic potential: 

(19) 

where K and bo are parameters determining the funda-
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mental frequency and molecular bond length of the iso­
lated molecule, or a more complex form taken from 
R-K-R fittings of the full vibrational frequencies of N2

42 : 

'Vlntra =D,{[l- (bo/b)](e-8(bP-b~)}2 , (20) 

where D, is the dissociation energy and (3 and p are ad­
justed parameters. 

III. CRITICAL EXAMINATION OF APPROXIMATIONS 

One of the purposes of calculating static and dynamical 
properties of molecular crystals is to arrive at a set of 
potential functions and parameters which adequately re­
produce the experimental data and which can thus be 
used to predict other properties. Some of the approxi­
mations that have usually been adopted in these calcula­
tions (see last section) can lead to the choice of a pa­
rametric potential which yields a poor fit to experimen­
tal results if the above mentioned approximations are 
not made. Accepting various of the previously suggested 
atom-atom potentials for a-N2 we investigate in this 
section the effect introduced by each approximation. 

A. Zero-point effects 

The calculation of Jacobi and Schneppl2 employing 
their 12-6 potential (JS-I, see Table I) has been repeated 
for a series of different unit cell volumes. The conse­
quences of neglecting zero-point effects in their calcula­
tion on lattice equilibrium, conformation, and frequen­
cies were investigated by performing the calculations 
both at the minimum of the static energy (steps 1-2, in 
Sec. II) and the minimum of the total energy (steps 1-4). 
Figure 1 shows the dependence of both the static and the 
total energy at the equilibrium position of the atoms as 
a function of volume per molecule. It can be seen that 
due to the anharmonic character of the intermolecular 
interaction the effect of the zero-point energy is to shift 
the equilibrium volume to considerably higher values. 
The calculated sublimation energy, unit cell parameters 
and lattice mode frequencies at the minimum of the total 
energy, are given in Table II, where they are compared 
to the experimental results as well as to the calculated 
properties at the static minimum. The sublimation en­
ergy in the "static energy minimum" column in Table II 
was computed by adding the static and the dynamic con­
tributions at the static equilibrium unit cell volume in­
stead of the minimum of total energy (column 4). It is 

TABLE 1. Parameters for the 12-6 potential employed in dif-
ferent studies. 

Authors lOa (kcal/mole) utA) bo(A) 

Jacobi and Schnepp12 0.264 3.406 1. 030 
(JS-I) 
Jacobi and Schnepp12 0.377 3.319 1.038 
(JS-II) 
Kuan, Warshel, and Schnepp 6 0.295 3.346 1. 098 
(KWS) 
Donkersloot and Walmsley5 0.265 3.385 1. 098 
(DW) 
Present work 0.310 3.300 1.098 

~ and u are the parameters defined in Eq. (18). bo is the ef­
fective bond length of the N2 molecule used in the calculations. 

-0.2 

-0.4 

-0.6 

-0.2 
.!!! 
g 
"- -1.0 
0 
u 
-"" 
:::J -1.2 

-14 
Utot 

-1.6 Ustat 

-1.8 
30 35 40 45 50 55 60 

FIG. 1. Total energy Utot [Eq. (5») and static energy Ustat 
[Eqs. (2)-(4)) of a-N2 as calculated with the potential of Jacobi 
and Schnepp12 (JS-I, Table I). The minimum in the correspond­
ing curves is indicated by arrows. 

evident from the table that the agreement with experi­
ment becomes considerably worse when the calculation 
is carried out at the dynamical minimum yielded by the 
employed potential. 

A similar check was performed on the potential pro­
posed by Kuan, Warshel, and Schnepp6 (KWS in Table I) 
and the results indicate a similar trend. The equilib­
rium unit cell parameters are increased from 5. 62 to 
5.86 A. This has a marked influence on the calculated 
lattice frequencies, lowering them by an average of 
14 cm- l • 

An increase in the calculated unit cell dimensions in­
troduced by the vibrational energy through zero-point ef­
fects has also been noted in the study of paraffins!7 and 
the rare gas solids. 5

•
43 In the latter, however, because 

of the lack of lib rational contributions and the smaller 
number of translational branches, this increase is 
smaller. 

TABLE II. Results obtained with the Jacobi and Schnepp poten­
tial (JS-I in Table I) at the minimum of the static energy (col­
umn 2) or of the total energy (column 4), compared with exper­
imental results. 

Property 

Sublimation energy 
(kcal/ mole) 
a .. (ft .. ) 
Lattice frequencies (cm-'): 
.Au 

Eu 
T u (Q2) 

Tu(Q,) 

E, 
T,(Q2) 
T,(Q,) 

aReference 29, 30. 
bReference 26. 
"Reference 21, 11. 

Static energy 
minimum 

1. 524 

5.664 

42.26 
54.61 
48.29 
74. OS 
35.4S 
49.87 
39.86 

Total energy 
Experimental minimum 

1.6551. 1. 3517 

5. 644b 5.848 

Inactive 34.04 
Inactive 39.98 
4S. S' :35.45 
70.0' 53.12 
:31.5" 26.53 
60. o· 36.61 
:36. o· 29.61 

~eference 20. 
"Reference 19. 
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It should be mentioned that in solids composed of 
large molecules, the zero-point energy is a relatively 
small fraction of the total interaction energy and there­
fore its exact calculation is not essential to the evalua­
tion of the sublimation energy. However, even in this 
case the ZPE seems to be important in the determina­
tion of the equilibrium unit cell parameters. Its effect 
should be considered if equilibrium lattice dynamics 
calculations are to be performed at molar volumes which 
are consistent with the employed potential. 

B. Residual forces and torques 

In crystals with more than one atom in the unit cell, 
it is not sufficient to arrive at the minimum of the crys­
tal energy with respect to the unit cell parameters [Eq. 
(9)]; also, forces and torques on the molecules should 
be relaxed [Eqs. (8) and (14)]. This implies that it is 
necessary to minimize the energy with respect to trans­
lations and rotations of the molecules in the unit cell, or 
equivalently in our computational scheme, to minimize 
the crystal energy with respect to the 3UT Cartesian co­
ordinates of all the atoms in the unit cell. Even though 
the relaxation of forces and torques is usually accom­
plished by extremely small changes in the pOSitions of 
the molecules, the effects on the dynamical matrix, and 
thus on the calculated frequencies, are of major impor­
tance when the potential is strongly anharmonic. To 
demonstrate this point we repeated the calculation of 
Donkersloot and Walmsley5 on the normal modes of 0:-N2 

at zero pressure, with their 12-6 atom-atom potential 
(DW, see Table I), under different "stress" conditions 
on the molecules. The results are shown in Table m. 
In column 2, we present the results obtained after com­
pletely minimizing the lattice sum as a function of the 
six unit cell parameters and the 3UT pOSitional coordi­
nates (step 1 in Sec. II). Column 3 presents the results 
obtained when only the unit cell parameters were used as 
minimization variables [Eq. (9)], as performed with our 
program, and column 4 presents the authors' results. 

Both types of calculations have been carried out with our 
12-6 potential also (see Sec. IV) and the results are 
presented in Table ill, columns 6, 7 for a-N2 and in 
Table IV for two different unit cell volumes of y-N2• 

From Tables III and IV it can be seen that relaxation 
of forces and torques on the molecules causes a slight 
shift in the translational mode frequencies and a much 
stronger decrease in the lib rational modes. At larger 
unit cell volumes the effect is less pronounced since the 
residual forces and torques are smaller. This implies 
that in calculating volume dependent dynamical proper­
ties and internal energy as a function of volume for dif­
ferent phases, an appropriate energy minimization must 
be performed. 

The relaxation of forces and torques on the molecules 
is not as important in the study of lattice dynamiCS of 
metals and heavy ionic solids since they do not exhibit 
lib rational modes and their translational frequencies 
should be affected only Slightly due to the heavy masses 
of the atoms involved. 

C; Interaction radius 

It has been shown previously44 that the calculated lat­
tice frequencies of benzene are already at their conver­
gence limit if the lattice sums are extended up to an in­
teratomic distance of 5 A. This behavior characteristic 
of the relatively short range interaction of Van der Waals 
molecular solids, is also obtained for a-N2 (Fig. 2). In 
cases where long range interactions may be important 
(as in molecular ions or in noncentrosymmetric mole­
cules) more sophisticated methods for performing the 
lattice sum may be required. 44b The frequencies were 
calculated as a function of the radius of interaction with 
the Jacobi and Schnepp "one-shell" potential, 12 (JS-II, 
see Table I), which was selected by these authors to 
yield a good fit to experimental data through a dynamical 
calculation, including the interactions up to only one mo­
lecular shell. The calculations presented in Fig. 2 

TABLE m. Comparison of O! -Nz lattice frequencies at q = 0 as calculated with complete Cartesian coordinates 
minimization [Eq. (8») (column 2) and without relaxing forces and torques on the molecules in the unit cell 
(column 3). The results of Oonkersloot and Walmsley5 (column 4) and experimental results (reference for ex-

. perimental data in Table II) are also given. The calculations are performed with the OW (Table I) potential 
at unit cell constants which yield a minimum to the static energy. The second part of the table shows similar 
results obtained with the 12-6 potential of the present work at unit cell parameters dimensions at which the 
total crystal energy is at the minimum. 

Translations 
All 
E" 
T .. {Qz) 
T,,{Ql) 

Librations 
E, 
T,{Qz) 
T,{Ql) 

OW potential5 

'" =5. 66 A) 

Complete 
minimization 
(this work) 

45.9 
54.5 
49.2 
73.3 

35.9 
49.3 
40.4 

No relaxation 
of forces and 
torques 
(this work) 

48.9 
57.3 
51.4 
77.1 

49.0 
60.8 
53.5 

Ref. 5 

49 
58 
52 
77 

49 
61 
53 

Experimental 

Inactive 
Inactive 
48.8 
70.0 

31. 5 
60.0 
36.0 

12-6 potential of 
this work '" = 5. 63 A) 

No relaxation 
Complete of forces and 
minimization torques 

43.7 43.7 
51. 8 51.8 
47.0 46.7 
69.5 69.0 

34.5 43.7 
47.5 54.2 
38.5 47.2 
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TABLE IV. Comparison between 'Y-N2 calculated lattice frequencies with and without relaxation 
of forces and torques on the molecules for two molar volumes employing the 12-6 potential of 
this work. Experimental data for V= 39. 4 iV/molecule from Medina and Daniels. 22 

V=39.4 A3/mot V=43.8 A/mot 
No relaxation Exptl. No relaxation 

Frequency of forces and Complete V=39.4 of forces and Complete 
(cm-I ) torques minimization A3/mol. torques minimization 

Translations 
Bill 110.4 110.4 Inactive 78.3 
Ell 66.1 66.1 47.8 

Librations 

AZI 102.4 91.0 Inactive 72.8 
BII 114.4 107.3 103.6 81. 2 
E, 72.6 55.4 58.4 51.9 

were performed at a fixed value of the unit cell param­
eters (a = b = c = 5. 66 A, Q = (3 = 'Y = 90°) corresponding to 
the structure found experimentally at atmospheric pres­
sure. In the same figure, we present the derivative 
with respect to the unit cell parameter aUstat/aa evalu­
ated at these unit cell dimensions, as a function of the 
number of shells included in the calculation of Ustat 
[Eqs. (2)-(4)1. It can be seen that although the trunca­
tion of the lattice sum at 3-4 shells introduces only 
small errors in the computed frequencies, the deviation 
of the unit cell from static equilibrium (given by the 
value of aUstat/aa) depends strongly on the interaction 
radius. This implies that the calculated unit cell pa­
rameter, a, corresponding to the static equilibrium at 
zero pressure (where aUstat/aa = 0) depends appreciably 
on the interaction radius employed. It is also evident 
from Fig. 2 that the JS-II potential predicts an increas­
ing instability (I aU.tat faa I increasing) of the Q struc­
ture in its experimental unit cell dimensions when the 
number of interacting shells is increased. The limiting 
value of austat/aa obtained when interactions of up to 40 
shells are included, reveals the existence of a force 
that tends to increase the unit cell parameter a. (A fur­
ther increase would result from the imposition of the 
condition of equilibrium for the total, rather than only 
static, energy). This variation in the computed value 
of aOQ as a function of interaction radius should also be 
manifested in the lattice frequencies. 

To demonstrate this behavior we solved the dynamical 
problem with potential JS-II for different interaction 
radii, evaluating, each time, the dynamical matrix at 
the volume corresponding to the absolute static minimum 
(aUstat faa < 10-4 kcal/A) for this interaction range. The 
results of aeq, Ustat and the calculated frequencies are 
presented in Fig. 3. It can be seen that only for a 
relatively large interaction radius (15-20 shells), the 
equilibrium unit cell parameters level off and so only 
then the lattice frequencies and lattice energy level off. 
Comparing Figs. 2 and 3, it can be seen that the rela­
tive order of the T .. and Til lattice frequencies is changed 
depending upon whether calculations are done at equilib­
rium (Fig. 3) or nonequilibrium (Fig. 2) for the same 
interaction radius. Moreover, the relative order of the 
lattice modes depends on the interaction radius even if 
the calculations are done at equilibrium (see crossing of 
Tg and Til modes in Fig. 3). The effect of the interac-

78.3 
47.8 

65.1 
74.4 
40.5 

tion radius on the equilibrium static energy, Ustat , is 
pronounced, and only at a large interaction radius (- 20 
shells) U.tat reaches convergence. This factor must be 
considered when investigating volume dependence of 
total crystal energies of various phases in a search for 
possible phase transitions. 45,46 

VI. RESULTS 

Taking into account the considerations discussed in 
the last section, we searched for the 12-6 atom-atom 
potential that would best fit the available experimental 
data on Q-N2, cited in Sec. I. This includes the lattice 
parameters, cohesive energy, ir and Raman lattice fre-

c 
04 

0<1 
"- 06 
"0 
u 

aUstot/aa .>< 

O.S 

.!l> aT ~u",,'l ~ 
"-

" u 
-'" 

9.3 

SO 0 Tu(Qd -.. 60 TU(Q2) E 
.3 ~ Tg(Qd 
>- Tg(Q2) 0 40 ...-
c Eg OJ 
::l 
r:r 
CI) 

~ 20 

0 10 20 ~ 40 50 

No. of Shells 

FIG. 2. The dependence of lattice mode frequencies (a), static 
energy Ustat (b), the derivative of static energy with respect to 
unit cell parameter aU.tatlaa (c), on the number of employed 
interacting molecular shells. The potential used for these cal­
culations was the potential JS-II (Table I) of Jacobi and Schnepp12 
used by these authors to compute lattice properties in a I-shell 
approximation. The values are computed at constant unit cell 
dimensions a =b =c = 5.66 A as was done by these authors in 
their calculation. 

J. Chern. Phys., Vol. 62, No.8, 15 April 1975 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.138.65.149 On: Tue, 14 Jul 2015 17:58:23



A. Zunger and E. Huler: Q- and -y-N 2 
3017 

<> ., 

5.54 

5.50 

8.5 

g 8.9 

-0 
~ 9.3 

c 

-----Oeq 

b 

Ustot 

{l0 r----,--,.--,------,---,-, 
a ro /-------- Tu(Qil 

~ 70 
<Y 

~ 
IJ... 50~ ____ _ 

~ 

10 20 40 50 

No. of shells 

FIG. 3. Dependence of lattice mode frequencies (a), static en­
ergy U. tat (b), and equilibrium lattice constant (c), on the num­
ber of employed interacting molecular shells. The calculation 
is carried out with potential JS-II (Table I) under conditions of 
static equilibrium (8u.tat /8p = 0) for the given number of inter­
acting shells. 

quencies, atomic positions in the unit cell, the intramo­
lecular modes, and also the N-N stretching frequency of 
the isolated (gas phase) N2 molecule. 

Parameters were changed from run to run by a least 
squares iteration scheme. Lattice sums were extended 
to 20 molecular shells thus assuring the stability of the 
calculated frequency within O. 1 cm-1 and the calculated 
energies within O. 02 kcal/mole. Each calculation was 
performed at the lattice equilibrium configuration, keep­
ing aUtot/aRp < 10-6 kcal/A and aUtot/ark < 10-8 kcal/A. 
This usually required 5-10 steepest-descent iterations 
and 2-3 Newton-Raphson iterations. The zero-point en­
ergy was obtained by sampling 2160 points in the BZ. 
The calculations for both Q and 'Y phases were extended 
over the volume range of 34-65 A 3/molecule. At the 
convergence of the least squares procedure, the follow­
ing parameters were obtained for the interatomic poten­
tial [Eq. (18)]: 

€ = 0.310 kcal/mole , 
(21) 

U= 3. 300 A, 
and 

K= 3244.18 kcal/A2 

for the harmonic intramolecular potential [Eq. (19)]. 
The molecular bond length bo was not treated as a pa­
rameter but set at the experimental N-N bond length of 
1. 098 A. 47 The anharmonic form of V. suggested by 
Levine,42 Eq. (20), was also used without changing its 
parameters. 

A. a-N2 

The calculated unit cell parameters, sublimation en­
ergy, and q = 0 lattice mode frequencies of Q-N2 are 
presented in Table V. The shift in the lattice constant 
introduced by zero-point effects is O. 132 A for our po­
tential. 

The experimental heat of sublimation was computed 
by Kelly30 from the experimental data of Giauque and 
Clayton29 which includes the heat capacity of Q-N2, tl-Nz, 
liquid Nz, and gaseous N2 as a function of temperature, 
the Q! to tl transition enthalpy, the tl-N2 fusion enthalpy, 
and the liquid-gas evaporization enthalpy. Corrections 
for deviations from ideal gas behavior were introduced 
by a simple equation of state. We estimate the experi­
mental errors to total approximately 100 cal/mole. 

The calculated lattice mode frequencies agree well 
with experimental Raman and ir results, the largest de­
viation being from the high T,.(Q1) mode. A Similar dis­
crepancy for this mode, was previously obtained in the 
calculation of Kuan et al., 6 Jacobi and Schnepp,12 and 
Anderson et al. 19 Kuan et al. and Jacobi and Schnepp 
introduced a third adjustable parameter (the effective 
bond length, bo) into their potential to overcome this dis­
crepancy and Anderson et al. treated the molecular 
quadrupole moment as an adjustable parameter for the 
same purpose. 

The results for the volume dependence of the pressure 
at T = 0 OK are shown in Fig. 4 and compared with the 

TABLE V. Properties of Pa31l!-N2 calculated with the 12-6 
potential of the present work as compared with experimental 
data. Calculation carried out through steps 1-4 as indicated 
in Sec. n. 

Property 

Unit cell parameters 
a, b, c (A) 
Unit cell angles 
o!, 8, 'Y (deg.) 
Sublimation energy 
(kcal/ mole) 

Translational modes (cm-!)" 
Au 
Eu 
Tu(Q!) 
T u(Q2) 

Librational modes (cm'!) 
E,. 
T,.(Q!) 
T,.(Q2) 

aReference 26. 
baeference 29, 30. 

Calculated Experimental 

a = b = c = 5. 63 5. 644a 

1.582 1.655b 

43.7 Inactive 
51.8 Inactive 
69.5 70.0 
47.0 48.8 

34.5 31.5 
47.5 60.0 
38.5 36.0 

"For references on the lattice 
vibrations see Table n. 
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FIG. 4. Calculated and ex­
perimental28 isotherm for O!­

N2• Experimental. 
......... Calculated. 

> 24 

23L----L--~----~--~ 

o 4 

4. 2 oK isotherm measured by Swenson. 28 Thermal con­
tributions to the pressure at this temperature were es­
timated to be smaller than the experimental error and 
were neglected in the calculation. 

The volume dependence of the calculated a-phase lat­
tice mode frequencies is shown in Fig. 5 for a large 
volume range. From these calculations the Gruneizen 
coefficients for the q = 0 modes were computed (Table 

E 
u 

3 

2344 
Tg 

2343 Ag 

2342 

2341 

2340 

2339 Tg __ _ 

----Ag _____ ------__ 
2338 --------

100 

80 

60 

40 

20 

5.40 5.60 5.00 
o 

a(A) 

6.00 

VI) in the volume range of 40-55 A3/molecule. At this 
range the graph of dlnw l vs dlnV was practically linear 
as can be seen from the small standard deviation to this 
fit. Around the volume corresponding to the solid a-N2 
to the liquid transition (V = 57.5 A 3 /mole) the frequency­
volume curves of different modes began to cross and 
this region was excluded from the range where GrUneizen 
coefficients were computed. The calculated GrUneizen 
coefficients are compared with the experimental data of 
Medina and Daniels24 and Thiery et al. 25 (Table VI). 
There is probably a large uncertainty in the experimen­
tal results due to the use of P- V data 25 to establish the 
"experimental" volume and due to errors in the mea­
sured pressure (± 150 atms). However discrepancies 
between the experimental works24•25 are smaller than 
those between our calculated values and experimental 
values. 

Isotopic effects on lattice parameters and lattice mode 
frequencies were investigated by repeating the minimiza­
tion procedure for the total energy of the a phase of 15N. 
The lattice parameters a, b, c for this phase were found 
to be 0.0217 A smaller than the corresponding param­
eters in the uN a phase. The sublimation energy of the 

a 

b 

6.20 

FIG. 5. ir and Raman active 
frequencies of 0!-N2 as a func­
tion of unit cell dimension cal­
culated with the 12-6 potential 
of the present work. (a) In­
tramolecular frequencies cal­
culated with - anharmonic 
intramolecular potential [Eq. 
(20») with parameters of Le-
vine. 42. ___ Harmonic intra-
molecular potential [Eq. (19»). 
(b) Lattice modes. 
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FIG. 6. Crystal energy of the P213 structure as a function of 
the displacement Ll. of the centers of the molecules along the 
body diagonals. Ll.= 0 corresponds to the Pa3 structure. 
a=5.35A. ----a=5.63A. 

15N 0: phase was found to be similar to the uN sublima­
tion energy (1.598 kcal/mole for 15N compared with 
1. 582 kcal/mole for UN). 

X_ ray48.49 and electron diffraction5o •51 studies on poly­
crystals have indicated that 0:-N2 crystallizes in a Pa3 
centrosymmetric structure with four molecules per unit 
cell. From single crystal x-ray measurements52 and 
piezoelectric resonance experiments53 it has been con­
cluded that the correct structure is the non-centrosym­
metric P213, in which the center of each molecule is 
displaced along the cube diagonal by O. 1 to 0.2 A. The 
absence of uv absorptions violating the centrosymmetric 
selection rules, 54 shows that the P213 structure could 
not be detected spectroscopically. On the other hand, 
the coincidence of ir and Raman spectra,21b suggests the 
P213 structure. 

The potential function derived in this work was also 
used to test the stability of the P213 structure. We first 
calculated the static energy per molecule as a function 
of the displacement .1 of the molecules along the body 
diagonals (Fig. 6) (.1 = 0 corresponds to the Pa3 struc­
ture and .1 = O. 17 to the P213 structure). The centrosym­
metric Pa3structure is seen to be more stable. The 

T ABLE VI. Calculated and experimental GrUneizen coefficients 
for a and 'Y nitrogen. Mean standard deviation for the fit to 
calculated a-N2 coefficients: 0.05; for'Y-N2: 0.04. 

Mode 

A. 
E. 
T.(Q,) 
T.(Q,) 
E, 
T,(Q,) 
T,(Q2) 

~-N2 

Calculated 

3.076 
3.116 
3.310 
3.114 
2.918 
3.158 
3.000 

Experimental 

2.09"-2.13b 

1. 70"-2.12b 
1. 74" -1. 90b 

AReference 24 measured at 8 oK. 

')'-N2 
Mode Calculated Experimental 

A. 3.268 

E. 3.072 

BII :3.184 2.22b 

A2, 3.160 

E, 2.970 2.316b 

bReference 25 measured 4.2 oK. The corresponding volume 
used to calculate the GrUneizen coefficients were taken from 
the 20 oK isotherm of Swenson. 28 

ratio of static energies between P213 and Pa3 structures 
at equilibrium unit cell dimensions (a = 5.63 A) is u'ff;V 

. 1 

u~t::= 0.964. 

At smaller unit cell volumes (a= 5. 53 A), the P213 
structure is more stable than the larger volume P213 
structure for .1 ~ 0.17 A but is still metastable relative 
to the Pa3 structure. 

Since the static energy difference between the phases 
is small, zero-point effects on the relative stability 
have to be examined. It is not possible to perform com­
plete relaxation of forces and torques on the molecules 
in the P213 structure since its static energy is unstable 
relative to the Pa3 static energy and thus only approxi­
mate calculation of the lattice dynamiCS can be per­
formed (see Sec. lIIB). A reference calculation to es­
timate the error in zero-point energy introduced by do­
ing the lattice dynamiCS calculation without relaxation 
of forces and torques was performed on the stable Pa3 
structure. This indicated that the neglect of relaxation 
effects causes an overestimation of the zero-point en­
ergy by less than 8% or less than 2% of the total energy. 
A non relaxed lattice dynamics calculation on the P213 
and Pa3 structure revealed that the former has a zero­
point energy larger by - 30% than the corresponding one 
for the Pa3 structure at equilibrium. Zero-point effects 
thus further increase the relative stability of the Pa3 
structure (U~oi 3/U~o:3= o. 9426). 

1 

Since the neglect of the relaxation of forces and 
torques causes only a small change in the translational 
modes (see Table III), it is possible to compare these 
modes in the two structures with reasonable accuracy. 
Table VII shows the frequency of these modes for both 
P213 and Pa3 structures. It is evident that "no relaxa­
tion" errors do not exceed 0.015% in the Pa3 structure. 
The three translational modes 2Tu +Au of the Pa3 struc­
ture are transformed to 2T+A modes in the P213 struc­
ture. At q = 0, these are almost pure translation at the 
latter structure and are all shifted to larger frequencies 
with respect to their counterparts in the Pa3 structure. 
Au mode undergoes a very small shift, possibly due to 
the fact that the movement of the molecules in this trans­
lational mode is along the body diagonals. This is the 
direction in which they would move to undergo the Pa3 to 
P213 transition. Therefore, in the Pa3 to P213 transi­
tion the Au normal coordinate can be considered as a 
kind of "reaction coordinate," and hence the least af­
fected by it. Both Tu modes have a larger shift, the low 
frequency mode exhibiting the highest shift due to its 
higher vibrational amplitude. 

The intramolecular frequencies of the a-phase (T~ 

TABLE VII. Translational frequencies for Pa3 and P213 struc­
tures for a = 5. 63 A. 

Pa3 Pa3 P213 Frequency 
Mode relaxed unrelaxed unrelaxed shift 

Au 43.7 43.7 44.5 0.8 

T,,(Ql) 69.5 69.0 74.2 5.2 

T,,(Q2) 47.0 47.7 58.1 10.4 
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and A,. modes) were computed using both an harmonic 
intramolecular potential [Eq. (19)] and the experimen­
tally adjusted42 anharmonic form [Eq. (20)]. The vol­
ume dependence of the intramolecular modes is shown in 
Fig. 5. At large unit cell volume the T,.-A,. splitting 
disappears and both modes collapse into a fourfold de­
generate mode having the frequency of the isolated N2 
molecule. The Davydov splitting of the q = 0 internal 
modes is increasing from zero at V~ 60 A 3 /mole to O. 6 
cm-1 at V= 40 A 3 /molecule. Experimental evidence19

,23 

indicate a splitting of - 1 cm- 1 at equilibrium volume un­
der atmospheric pressure. The anharmonic potential 
exhibits somewhat smaller splitting than the correspond­
ing results for the harmonic potential. 

The q = 0 GrUneizen coefficients of the internal modes 
are very low as expected: for the harmonic potential, 
only field induced anharmonicity causes volume depen­
dence in the frequencies (YT = 2. 015 X 10-3, Y A = 1. 07 ,. ,. 
x 10-3) while for the anharmonic intramolecular potential, 
both field and internal anharmonicity contribute to the 
GrUneizen coefficients (YT = 1. 18 X 10-2, Y A = 1. 06 x 10-2). 
The internal anharmonicitY is larger than {he field an­
harmonicity, the latter contributing only 10%-18% to the 
total GrUneizen coefficient. 

Mixing between internal and lattice modes is negligible 
in solid nitrogen due to the very strong intramolecular 
bond in N=N molecule resulting in a high stretching fre­
quency. In other molecular crystals having "softer" 
bonds, this mixing could be of importance. 44 The weak­
ness of the intermolecular interactions relative to the 
intramolecular ones also causes a very small dispersion 
in the intramolecular modes (less than 0.2 cm-1 over 
the entire Brillouin zone). 

B. 'Y-N2 

The properties of the Y phase of N2 were investigated 
experimentally only to a limited extent. The unit cell 

V=39 A7mole 

TABLE VIII. Experimental and calculated results for Y-N2 
employing the 12-6 potential of this work. 

Property Experimental Calculated 

Unit cell dimensions (A) a = 3. 9571l a = 3. 940 
c=5.l09 c=5.080 

Unit cell angles (deg.) ()I={3=y=900 1l 
()I =(3 '=y =90 0 

Sublimation energy 1. 282 
(kcal/ mole) 

Translational modes (em-I) 
B lu Inactive 110.4 

Eu 66.1 

Librational modes (em-I) 

A21 Inactive 91. 0 

BII 103.6b 107. :l 
E, 58.4b 55.4 

Internal modes (em-I) 

All 2331b 2331. 35 

B21 2330.80 

aReference 27. 
bReference 22, T=8°K, V=39.4 A3/mol. 

parameters were measured by Schuch and Mills27 and 
recently the Raman spectrum of this high pressure phase 
was measured by Medina and Daniels22 and Thiery et 
al. 25 Our potential, chosen to fit experimental data of 
Q:-N2 was applied without further elaboration to calcu­
late Y phase properties. Table VITI summarizes the 
experimental and calculated results for y-N2• The unit 
cell parameters were calculated for an external pres­
sure of 4100 atm under which the experimental data 
were obtained. The unit cell axes a and c were inde­
pendently varied to minimize the crystal energy. The 
minimum of the total energy was obtained at c/a= 1. 291 
(compared with the experimental value of 1. 29. 27 Fig­
ure 7 shows the c/a dependence of both static and total 
crystal energy for two selected volumes. The c/a ratio 
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FIG. 7. Dependence of Utot 
and U. tllt of 'Y-N2 on cia ratio, 
as compared with the corre­
sponding values for a-N2 at 
two volumes. -- 'Y-N2• ---­
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FIG. 8. The dependence of 'Y-N2 lattice modes on cia ratio for 
two volumes: (a) V=37.5 A/molecule, (b) V=39.0A3/molecule. 
Calculated with the 12-6 potential of the present work. 

for which the energy is a minimum is negligibly affected 
by zero-point effects, and is practically independent of 
the molar volume. The lattice mode frequencies were 
found to depend strongly on the cia ratio even at con­
stant volume. Figure 8 describes the 'Y-phase lattice 
modes as a function of cia ratio, for two selected vol­
umes. 

It is plausible that the potential yields the correct cia 
value and reproduces well the experimental Raman fre­
quencies of the 'Y phase. 

The calculated lattice constants at external pressure 
of 4100 atm, agree well with the experimental values. 

The volume dependence of the calculated 'Y-N2 lattice 
modes is shown in Fig. 9(a) and the relevant Griineizen 
coefficients are summarized in Table VI. The Raman 
spectrum of 'Y-N2 was recently measured at several 
molar volumes. 25 The Griineizen coefficients deduced 
from these measurements are given in Table VI together 
with the calculated parameters. The agreement between 
calculated and experimental results seems to be quite 
poor. 

The Davydov splitting between q = 0 internal modes in 
'Y-N2 is larger than the corresponding splitting in O'-N2. 
Experimentally22 only one Davydov component was ob­
served in the intramolecular Raman spectrum. A 
shoulder of this peak, that could not be separated from 
the main peak, was assigned to the second Davydov com­
ponent, and suggests that the splitting is 1 cm-1 (Table 
VIll). As in the case of O'-N2, the anharmonic potential 
[Eq. (20)] reveals a larger volume dependence of the 
intramolecular modes than the harmonic potential [Eq. 
(19), Fig. 9]. 

Isotopic effects on the 'Y phase are slightly larger than 
on the O! phase due to the greater relative importance of 
zero-point effects in the more compressed 'Y phase. 
Keeping the cia ratio at its 14N minimum energy value, 
the unit cell parameters of the 15N 'Y phase are 0.0161 A 
smaller than the corresponding value for the 14N 'Y phase. 

A search for an O!-to-'Y phase transition with the em­
ployed potential was unsuccessful, as the O! phase was 
calculated to be more stable than the 'Y phase over the 
investigated volume range. Figure 7 demonstrates that 
zero-point energy effects reduce the relative stability 
of the 'Y phase, the 'Y-to-O! energy difference increasing 
upon introducing the ZPE. Variation of cia up to the 
extreme case of a cubic (cia = 1. 0) lattice was performed 
(Fig. 7) but still the O! phase remained more stable than 
the 'Y phase. The same result was obtained by Raich45 

with the 12-6 potential of Kuan et al. 6 employing a sim­
plified form for the zero-point energy contribution. The 
minimum total energy difference between O! and 'Y phases 
is O. 08 kcal/mole at V = 39 A 3/molecule (which is the 
experimental transition volume) and is 6% and 5% of the 
total energy of the 'Y and O! phases, respectively, at this 
volume. 

Finally, a gas phase property was calculated with our 
12-6 potential. Using the general statistical mechanics 
results of Sweet and Steele55 for an atom-atom 12-6 po­
tential, we computed the second virial coefficient of N2 
in the temperature range of 2500 -440 OK. The standard 
error of the fit between calculated and measured31 •32 re­
sults was 8.7 cm3 in this temperature range. The order 
of magnitude of the error should be compared with the 
results obtained by Dows and HSU56 for CO2 for a 12-6 
potential that was calibrated to yield a good fit, for crys­
tal data on C02

57 of 31 cm3 and with the deviation of 2 
cm3.56 obtained with the potential that fits best the sec­
ond vi rial coefficient of CO2 • 

V. CONCLUSIONS 

Zero-point energy effects, the relaxation of forces 
and torques on the molecules, and the calculation of in­
termolecular interactions up to a long intermolecular 
distance seem to be important factors in the calculation 
of equilibrium unit cell dimensiQns and lattice frequen­
cies of crystalline nitrogen. Relatively small changes 
in the unit cell dimensions at which the calculation of 
the lattice dynamics is carried out were shown to lead to 
quite different results for the calculated frequencies. 

The incomplete release of the forces and torques on 
the molecules also influences the results, especially for 
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the lib rational lattice modes; the frequencies are much 
higher than when the calculations are carried out under 
equilibrium conditions. These observations seem to be 
of a general nature and should probably be considered in 
the study of other molecular crystals. 

The representation of the molecular interaction 
through a simple 12-6 atom-atom potential has been 
shown to predict correctly many of the static and dy­
namic properties of 0' and ')I nitrogen. However, this 
potential fails to reveal a phase transition between these 
structures, and also predicts the Pa3 structure to be 
more stable than the P213 whose existence seems to be 
experimentally confirmed. 57b The calculated GrUneizen 
coefficients are quite high with respect to the measured 
quantities (see Table VI). This points to the possibility 
that the 12 power on the repulsive part of the atom-atom 
potentials may be too high. other powers on the repul­
sive potential seem to fit the properties of molecular 
crystals at a given pressure equally well. 58 On the other 

hand, the calculation of static and dynamical properties 
as a function of pressure seems to be quite sensitive to 
the repulsive power. These studies are, therefore, 
especially appropriate to the elucidation of the character 
of the intermolecular interactions in the repulsive range 
of the potential. 59 

Both the inability of the simple potential adopted here 
to reproduce the O'-to-')I transition and the overestima­
tion of the Griineizen coeffiCients, suggest that a more 
sophisticated form for the interaction should be con­
sidered. Perhaps the most promising method is that 
recently adopted for rare-gas interactions. In this 
method, the repulsive segment of the potential taken 
from either theoretical Thomas-Fermi-Dirac, 60.61 or 
Hartree-Fock62 closed shell calculations or from ex­
perimental scattering data,63-65 is joined by a Spline66 .63 

or quintic Hermite67 interpolation, with the attractive 
section calculated from accurate empirical values. 67 
Sufficient experimental data on rare gases is available 
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to construct such potentials. 63-67 However, both the 
reliability of the potential and the values of its free pa­
rameters have been determined only in relation to fluids 
and condensed gases (viscosity, second vi rial coeffi­
cients, vibrational frequencies of dimers, etc.) where 
the important anisotropiC interactions are hardly mani­
fested. It is hoped that the experimental data needed to 
construct such potentials for nitrogen and other simple 
crystals will be made available in the future so that both 
structural and dynamical properties relating various 
solid modifications could be better understood. 
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