Ternary Semiconductors and Ordered Pseudobinary
Alloys: Electronic Structure and Predictions
of New Materials

ALEX ZUNGER
Solar Energy Research Institute, Golden, Colorado 80401, USA

Abstract

Using the tools of self-consistent band theory and ab-initio total energy calculations for solids we analyze
the band gap anomalies in ternary chalcopyrites (e.g., CuGas;) and pseudobinary alloys (e. g., In,Ga, _,P)
and predict hitherto unknown new ternary crystals (e.g., MgGeAs;) as well as the existence of ordered
stable crystals of binary alloys (e.g., GaAlS,, InGaP).

I. Introduction

For a large number of applications in electro-optical semiconductor devices, a par-
ticular value for the semiconductor energy band gap E, is often required. While this
value depends on one particular application at hand (e.g., Infrared detectors, solid state
lasers, or photovoltaic solar cells), existing binary semiconductors, of the IV-IV
variety (e.g., Si, Ge), the III-V class (e.g., GaAs, InP) or the [I-VI class (e.g., CdTe,
HgTe, ZnSe) offer but a limited series of discrete values of E,. The principal method
for obtaining a desired value of E, has traditionally been the use of ternary, rather than
binary semiconductor; the added chemical degree of freedom is then used to obtain a
tailor-made band gap. There are two broad classes of ternary semiconductors used to
achieve a desired value of E,. The first [1] is the group commonly referred to as
“‘pseudobinaries’’, i.e., a mixture of two binary materials with a common element. For
example, an alloy of GaAs and InAs produces the pseudobinary Ga,In, _,As system
where 0 <x=<1 is the mole fraction of GaAs. As grown, these structures are random,
in that the alloyed elements are not ordered crystallographically. The second group is
the true ternary crystals. For example, much like AIP can be thought of as being related
to Si by transfer of a nucleon from one silicon atom to the other (i.e., '#Si+ '4Si—
"?’Al+'°P), so can the ternary system CuGa$S, be thought of as evolving from the
binary system ZnS by a transfer of a nucleon from one Zn to the other (i.e.,
%ZnS +3°ZnS —»Cu?'GaS$,). In this way we can create two groups of true ternary
systems [2], evolving generically from the II-VI and III-V binary groups, respectively.
The first is the ternary chalcopyrites A'B™CY", with A'=Cu,Ag, B™ = Al,Ga,In, and
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CV'=8,Se, and Te. The second is the ternary pnictides A"B"CY with A" =Zn,Cd,Hg,
B"Y = Si,Ge,Snand CY = P,As and Sb. Other, more complex systems are possible (c.f.
Sec. II), but we will concentrate here mostly on these simpler groups. Both the
pseudobinaries and the ternary chalcopyrite and pnictide groups have a zincblende-like
fourfold tetrahedral coordination, like their parent materials. They also share in
common the fact that their band gaps are not related linearly to those of their parent
binary materials. Denoting by E () =xE(AC) + (1 —x)E4(BC) the linearly weighted-
average of the band gaps of two binary (AC and BC) systems, the actual observed band
gap E,(x) of the A, B, _,C random alloy can usually be fitted [1] to the form

E (x) = E,x)~bxl~-x),

where b is termed the ‘‘optical bowing parameter.’’ Its value is usually positive for the
lowest-lying band gaps, and ranges for III-V materials around 0=<b6=<0.9 ¢V and in
the range of 0<<b=<1.4 eV for 1I-VI systems. Figure 1 shows the observed [3] E,(x)
curves for pseudobinary zinc chalcogenides, exhibiting both the smallest (ZnS, Se, _,)
and the largest (ZnSe, Te, ) bowing ever observed in isovalent semiconductor alloys.
An analogous phenomenon occurs in ternary crystals: Table I shows that ternary
systems have band gaps that fall considerably below the values of their binary analogs
i.e., the ternaries too have positive bowing parameters.

Traditionally, the two phenomena—anomalously small band gaps in A,B,_,C
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Figure 1. Observed [3] composition-variation of the optical gaps in pseudobinary zinc
chalcogenides.
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TaBLE 1. The observed band gaps of ternary semiconductors E{* and the difference
AE,=E® —E{ (band gap anomaly) with respect to the binary analogs. Uncertain values are

denoted by an asterisk. Data are from Reference 2 and references therein.

Ternary e Band Gap
Ternary Band Gap y Anomaly
EE3) (ev) anaieg AE_ (eV)
g
CuAlS, 3.49 Mg ¢Zn .S 2.41
CuGaS;2 2.43 ZnS 1.37
CuIn52 1.53 Zn.SCd.SS 1.64
CuAfSe 2.67 Mg .Zn .Se 1.47
2 #5775
CuGaSe, 1.68 ZnSe 1.00
CulnSe 1.04 Zn Cd  Se 1.29
2 555
CuAlTe, 2.06 l‘lg' 52, 5Te 1.44
CuGaTe, 1.23 ZnTe 1.06
CulnTe, 0.96-1.06 Zn.SCd.STe 0.98-0.88
AgALS, 3.13 e =
AgGas, 2.51-2.73 Zn oCd S 0.62-0.44
Aglns, 1.87 Cds 0.66
AgAsSe, 2.55 - -
AgGaSe2 1.83 Zn 5IIId“SSe 0.50
AglnSe, 1.24 CdSe 0.61
Ag;‘Ul'I'e2 2.27(%) S e
AgGaTe, 1.1-1.326(*) Zn 5Cd gTe 0.84-0.62
= * T 0.62-0.54
AglnTe2 i 0.96-1.04(*) CdTe

random alloys and in ternary ABC, crystals—have not been recognized as being
related. The physics of pseudobinary alloys has been discussed in terms of randomness
and disorder phenomena [1], and that of ternary semiconductors has been dealt with
within the language of band theory of ordered crystals. In this paper I point to the fact

that the two phenomena share in common the same physical origin, and that analysis of
this mechanism allows us to predict new, hitherto unrecognized ternary systems, of
potential technological interest.

II. Structural Models

Assume that we combine two fourfold coordinated binary systems AC and BC that
have a common element to create a new, fourfold coordinated lattice. Which ordered
spatial arrangements are possible for integer mixing ratios? If we use Landau’s theory
[4], of order-disorder phase transitions, we can identify a few structures which can
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disorder into the zincblend structure. Four of these structures are shown in Figure 2,
along with the zincblend structure. The general empirical formula for such compounds
is Ay _ ,B,Cs where n=0,1,2,3 and 4 is the number of B atoms. For n=0 and 4 we have
the regular zincblend structures A4;C4=4AC and B4C4=4BC. For n=2 we have two
ABC,-like structures: the chalcopyrite and the simple tetragonal structure. For n either
1 or 3 we again have two A3BC, (or AB3C,) structures: the Luzonite and the Famatinite.
Figure 2 shows their Bravais lattices, space groups, atomic positions and allowed
diffraction patterns. We hence see that in addition to the known chalcopyrites and
pnictides, other structural forms are possible. Three of the most likely forms are shown
in Figure 2. Two of them (Luzonite and Famatinite) are naturally occuring minerals.
Each structure is characterized by two types of anion-cation bond lengths, RS and REL.
In general, those bond lengths (and the corresponding bond angles) could be deformed
relative to the ideal bond lengths d3c= —4—3 aScand dfc= —71-3— a$c of the constituent bi-
nary crystals AC and BC at their equilibrium lattice constant alc and adc, respectively.
Call these deviations AY%=R4%—dS¢ and AW =RE).—dc. Clearly, in comparing
an alloy to its end-point materials we have to consider the fact that not only could the
two have different atomic volumes, but that even for a fixed volume, alloys, in contrast
to their parent materials, may have A,c#0, Agc#0. Note that if the cations A and B
were on a fixed fcc lattice, like in their parent binary materials, then the various A””
parameters would have been related, e.g., A2 = AL etc. This appears to be so, to
within a good approximation, as indicated by recent EXAFS (extended x-ray absorption

fine structure) experiments [5].

III. Band Structure of Ternary Chalcopyrites

The self-consistent band structure of a typical chalcopyrite—CulnSe,—is given in
Figure 3. This band structure has been calculated [2] by the Mixed-Basis Potential
Variation (MBPV) method [6], in which no shape approximation is applied to the
potential, all core and valence electrons are treated dynamically (i.e., no pseudopoten-
tials), a mixed basis set consisting of about 400 symmetrized plane waves plus 126
compressed-atom radial orbitals are used, and self-consistency is achieved to within
1 mRy, using the Jacobian Update method [6]. Since we use the local density form of
the Hamiltonian, not surprisingly, the band gap comes out to be too small (Fig. 3a).
Using Slater’s exchange (Fig. 3b) results in a larger band gap. In the present work we
are interested precmarcly in changes in the band gaps with structural parameters A (e.g.,
bond length differences). We will therefore use the Slater exchange form to obtain the
band gap for undistorted crystals (A =0), and verify that the derivative dE,/d\ does not
depend strongly on the choice of exchange-correlation. We found this to be the case to
within a very good approximation [2]. Figure 4 depicts the ground state electronic
charge densities in a number of chalcopyrites. Figure 5 gives, for comparison with
Figure 3, the calculated [7] band structure of two ternary pnictides.

Figures 3-5 show that: (i) CulnSe,, like other chalcopyrites is a direct band gap
material at I". (ii) The Cu3d states appear in the upper part of the valence band, hence
these orbitals cannot be considered as chemically inert. In contrast, ternary pnictides
[7] involve the deeper Zn3d band (Fig. 5) which is nearly chemically inert. (iii) The
ground state charge density in chalcopyrites indicates the existence of two fundamen-
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Figure 3. Calculated [2] band structure of CulnSe, in three different approximations.

tally different chemical bonds in the system: the Cu-anion bond, showing considerable
bonding charge, (along with some ionic character), and the B"-anion bond, showing
essentially no bond formation. We will now use these conclusion to construct a
systematic comparison of ternary with binary compounds.

IV. A Stepwise Comparison of Binary and Ternary Systems

Our analysis of the atomic structure and band structure of the composite A4 ,B,Ca
compounds suggests that the primary differences with their binary AC and BC
compounds are as follows: (i) Volume deformation: the A4 — ,B,C4 structures may have
different unit cell volumes (per atom) than the (4 —n)AC + nBC structures. In general,
the volume deformation can include changes both in the cubic lattice constant
parameter a and in the c/a ratio. (ii) Chemical electronegativity: whereas in the
composite structures the A-C and B-C bonds can interact and exchange charge
(reflecting, e.g., their different electronegativities), these bonds obviously do not
communicate in the isolated end-point materials. (iii) Structural changes: the
composite structures can show bond alternation R #R$2, i.e., they may be deformed
relative to the ideal bonds d9¢ and djc. (iv) p-d hybridization.: in the composite systems
A4_,B,C4 with A=Cu, there can be a distinct contribution to the bonding and band
gaps from the active Cu3d orbits (c.f. Figs. 3 and 4) in contrast with the situation in Zn
(or Ga) compounds (c.f. Fig. 5).

In trying to analyze the band gap anomalies in pseudobinary and real ternary
systems, we could have used modern techniques of band theory [6] and calculate the
band gaps of both ternary and binary systems and compare their difference with
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Figure 4. Calculated ground state electronic charge density in a number of ternary
chalcopyrites.

experiment. This would merely reflect the extent to which such ab-initio computational
techniques can mimic the data. However, our aim in this work is to gain an
understanding of the physical and chemical mechanisms underlying structural and
optical “anomalies” in ternary and pseudobinary systems. Therefore, we chose instead
to break the general (formal) chemical reaction (4 — nAC + nBC— A, _,B,C,, where
A=A and B=B for pseudobinary alloys like xGaAs + (1 —x) InP— Ga,In, _,P, but
A#A and B#B in real ternary systems, (where we compare 2ZnS with CuGas$,), into
artificial steps, corresponding to the differences (1) to (iv) enumerated above between
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Figure 5. Calculated [2] band structure of two ternary pnictides.

the ternary and binary systems. What we hope to gain by this approach is a coherent
picture of the factors affecting the optical (e.g., gaps) and structural (e.g., stability)
properties of the ternary systems. In turn, we hope to use this understanding to design
new materials. This will be discussed in Sec. VII and IX. We now proceed with a four-
step (A to D) analysis of the evolution of ternary from binary systems.

A. Volume Deformation

First, compress one structure (say AC, having an equilibrium lattice constant ale)
and dilate the other (say, BC, having a lattice constant ac) so that both have the lattice
constant a2 characteristic of the composite A4_ ,B,C4 structure at equilibrium. The
chemical reaction is

(4 - n)ZCs agc

+ [nBC. afc| — |44-nB. oy 07| (1a)
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Had we adopted an empirical approach, we could have used the values of a3¢, A% and
alp from experiment, together with the empirical equations-of-state of AC and BC
(which depend on the known bulk modulii), and find the change in total energy
attendant upon reaction (1a). We could, alternatively do this in a first-principle way, by
computing aic, agc and al) from minimization of the total lattice energies of the three
systems of Eq. (1a) and then find the change in the total energy corresponding to the
reaction (1). We adopt this latter approach here. Denoting by E either the total energy
functional, or alternatively the band gap (for latter use), the change in energy upon

volume deformation is
AEYP = (4 —n) {E[ATC, ald] - EIAC, agc]} + { n E[BC, alY]—E[BC, agc]} . (1b)

Clearly, AE"” >0, as we deform equilibrium structures.

B. Chemical Electronegativity

In the second step, we let the ‘‘prepared’’ (i.e., volume-deformed) AC and BC
systems combine to form the A, — ,B,C,4 compound, however, without relaxing the bond
lengths and angles beyond the values of the “prepared” systems. The chemical reaction
can be written symbolically as

(4—n)AC, al?| + |nBC, a®?| — |As_ B, Ca, a’?, undistorted, frozen d| . (2a)
q q q

For the pseudobinary case, we have A=A and B=B, as discussed above. Also, since
no chemically active d electrons are involved in pseudobinaries (Column II and III)
cations occurring in ZnS or GaAs have either no bound d states, like Mg and Al, or
deep d states, like Zn and Ga, the notation “frozen d” is redundant. However, for
ternary chalcopyrites, we compare in Eq. (2) 4 ZnS with Cu, _,,Ga,S,, hence A #A and
B#B. In this case, “frozen d” means that the right hand side of reaction (2) is
calculated without taking into account the role of the Cu d electrons, i.e., a ‘‘frozen d”’
calculation. This effect will be restored in step D below. The change in energy
attendant upon reaction (2a) can be denoted as

AE® = E[A4_,B,C4, a$?, undistorted, frozen d]
— (4—n) E[AC, al)]1—n E[BC, al?] . (2b)

In analogy, we define Ap““(r) as the corresponding difference in charge densities. In
this step we allow therefore charge transfer [i.e., Ap“Z(r) # 0] between the A-C and B-C
bonds: the charge will, most likely, be transferred from the less electronegative to the
more electronegative bond, changing thereby the band gap and total energy. This step
cannot be performed classically, and is neglected in non self consistent treatments.

C. Structural Change

In the third step, we let the A4_,B,C4 compound, with frozen d orbitals and
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undistorted bonds, to relax to its equilibrium bond lengths RY¢, Rg¢ and angles. The
reaction is

[A4_,,B,,C4, al, undistorted, frozen d ] ——
[A4_,,,B,,C4, al®, equilibrated, frozen d ] (3a)
with the corresponding change in energy
AE® = E[A4_,B,Cs, al, equilibrated, frozen d]
— E[A4_,B,C4, al?, undistorted, frozen d] . (3b)

The corresponding change in charge density is denoted Ap®(r). In this calculation we
let the bond lengths R, Rg’é vary, to minimize the total energy of A4 ,B,C4. We do
that under the restriction that the cations remain on the fcc lattice, as suggested by
experiment [5].

Note that the energy AES could have been calculated semiclassically, by assuming
some valence force field (VFF) which describes the strain energy of Aj_,B,Cs
associated with bond-bending and bond-stretching. Such VFF are available, (e.g., the
Keating model, c.f. Ref. 8 and references therein), however, they assume force
constants of the pure AC and BC compounds. In other words, they neglect the
interaction between the bonds through charge transfer. Denote the structural energy,
analogous to (3b) obtained with such models as AEY*". The difference between the full
structural energy then AES of Eq. (3b) and AEV™ is then defined as the polarization
(pol) energy AEP®! which gives the additional structural relaxation due to deformation-
induced charge transfer. We then have

AES = AEVFF + AEP! . (3¢)

D. p-h Hybridization

In the final step we let the A4_,B,C4 compound, with its relaxed geometry, to
involve the d orbitals, if available, in bonding. Computationally, this means that instead
of doing a frozen-core calculation for the 3d states, we treat them dynamically as any
other orbital. The reaction is

[A4_anC4, al?, equilibrated, frozen d] —
[A4_,,B,,C4, a%), equilibrated, dynamic d] (4a)

and the corresponding change in energy is denoted AEP?,

E. The Net Reaction

Adding up the four reactions (1a) to (4a), we have the net reaction
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(4—n)AC, a3¢

+ [EC, agCJ — [A4_,,BRC4, al?, equilibrated, dynamic d| . (5a)

Calculation of the optical and structural properties of both sides of this reaction will
provide all information which is necessary to deduce optical bowing and structural
stability parameters. Using our “Born-Haber”-like cycle, the change in energy
attendant upon this reaction is

AE®D = (AEYP+AEY™) + (AEP'+AEE + AEPY) (5b)

or

AE%) = AEstrain+ AEchem ,

where we have denoted the first two terms, which can be computed classically as
“strain energy,” while the last three terms reflect “chemical energy.” Note that AE®"™
is positive-definite since straining the equilibrium AC and BC systems can never lower
their energy. If E in Egs. (1-5) were to denote the total energy per mole relative to
separated atoms, then the condition

E[A;_,B,C4, aly), equilibrated, dynamic d] < 0 (5¢)
implies that the A, _ ,B,C, system is stable towards dissociation to atoms (i.e., positive
cohesive energy), whereas the condition

AE® <0, (5d)

implies that A,_,B,C, is also stable against disproportionation into its endpoint
compounds AC and BC. If E were to denote band gaps, then AEY <0 implies positive
optical bowing.

V. Other Approaches

Our discussion and definitions of Section IV allows us to discuss various approx-
imations used in the past. Before proceeding with our own results, we briefly discuss
these other approaches.

(1) In the Virtual Crystal Approximation (vca) [9] one assumes that the individuality
of the A and B atoms is lost in the alloy, and replaced by a fictitious (nonexisting)
“average” atom (AB). The bond lengths between C and each of the (AB) species is
assumed therefore to be constant. Furthermore, since in the pure AC system the bond
length d3c is rel ed geometrically to the lattice constant aj¢ (i.e., in zincblende
structures d9c= — ale), itw \;_assumed in VCA [9] that this continues to be the case in
the alloy, where R(") R§L=2 a{™. Hence, in the vca

AEYF™ = AEP? = AEPY = AEE = 0. ©6)

(i1) In strain-minimizing models [10-11], one neglects the chemical energy and
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deduces the equilibrium structure from the minimization of the positive-definite force
field AEYD + AEVFF. Hence, it is assumed that AE™™=0. Whereas, such approaches
automatically accept the instability of A4_,B.Cs towards disproportionation (i.e.,
AE® >0), surprisingly they predict the correct geometry of the compound. Examples
are given in Figures 6 and 7 which compare the calculated lattice constant and anion-
displacement parameters of chalcopyrites and pnictides with the observed values.
Here, the calculation [2] has been done by the “Conservation of Tetrahedral Bonds”™
(cTB) model, which assumes, following the classical ideas of Bragg and Pauling, that
bond lengths are approximately conserved quantities in different bonding environ-
ments. A similar conclusion is evident from Figure 8, where we present the percent
bond length change around an isovalent impurity in a semiconductor [8]. This has been
calculated by minimizing the valence-force-field of Keating for impurities in host
crystals, where the impurity-host force constants is taken from a prototype host crystal
(e.g., for a In impurity in GaAs, we describe the In-As interactions by a VFF of bulk
InAs, and the Ga-As interactions are described by a VFF of bulk GaAs). These results
suggest, surprisingly, that whereas the value of the function AE( at equilibrium may
be affected by AE™™, the position of the equilibrium is not. Classical ideas of bond
conservation and transferable force fields may hence be adequate for geometries, but

not for energies.

I I 1 1 I I
6.6
e I-1lI-Vi2
A |1-1V-V2
L | = 1-VII-VI o ~
&% I-ViI-Vi2 AginTe;
CTB Plus ZnSnSb; o/ &P AgAlTe:
nznexpt AgGaTe:
621 @®CuinTe: 7]
CdSnAs: AginSe;
AgGaSe:
6.0} CdSnP2__ AgAlSe; CuGaTe: ]
ol CdSiAs; CuAlTe;
= ZnSnAs; CdGeAs; AginS:
& CdGeP> ® CuTIS:
& 58 @——— —_ —CulnSe; -
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Figure 6. Calculated [2] and observed (Refs. given in 2) lattice constants of ternary
semiconductors. The calculation uses the “Conservation of Tetrahedral Bonds™ (CTB) model,
where it is assumed that the ternary lattice assumes the form which minimizes the strain that
would arise from bond lengths being different from their ideal binary values. The only input
are the bond lengths in binary zincblende compounds.



NEW MATERIALS 641

L] I 1 | 1 1 1 T

MgSiP. A
30k Casip
0.30 o |l-Ill-Vi AgGaS;(Casiash

All-lV-V2
- | ®1-VII-Vl AgAIS;
CTB Plus n=n,,, -

0-28 ¥l (Orn‘:n“m)

—

0.26

uexpt

0.24

0.22

0.22 0.24 0.26 0.28 0.30
Ucalc

Figure 7. Calculated [2] and observed anion displacement parameters in ternary semicon-
ductors. See caption to Figure 6.

(ili) Models for alloy stability: Our decomposition of the energy change in Egs. (1)-
(5) can also be used to discuss contemporary approaches to alloy stability. Under
normal preparation conditions, semiconductor alloys are “quenched” from high-
temperatures, leaving one with randomly disordered alloys. For all III-V alloys, (for
which data exists) the change in energy for the reaction
HEC 5 agc

(4 == H)EC, agc +

— [34 _,B,C,, Random (7a)

i.e.,

AH,, = E[A,_,B,Cs, Random] — (n—4) E[AC alc] — nE[BC agc] (7b)

was found [11] to be positive for randomly disordered (D) alloys (the change in
enthalpy AH), is very close to the change in internal energy since PV is negligible at
1 atmosphere). This had led many workers to tacitly assume that since the formation
energy of a random system [Eq. (7)] is positive, the ordered system [Eq. (5)] is
probably also unstable towards disproportionation. For instance, in Stringfellow’s
model [11] it is postulated that the enthalpy H of any phase, ordered or disordered, isa
convex function of its lattice parameter, i.e., H= —5,— , (where K is an empirical
constant and p>>0). Hence, any phase with a lattice parameter intermediate between
those of its constituent compounds will have AH > 0. Similarly, in Van Vechten’s model
[12], positive optical bowing accompanying compound formation is interpreted as a
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Figure 8. Calculated (method of Ref. 8) percent changes in the bond lengths around
isovalent impurities (open circles) in semiconductors (indicated on the X axis). Asterisks
denote observed values (Ref. 8 and references therein).

(destabilizing) upward shift of the valence band energies, leading to AH >0 for either
ordered or disordered compounds whose gaps are reduced relative to their average. All
strain-minimizing models [10] necessarily lead to AH>0, as the strain energy is
positive-definite. Our analysis suggests that these conclusions, based upon considera-
tions of strain energy alone, are misleading. We will show (c.f. Sec. IX) that whereas
for random systems AH,>0, ordered compounds can nevertheless be stable, i.e.,
AE{ <0 due to the dominance of stabilizing chemical effects over the destabilizing
strain effects.

VI. Band Gap Anomaly in Ternary Chalcopyrites

We have calculated the band gap anomaly in ternary chalcopyrites along the
conceptual decomposition outlined in Sec. IV. Our analysis shows that most of the
change in band gaps arises from the structural energy AES and the pd hybridization
energy AEP. Figure 3 compares the band structure of CulnSe; calculated with dynamic
(3a) and frozen (3¢c) Cu 3d orbitals. When the Cu 3d orbitals are excluded from
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bonding, the Cu 3d band separates in energy from the main valence band, and drops to
~ — 12 eV. The bonding-antibonding repulsion diminishes, resulting in an increase in
the band gap. We find AEP?=0.7 eV. Figure 9 depicts the band structure of CulnSe,
and CuAlS,; as a function of the anion displacement parameter . When u 541 , the two
bond lengths (e.g., Rc,.se and Ry, s.) are equal. The experimental value for CulnSe; is
u=0.224. We see from Figure 9 that when u changes from -j— (equal bonds) to its
(smaller) experimental value, the band gap decreases. We hence find AE®=0.50 eV.
This effect can be thought of as an ionicity effect, as depicted in Figure 10. We see that
for the unequal bond arrangement (e.g., for u = 0.2) the system exhibits covalency in
the Cu-Se bond, whereas for the equal-bond arrangement this bond charge disengages,
forming a more ionic bond with its attendant larger band gap. -

Table II summarizes some of our results for the band gap anomaly in ternary
chalcopyrites. We show the observed anomaly AES™ as well as the observed anion
displacement parameter 4. The calculated structural contribution AE® can be ecither
positive (when u<4i), or negative (when u >4l). We then inspect all contributions to
AE, other than the structural part, i.e.,

1 I I I I T Ll 1

asf-|CulnSe2 | - | |CuAlS: Nic .

Energy (eV)

0.5f i o ke ot

-0.5k Ny =1

T Ty
-1.0 1 1 1 1 | | 1 1
0.20 0.21 0.22 0.23 0.24 0.25 0.25 0.26 0.27 0.28 0.29 0.30

Anion Displacement (u)

Figure 9. Band energies of two chalcopyrites, as a function of the anion displacement
parameter u. For u=1/4, the two bond lengths are equal.
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Figure 10. Comparison of the total valence band (vB) change densities for an equal-bond
CulnSe, structure (z=0.25, note ionic separation of charge) with that of a bond-alternating
structure (z =0.20, note the covalent bond charge).

AE, — AES = AEY® + AESE + AEEY.

We see from Table II that AEP? accounts for most of the nonstructural part of the band
gap anomaly AE,. This analysis establishes the structural bond relaxation and p-d
hybridization as the souces of the band gap anomaly in ternary chalcopyrites. More
details are given elsewhere [2,7].

VII. Predictions of Some New Chalcopyrites

Having understood the factors affecting the band gaps of ternary chacopyrites in
terms of chemical (i.e., p-d hybridization) and structural (i.e., bond alternation)
effects, and the way the structural parameters are dictated by atomic sizes (Figs. 6 and
7), we are now in a position to predict gaps and structural parameters for hitherto

TaLEIl. Decomposition of the observed band gap anomaly (c.f. Table I) into its calculated
structural component AE; and nonstructural (NS) component AE 5. The major contribution to
the latter is seen to arise from the p-d hybridization effect (AE;"), calculated here for the two
end compounds. For comparison, we give the value of the experimental anion displacement
parameters u.

Material grgreer e u AES aEGhe™ = AESDS - ARG pEP?
CulnSe, 1.3 0.224 0.5 0.70 0.72
Culns, 1.6 0.214 0.7 0.9 -
CuGaSe, 1.0 0.25 0.0 1.0 e
CuAlSe, 1.4 0.269 ~0.38 1.81 -
CuGas, 1.4 0.275 ~0.50 1.87 ---
CuALS, 2.4 0.275 ~0.50 2.90 2.98
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TaBLE III. Predicted structural parameters and estimated band gaps (E,) for 22 possible
chalcopyrite-structure semiconductors. The symbol PD in the bandgap column indicates
compounds most likely to have pseudodirect lowest gaps.

Compound a (R) u n Eg (eV)
ZnSiSb, 6.077 .270 .961

ZnGeSb, 6.111 +263 .975 0.5
Cdsisb, 6.344 «291 .921 0.8
CdGeSb, 6.383 .285 «933 0.2
MgGeP2 5.656 277 947 2.1 (PD)
MgSnP, 5.774 +250 1.000 1.8
HgSiAs2 5.804 +284 .935 2.0 (PD)
MgGeAs, 5.841 .276 +949 1.6
MgSnAs, 5.958 .250 1.000 1.2
HgSiSbZ 6.221 .281 .939 1.4
MgGeSb, 6.258 275 .952 0.9
MgSnSb, 6.374 .250 1.000 0.6
HgSiP, 5.740 .296 L913 1.6
HgGeP, 5.780 .288 .927 1.2
HgSnP, 5.909 «262 .977 0.8
HgSiAs, 5.926 .294 .916

HgGeA32 5.966 287 .929 0.2
CuT4Te, 6.299 .233 1.034 0.9
AgTAS, 5.882 «257 . 986 1.1
AgTRSez 6.113 «257 .986 0.7.
AngTez 6.529 -257 . 987 0.6
BeCN2 3.847 .313 .883 8.2 (PD)

unknown chalcopyrite structures. Table III provides a list of predictions of such new
compounds with their anticipated band gaps and lattice parameters. This list reveals a
number of new materials of potential significance in device applications. Synthesis of
some of these materials is underway in our laboratory.

VIII. Optical Bowing in Semiconductor Alloys

We can carry out a similar analysis for the band gap anomaly in semiconductor alloys
(i.e., optical bowing). For example, Figure 11 depicts the variation in the structural
part of the band gap AE; of a true ternary (CulnSe,) and a pseudobinary (InGaP,) with
the bond alternation parameter. We see that the band gap in both system diminishes
with bond alternation. This analysis hence reveals that the structural effect is common
to both systems: the difference is largely quantitative, as chalcopyrites show a larger
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AE, (eV)

Bond Length Mismatch @ = R? - R (a.u.)

Figure 11. Comparison of the variations in the structural part AE; of the band gap as a
function of the mismatch in bond lengths for a true ternary crystal (CulnSe,) with that of an
hypotetically ordered pseudobinary crystal (InGaP,).

sensitivity JAE;/ou to bond alternation relative to pseudobinaries. However, bond
alternation is a decisive factor in establishing optical bowing in pseudobinary alloys,
since the deviation of their gaps from those of the parent materials is usually very
small [1].

Table IV summarizes some of our calculated results for the optical bowing
parameters of pseudobinary alloys. We see that systems with a large atom-size-
mismatch (e.g., In,Ga, _ ,P,ZnSe,Te, _ ) show a substantial structural component to the
bowing, whereas systems with nearly equal atomic sizes (e.g., Ga,Al, ,As) have
small bowing parameters. Notice that our analysis of the optical bowing assumed
ordered models for the alloy. We hence interpret the difference between the observed
and calculated bowing parameters in Table IV as being due to disorder effects. This
analysis hence suggests that disorder may be the prevailing physical phenomena in
alloys with small size mismatch, whereas in alloys with substantial size and
electronegativity mismatch, local order effects are dominant. This leads us to suspect
that some alloys could order crystalographically if grown appropriately. We discuss this
point next.

TABLEIV. Structural (S), nonstructural (NS) and experimental optical bowing parameters of
some pseudobinary systems.

Systen bNS bS ptot pEXP
InGal’2 0.25 0.17 0.42 ~0.5
SeTeZny 0.40 0.93 1.33 ~1.3
GaAJLAsz -0.01 0.00 -0.01 £0.1
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IX. Ordering in Pseudobinary Systems

We have calculated the ordering energy AE{ of Eq. (5) for a model of a
pseudobinary crystal In,Ga; _,P. Here, E takes the role of the total energy relative to
separated atoms. We neglect the AEP4 part, as In, Ga and P do not have chemically
active d states. We use the pseudopotential total energy method [13] within a self-
consistent plane-wave basis, describing exchange and correlation effects within the
density functional formalism.

For the end-point crystals GaP (n=0) and InP (n=4), we find [14] calculated
equilibrium lattice constants a2, and afyp that are within 1.5% of experiments, like in
other recent calculations [15]. We find InP to have weaker bonds than GaP (the
cohesive energy — E; plafp] is smaller by 4 kcal/mol than that of GaP) and a larger
degree of ionicity: its maximum charge density pnax = 32.5 e/cell is both larger than
that of GaP (p.x =31 e/cell, the experimental value is [16] 35 + 3 e/cell) and is drawn
closer to the P site. For the intermediate compounds n = 1,2,3, i.e., Gas;InP,, Ga,In,P,
and Galn;P,, respectively, we find equilibrium lattice constants aé’;’ that are w1thm
0.5% of the calculated composition-weighted average values a(n) = 2 ad p + athios
confirming thereby quantum mechanically Vegard’s rule [a$ =a(n)] for the ordered
compounds. However, bond lengths do not average as lattice constants do [i.e. Ay #
(x— 1)(d3c—d3c)]. We find very small equilibrium deformations A™<0.01A (solid
circles in Fig. 12), indicating that throughout the composition range the bond lengths
tend to stay very close to their values in the parent crystals. These results parallel the
observed and calculated anion displacements in real Chalcopyrites [2] and reflect the
classical idea by Bragg and Pauling that bond radii are approximately conserved
quantities in different chemical environments [A“”=0]. What is new, however, in the
present quantum mechanical result relative to classical theory is that we predict the
intermediate compounds to be not only stable relative to dissociation into free atoms
i.e. (Ea,_.5.c. <0),butto also be stable towards disproportionation into its constituent
binary compounds [i.e. AEY)<<0, whereas classical additivity of bond energies wou
give AE™ =0 in Eq. (5b)]. We illustrate the mechanisms leading to this stability by
considering the process (4 —n)AC + nBC—A4_,B,C, in three steps, as discussed in
Section III A-C. First, compress ap,p and dilate ag,p to the equilibrium lattice a?) of
the intermediate compound. For n = 2 we find that the energy is raised by the volume
deformation (VD) contribution AEY? = 0.87 kcal/mol due to this uniform elastic
strain. This is the only contribution considered in virtual crystal models [10] which
grossly overestimate AE™. Second, bring together 4 — n AC cells and n BC cells,
both prepared at a7, to form the crystal A,_,B,C,, without relaxing the internal bond
lengths and angles [i.e. R$%:=R§? —\/Sa("’] to their equilibrium values. The energy
change is AE~. Figure 13(a) displays “the corresponding difference [c.f. Eq. (2b)] in
charge densities Ap““(7) = p[GalnP,,a’?), undistorted] — 2p[GaP, al2)] — 2p[InP,a}].
It shows that charge flows from the less ionic Ga-P bond to the more ionic (but weaker)
In-Pbond, as Phillips’ ionicity (fg.p = 0.327, fi,p = 0.421) would suggest. We calculate
a small positive AE® = 0.85 kcal/mol, reflecting accumulation of extra charge on the
weaker bond. (In general AE“* could also be negative, if the more ionic bond, e.g.,
Ga-P, is stabler than the less ionic bond, e.g., Ga-As). In the final step we relax the
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internal bond lengths and angles to achieve equilibrium at A%, involving structural (S)
energy change of AE® = —3.2 kcal/mol which stabilizes the system. Had we done
this last step semiclassically by minimizing the bond bending and stretching energies,
using force constants of the noninteracting AC and BC compounds (i.e., the valence
force field, VFF approach) we would have obtained only a small energy stabilization
of AEYF¥ = —0.7 kcal/mol. This would have neglected deformation-induced charge
transfer. Figure 13(b) shows the self-consistently calculated deformation-induced charge
transfer ApS(¥) = p[GalnP,, a2, equilibrated] — p[GalnP,, a7, undistorted] and Fig-
ure 13c shows similarly ApS(7) for Galns;P,. They indicate substantial charge redis-
tributions: the stabler Ga-P bond (with a deep Ga pseudopotential) acquire more charge
than it lost in the previous step to the In-P bond (with the shall lower In pseudopotential).
The corresponding polarization (pol) energy is AEP?' = AES — AEVFF = —2.5 kcal/
mol for n = 2 and constitutes the main driving force for stability. The total excess
energy of the ordered compound is AE, = AEY) = (AEY? + AEYFF) + (AEE +
AEP"). We find AEY = —1.48 kcal/mol for the Chalcopyrite. The ordered simple
tetragonal structure is only 0.1 kcal/mol less stable; similarly the Luzonite and Fa-
matinite structures are also close to one another in stability.

A few observations are in order. First, the closeness of the ordered phase energies
AE, for these polytype pairs suggests that all are likely to form kinetically at growth
temperatures, but the choice of growth (i.e., substrate) orientation might discriminate
them: the Chalcopyrite is a (2,2) superlattice in the (2,1,0) direction whereas the
simple tetragonal CuAu-I-like structure is a (1,1) superlattice in the (1,0,0) direction.
We hence predict these particular superlattices to be intrinsically (not accidentally)
stable against alloy formation below an ordering temperature To=(AHp + AEp)/ASp.
Second, these structures can be identified by their fingerprint diffraction beams. They
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Figure 12. Percent charge (in units of dPp—dS.p) of the near-neighbor bond lengths in
ordered phases (0) and in random alloys ( ).
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Figure 13. Cation-electronegativity induced [Ap® in (a) c.f. Eq. (2b)], and structurally
induced [Ap® in (b) c.f. Eq. (3b)] changes in the electronic charge densities along the anion-
cation bond in GalnP,. (c) shows Ap® for Galn;P,, where solid (dashed) contours indicate
gain (loss) of charge.

are: (+1,0,0) and (=1, +1,0) for Luzonite, (0, =1, + 1/2) for Chalcopyrite, whereas
both the Famatinite and the simple tetragonal structures have in common the (0,0, + 1)
and (£1,=x1,0) beams, but the former also has the (= 1,0, +1/2) beam. Third, our
analysis suggests that alloys formed from closely lattice matched binaries with a large
difference in bond stability in the direction of the charge flow (e.g., Al,Ga, _ As with
an ~0.1% bond length mismatch but a large, 24 Kcal/mole excess bond energy of
AlAs over GaAs) will order readily below T, as (AEY? + AEVFF) is a vanishingly small
positive quantity but (AE“®+AEP') is larger and negative. Ironically, it is this
closeness in atomic size (i.e., ‘‘atom indistinguishability’’), that also renders the same
alloy grown above T as strongly disordered. An opposite example (AEq>0) is likely to
be Ga bePI — X

We have calculated the changes in the lowest band gaps of Ga, _ ,In,,P, relative to the
average of the calculated GaP and InP band gaps (“optical bowing”) for n= 1,2 and 3.
We find that most of the observed (b=0.5 eV) is accounted for by the calculated VD,
CE and § changes (0.45 eV). Hence, positive optical bowing can be produced by local
bond relaxation effects and need not reflect a thermodynamic instability of the
compound. This was shown previously in an earlier study [17].
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X. Enthalpies of Random Alloys

At the temperatures that semiconductor alloys are usually grown, entropy-favored
disordered alloys are quenched-in. We model the excess enthalpy of formation AHp(x)
of Eq. (7b) of such substitutionally disordered alloys by assuming the A4 ,B,, units to
exist at each composition x(d) with a random probabilities P™[x(@)] = (1)3:"( 1—x)*—",
[Fig. 14(a)] leading to

4
AHp(x) = EO P™[x(a)] AE™[a,A] . (8)
The properties of P*”(x) and AE"™(a) are such that AHp(1)=AHp(0)=0.

Figure 14 shows schematically why AHp(x) is positive for disordered semi-
conductor alloy, although stable ordered intermediate phases (i.e., AEQ},’<0) can exist
for integer A/B ratios at lower temperatures. At any given composition, say x=1/2 [at
which @(1/2) = aS¢/2 +a$c/2], the PP(1/2)=37.5% of the ABC, species present is
seen to be near equilibrium in its AE‘®(a) curve, contributing therefore a negative term
to AHp. However, the P©@(1/2)=P¥(1/2)=6.25% of the pure AC and BC species
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Figure 14. Illustration of the way in which (a) the random occurance probabilities P (x)
combine with (b) the equations of state AE"’(a) of the stable species n (stable areas
highlighted by shading), to produce (c) a positive excess enthalpy AHp(x) of the randomly
disordered (D) structure.
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present at this concentration with @(1/2) (as well as the 25% each of the A;BC, and
AB;C, species) are strained relative to their equilibrium lattice constants a$¢ and adc,
contributing therefore positive terms to AH,. The superposition of all five equations of
state AE™ [Fig. 14(b)], weighted with their probabilities P*’[x(@)] [Fig. 14(a)] produce
in this case a positive AHp(x) curve [Fig. 14(c)]. Since we showed that al=a(n),
the lattice mismatch 6(x) of each species in the alloy is % — a(x) = (x — n/4)
(alc — age) = (x — n/4)Aa. For small Aa, the energy AE™ is second order in 8™(x),
hence AHp(x) ~ Aa?. This is exactly the scaling found empirically [11] to be necessary
to explain the distribution of the experimentally measured AH,, values of most semi-
conductor random alloys.

For Ga,In, _,P, we find that the experimental [18] AH(x) curve for the disordered
alloy, with a maximum at AHp(1/2) =0.72 Kcal/mole (experimental uncertainty in this
value is around [11,18] 50%) is consistent with an excess stability of an ordered GalnP,
of AE) = —0.3 kcal/mol.

We can use our calculated bond lengths R,E{'é(a) and Rg'é(a) for the ordered structure,
to obtain their sample-averages R(x) in a disordered alloy

Rac) = 3 il PV[x(@)] RSHa) ©)

where 0% =4 — n [or w2 = n] is the number of AC (or BC) bonds. A similar expression
pertains to Rgc(x). The dashed lines in Figure 12 show the calculated results, indicating
a bimodal distribution similar to that observed for other alloys [5], but R(x) a random
alloy deviate from the corresponding d° values significantly more than the bond
lengths R™ in the ordered phases do.

XI. Summary

Our studies suggest that:
(i) The band gap anomaly in ternary chalcopyrites arises from the response of the

band structure to bond alternations AE g , and from p-d hybridization effects AEg"’ ,

(i1) In turn, the bond alternations are decided by the classical atomic size mismatch,
and can be calculated in a Paulingesque fashion. Combining (i) and (ii) allows us to
predict gaps and structures of numerous new ternary compounds (Table III).

(iii) Optical bowing in pseudobinary alloys made up of size-mismatched species
(e.g., Ga/ln, _,P) or electronegativity and size mismatched species (e.g., ZnS,Te, _,)
arises from the same structural effect AEg underlying (ii) above, as well as from a
chemical electronegativity effect AES®. In random alloys made up from nearly equal
size atoms (e.g., Al,Ga,_,As), the bowing is decided by disorder effects, not local
chemical order.

(iv) The chemical energy AEY+ AEP decides the magnitude of the cohesive
energy, but has little effect on the structural parameters. These can be calculated with
useful precision both for isovalent impurities (Fig. 8) and for ternary chalcopyrites
(Figs. 6 and 7) from strain-minimizing models.

(v) The stability of the ordered structures arises from the fact that they are strain-
reducing (i.e., small AEY? + AEY'F), reflecting their ability to simultaneously
accommodate the two dissimilar bond lengths in a coherent fashion (solid circles in
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Fig. 12). When small, this allows the stabilizing chemical charge transfer terms to take
over (the net electron flow is from the less stable bond to the more stable bond). Such
ordered systems are predicted to have a Vegard-like lattice constant, much like their
random analogs at the same concentration (hence the latter could be used as a
convenient substrate for growing the former), a sharp bimodal distribution of bond
lengths with displaced anions, and positive “optical bowing” (although with somewhat
larger gaps than their random counterparts).

(vi) In contrast, random alloys do not minimize strain: although the average bond
lengths are still close to the ideal bonds (solid squares in Fig. 12), configurations with
strained bonds are quenched-in [Fig. 14(b)]. They are entropy stabilized over the ordered
phase when grown at temperatures above T or (T,), hence annealing of these samples is
not likely to order them readily. Upon quenching to lower temperatures they will either
(a) disproportionate, (b) remain metastably disordered, or (c) order. Ordering and
disproportionation can occur if sufficient atomic mobility remains at the lower
temperature and the activation barriers posed, for example, by coherent strains [11],
are surmountable. The choice between these two reactions depends both on the relative
values of T, and Ty and on the relative size of their (unknown) activation barriers. While
reaction (c) could hopefully be catalyzed chemically or by suitable photons, under
normal condition, reaction (a) (e.g., in Ga P,Sb, _,, showing a miscibility gap) or (b)
(e.g,. in Ga,Al, _,As) prevail upon cooling. However, if grown from the outset below
T, (about AEy/k=200°C below conventional growth temperatures) by growth
technique that assures sufficient surface mobilities at lower temperatures, ordered
phases, presumably with appealing transport properties, are predicted to form.

After the completion of this work, two experimental groups have succeeded in
growing, for the first time, ordered semiconductor alloys. The first [19] grew
Al,Ga, _,As and the second [20] obtained InGaAs,. The Growth of Al,Ga; _ ,As was
done as a continuous (homogeneous) process, i.e., without forcing artifical symmetry
through the growth process. Nevertheless, an ordered structure was obtained [19].
Although this ordering may have been established kinetically, the authors presented
evidence that in fact the ordered phase is the thermodynamic equilibrium state at low
temperatures, as predicted before [14]. These structures show the expected [14]
diffraction spots and long range order. They hold the promise of becoming new, stable
and high-mobility semiconductors with convenient energy band gaps.
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