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We apply our self-corisistent, all-electron, spin-polarized Green s-function method within an
impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two
different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and
the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-
LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quan-
titative explanation to the observed donor ionization energy and the high-spin ground states for
SiFe+ within the SIC-LSD approach. For both Si:Fe and Si:Fe+, this approach leads to a hyper-
fine field, contact spin density, and ionization energy in better agreement with experiments than the
simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe
as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended

spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on
the other hand by the atomically localized picture (suggested, for example, by the stability of a
high-spin, ground-state configuration) is resolved. We find a large J'eduction in the hyperfine field

and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the
tails of the delocalized sp hybrid orbitals of the surrounding silicon atoms. Using the calculated re-

sults, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii)

the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity
Mossbauer isomer shift for different charged states, (iv) comparison with the multiple charged states
in ionic crystals, and (v) some related speculation about the mechanism of (Fe +/Fe +) oxidation-

reduction ionizations in heme proteins and electron-transporting biological systems.

I. EXPERIMENTAL CHARACTERISTICS OF Si:Fe

Iron is a low-solubility' (1.5&(10' cm at 1200 C),
fast-diffusing (D-4&&10 cm /sec at 1100 C) im-
purity in silicon, with a low distribution coefficient
(-6&& 10 ). It is present even in as-grown material and
is thought to have a controlling effect on thermally in-
duced defects in quenched silicon. ' Even minute can-
tamination by Fe ( —10' cm ) are known to have a
considerable effect (-50%%uo) on the silicon solar cell's effi-
ciency. Deep-level transient spectroscopy (DLTS) mea-
surements have first identified an E(0/+) donor level (a
Fe ~Fe+ transition) at E„+0.45 eV, or E, +0.43 eV,
or E„+0.46 eV, ' where E, is the valence-band max-
imum; however, when the temperature dependence of the
(hole) capture cross section has been taken into account,
,the value turned out to be E„+0.385+0.01 eV. This was
established by a combination of Hall effect and electron
paramagnetic resanance (EPR) experiments" (yielding
E, +0.375 eV), by a combination of DLTS and Hall ef-
fect' (yielding E„+0.39+0.02 eV), by a combination of
DLTS and thermally stimulated capacitance (TSC) tech-
niques' ( E„+0.39 eV), and directly from DLTS '

(E„+0.383 eV). These values are close to those deter-
mined from the temperature dependence of the Hall coef-
ficient and resistivity and from the steep rise of the pho-
toconductivity spectra. Attempts to identify acceptor
states (a Fe —+Fe transition) of an isolated iron impurity

have failed It can be concluded that this transition does
not exist at least between the E, +0.045 eV to E,—0.045
eV (where E, is the conduction-band minimum) and most
likely does not exist at all in the band gap. ' Whereas a
double donor E(+/2+) (a Fe+~Fe + transition) has
been suggested as an explanation for the disappearance of
the Fe+ EPR signal, ' it was not identified directly. '

EPR data' "" '8 for the neutral center show a distinct
spectra due to interstitial Fe with a g factor of g =2.070
and spin S = 1. The EPR parameters for the Fe centers in
Si are summarized in Table I.' Analysis of the data'
shows that the impurity hyperfine field (147.6 kG [Ref.
18(b)] or 152.2 kG [Ref. 18(a)]) and the spin density at the
nucleus (0.282 a.u. [Ref. 18(b)] or 0.299 a.u. [Ref.
18(a)]) are considerably smaller than those characteristic
of a free iron atom (calculated Hartree-Fock values for
d, Fe give —350 kG for the hyperfine field and —0.668
a.u. for contact spin density, respectively). This is also
evident from recent electron-nuclear double-resonance
(ENDOR) experiments, ' which show the spin density to
be expanded at least up to the fifth Si shell and suggest
that the localization of the spin density of Si:Fe could be
estimated to be between 80%%uo and 95/o. The charged
center Fe+ has a S = —', high-spin configuration'N"'' (Sbe-

ing the total electron spin) with a small hyperfine field
(32.6 kG) and small spin density (0.0377 a.u. ). We will

be concerned here with isolated Fe impurities only. In ad-
dition to the data surveyed here for the isolated Fe impur-
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TABLE I. Experimentally observed EPR parameter (Ref. 18), hyperfine coupling constant A (in units of 10 cm '), hyperfine

field Hhf (in kG), effective electron spin density at the nucleus
~
P(0) ~,ff, and spin density at the nucleus 5p(0) (both in units of

a.u. ) for the Fe impurity in silicon (Ref. 19).

Configuration

(3d)

Ion

(Fe )+

S J
3
2 3.524

gN

+ 0.1804 2.99 0.0377 32.6

sI (0)

0.0377

Reference

18(a)

(3d) (Fe57)0

(F 57)0
2.0699
2.0700

+ 0.1804
+ 0.1804

6.98
6.57

0.1496
0.1408

152.2
147.6

0.2992
0.2816

18(a)
18(b)

ity in silicon, there are abundant data on Fe-acceptor
complexes, iron precipitates, and radiation-induced iron
defects (surveyed in Refs. 5 and 16) that will not concern
us here. The distribution of the superhyperfine interac-
tions among the various ligand neighboring shells, ' the
isotropy of the g tensor and the hyperfine interac-
tions, ' ' and the appearance of two well-resolved fine-
structure lines under uniaxial stress' suggest that isolated
iron takes up an undistorted tetrahedral interstitial site in
silicon. The location of iron in the open interstitial site is
also consistent with its ultrafast diffusivity in silicon.
Whereas no static Jahn-Teller (JT) distortions were ob-
served, ' ' ' ' a dynamic distortion cannot be ruled out.
Only a small (-3%) outward breathing mode relaxation
of the first shell of neighbors is expected. Early Fe
Mossbauer isomer-shift (IS) measurements " show for
Si:Fe that the isomer shift (b,ts) is 0.505 mm/sec. Since
the IS (proportional to the negative of the charge density
at the nucleus) increases as the number of s electron de-
creases, this result [intermediate between the result
b, ts ——0. 15 mm/sec for metallic iron (-d s') and its
dihalides (d s ) (b.&s

——1.4mm/sec, d s )], suggests that
Si:Fe has an effective s-electron occupation between 0
and 1. More spectacularly, no change in the IS was
found " in going from Si:Fe to Si:Fe+, whereas such
ionizations for iron in ionic crystals [e.g. (see Ref. 25)
FeF2 versus FeF3] show huge changes (1.4 —0.46=0.94
mm/sec). However, the Mossbauer data available to date
on Si:Fe are clouded by the occurrence of complexes.
We will indicate the clear-cut prediction of theory on this
matter.

II. DUALITY OF Si:Fe
WITH RESPECT TO LOCALIZATION

The experimental data on Si:Fe paradoxically suggest
both a model of a covalently delocalized impurity and its
opposite: that of an atomically localized impurity. Argu-
ing for the former, we note the following. First, the im-

purity hyperfine field Hhg and the contact spin den-
sity' ""' ' 5p(0) at the nucleus of Si:Fe are reduced by
43% relative to the free-atom value (using the calculated
Hartree-Fock value of Fe, d ), whereas these quantities
for Fe in ionic solids are close to the free-ion values. A
similar conclusion is apparent from a recent electron-
nuclear double-resonance experiment, ' which shows the
spin density to be expanded at least up to the fifth Si shell
surrounding the impurity. Second, as noted by Ludwig
and Woodbury, ' ' the EPR parameters, including the
spin values for neutral Si:Fe (S=1) and the charged ion

Si:Fe+ (S = —,
'

) indicate that the s electrons of the free
atom ( d s ) are converted in the solid into d orbitals ( d
for Fe, d for Fe+ ). However, this s ~d population in-
version must suggest a substantial delocalization: If the
impurity orbitals were atomically localized, the strong s-d
Coulomb repulsion energy U'" would have resisted such a
transfer. (In free atoms, even the d s' configuration is
about 5 eV above the d s ground state. 3d impurities in
ionic crystals similarly show a s ~d excitation energy of
5—6 eV). Third, the stability of the "overcrowded" d
configuration also suggests substantial delocalization.
The (Fe /Fe+ ) donor ionization energy ' ' " ' E (0/
+.)=E,+.0.385+0.01 eV, when referred to vacuum [i.e.,
subtracting it from the position of the valence-band max-
imum E, relative to vacuum, approximately 5.2+0.2 eV
(Ref. 29)] is -4.8+0.2 eV. This value is characteristic of
the far stabler doubly ionized Fe + system [e.g., the
(Fe +/Fe +) ionization in GaP, GaAs, and InP is
5.0+0.05 eV]. In a polar electrolyte solution, the
(Fe +/Fe +) redox potential is close to this, being
around 5.0—5.3 eV. If the d electrons were atomically lo-
calized on the Fe impurity, the (Fe /Fe+ ) ionization ener-

gy would have been reduced relative to the (Fe +/Fe3+)
ionization energy (30.6 eV in the free ion ) by twice the
atomic d-d Coulomb repulsion energy U"" (about 15—25
eV for 3d ions ); hence, Fe, d would have been un-
bound.

These observations suggest a picture of a substantial ex-
pansion of the impurity d orbitals, perhaps through co-
valent hybridization, with the attendant reduction in the
U'" and U " Coulomb repulsion energies, a partial delo-
calization of the spin density, and a reduced exchange
splitting h~. It is also consistent with the anticipated
large crystal-field splitting b,cF (which increases with co-
valency and 'is already 0.45 eV in the less covalent
GaP:Fe system). We refer to this picture as the "covalent-
ly delocalized model" (CDM).

This CDM would have been complete, were it not for
substantial evidence from the same experimental data that
suggests the opposite conclusion, i.e., that of an "atomi-
cally localized model" (ALM). First, Si:Fe+ appears
similar to the free ion in a (Hund s rule) high-spin
(S=—, ) configuration, ' indicating that as large as the
crystal-field splitting AcF may be, the impurity orbitals
must be sufficiently localized to have an exchange split-
ting 6 that exceeds Acp. Second, despite the propagation
of the spin density up to at least five shells of Si ligands,
as much as 80—95 % of the spin density is localized in the
impurity central cell. ' Third, the electron-phonon cou-
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pling of the impurity to the host crystal must be suffi-
ciently weak (A~ is large) to explain the absence' of any
measurably static JT distortion in Si:Fe+ despite the de-
generacy of its T& ground state. Fourth, the total angu-
lar momentum J is consistent with the interpretation' of
atomically localized 3d electrons. Fifth, the very low
solubility and superfast diffusivity suggest a weak in-
terference with the solid, i.e., that no strong bonds are
formed or broken upon insertion or migration of Fe in sil-
icon. Finally, although the Si band gap is too small for
readily observing the atomiclike d —+d multiplet excita-
tions (they are expected to occur in the infrared region),
such transitions, characteristic of localized states are ob-
served for Fe impurities in wider gap semiconductors
[e.g., (see Ref. 30), GaAs, InP, GaPj and are also likely to
be found in silicon.

The purpose of this paper is (i) to resolve the paradoxi-
cal duality in the nature of the localization in Si:Fe, (ii) to
provide a physical understanding of the reduction in the
hyperfine field and the ionization energy relative to the
free atom, (iii) to given an explanation of the extended
spin density observed by ENDOR, and (iv) to give a quan-
titative theory to the hyperfine field and the donor ioniza-
tion energy.

III. METHOD OF CALCULATION

A. General theory

We apply the impurity Green's-function method
developed by us previously, ' with the following modifi-
cations needed for the current applications: (i) since we
are now interested in nuclear contact spin densities, which
are dominated by core-polarization effects, we cannot use
a coreless (pseudopotential) model for the impurity
atom. Instead, we use an all-electron impurity representa-
tion, where both the core and the valence orbitals are
treated as spin-polarizable states on the same footing. (ii)
The great sensitivity of core polarization to basis set ef-
fects suggests to us that a nonlinearly varied basis would
be far more effective than a linearly varied set. Hence, we
optimize the impurity-centered 1s, 2s, 2p, 3s, 3p, 3d, 4s,
4p, 4d, and 4f spin-polarized dynamic basis orbitals at
each self-consistency iteration by numerically integrating
the atomiclike Schrodinger equation of Fe within the im-
purity orbital subspace. As this dynamical basis set is up-
dated iteratively, responding to changes in the self-
consistent potential, we economize on the basis size using
only the Is through 4f orbitals. (iii) We have experiment-
ed with the Williams et aI. method to generate a varia-
tionally flexible Green's function, instead of the
equivalent quasiband approach. We find these methods
to work equally well for Si:Fe, for which both methods
were applied. (We continue to use the quasiband ap-
proach in pseudopotential calculations, and the Williams
et al. approach for all-electron calculations. )

Since the perturbation potential due to a deep im.purity
is usually localized near the impurity site, the space
spanned by the basis set can be divided into two sub-
spaces. Subspace I with wave function gi '(r) overlaps the
perturbation potential of the impurity, whereas subspace

II with wave function f' "(r) is orthogonal to subspace I
and is affected little by the perturbation potential. The
impurity wave functions, f; ~(r), can be written as

(r) =P"'(r)+ P'"'(r) (1)

where (p"'(r)
~

g'"'(r) ) =0. Since in the impurity
Green s-function approach it is sufficient to use basis
functions where the perturbation potential is nonzero, all
further calculations will be limited to subspace I (hereafter
referred to as the impurity orbital subspace).

Plane Waves
Method

LCAO
Method

-,S,i
1.0 :—:',-::':::~"'~

0.5
LLI

0.5

0.0 0.0

l X L
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I I l t I ~ ~ I I ~ II
X

FIG. 1. Calculated band structure for silicon by (a) the
plane-waves method and (b) the LCAO method, both using the
same crystal pseudopotential.

B. Host crystal bands

The Bloch functions P„(k,r) of the host (H) silicon
crystal are expanded in an LCAO (linear combination of
atomic orbitals) form using ten (s, p, d, and f) Slater orbi-

and xyze ' centered on each silicon site. The Bloch
functions P„(k,r) are given by the Fourier transformation
of Ft '(r —R;), where n denotes the band index (a com-
bination of the angular momentum l and the partner in-
dex A, ) and R; is the lattice site vector. These ten Slater
orbitals centered on each silicon site are sufficient to
reproduce the empirically fitted pseudopotential band
structure. The exponents a& and a2 are 1.9(2'/a) and
2.0(2m/a), respectively, where a is the lattice constant of
silicon. To evaluate the Hamiltonian matrix conveniently,
we expand these P„(k,r) in a plane-wave basis as before, 5

using about 80 plane waves (kinetic energies lower than 80
eV). Since it is not possible to reproduce with any useful
accuracy the experimentally observed interband transi-
tions by an ab initio pseudopotential using the local-spin-
density formalism, we adjust the pseudopotential to repro-
duce the overall results of Cohen and Bergstresser. Fig-
ure 1 depicts the LCAO band structure along with its
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parent plane-wave band structure. The two are in good
agreement with each other (e.g., the band gap and the
width of the valence band are 1.09 and 12.4 eV in the
LCAO basis and are 1.07 and 12.7 eV in the plane-wave
basis).

C. Basis functions in the impurity orbital subspace

The basis set spanning the impurity orbital subspace
consists of local host basis functions and local impurity
basis functions. Both are impurity centered.

1. Impurity-centered host basis set

For the local host basis set we choose the same radial
orbitals Fi '(

I
r

I
) that were used in the host crystal

LCAO band structure in Sec. III 8, however, we translate
them to be impurity centered, i.e.,

yI', A,
( ) g(H)(

I

'

I

)~I',A,
( (2)

where Fi' '(
I

r
I

) denotes hostlike radial basis functions
for angular momentum l =s, p, d, and f, centered on the
impurity site, and Ei ' (r) are the Kubic harmonics with
the same origin. Here, I denotes the representation, and
A, is the partner index. Using this impurity-centered local
host orbital fi ' (r), we calculate the ordinary unperturbed
Green's function Gii'„"iz.(e) projected on the fi"' (r) orbi-
tal at the tetrahedral interstitial impurity site as

(I,l, A,
I
n, k) (nkI , I",l', A, ')

n, k &—
&n, k

where
I I,l, A, ) compactly denotes fi"' (r), whereas

I
n, k)

denotes the Bloch states P„(k,r) for band index n and
wave vector k, and e„k are the corresponding band-
structure energies.

2. Impurity basis set
In addition to the hostlike basis functions fi"' (r), we

define also the impurity (I)-like basis function g&i (r) in
analogy with Eq. (2), as

gpi (r)=Fpl (
I

r
I

)Ki" (r'' (4)

Here, Fzi'~(
I
r

I
) are the spin-dependent numerical impur-

ity (I) radial orbitals with the principle quantum number
p, orbital momentum l, and spin index o = + for
majority-spin states, and sr= —for minority-spin states.
We extend pl to ls, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, and 4f.

Since core polarization is very sensitive to the basis
set, we choose a nonlinearly varied ("dynamic") impuri-
ty basis set. We optimize the impurity-centered local-
impurity orbitals g&i (r) iteratively by solving the "effec-
tive impurity Schrodinger equation, "given by

I:
——,

' ~'+~I' (
I

r
I
)+ &'"'(

I
r

I
)jF,~i. (

I

r
I

)

=ei i~Fbi~( I
r

I
)

Here, b, V~(
I

r
I

) denotes the perturbation potential deter-
rnined from the Green's-function problem (see below), and
p'H'(

I
r

I
) is the fixed host crystal potential at the inter-

stitial region evaluated as in Ref. 39. Since the spin and
charge densities extend beyond the impurity site itself, we
use a single site but extended basis sets [g„"i (r)J and
jfi"' (r)J, spanning a large volume around the impurity.
During the self-consistency iterations, riot only the linear
coefficients of (g&~ (r) j are modified, but so is the poten-

While we can regard the 4s, 4p, 4d, and 4f impurity
basis orbitals g&i~(r) as perturbed versions of the s, p, d,
and f orbitals, respectively, of the (impurity-centered) lo-
cal host orbitals fi"' (r), there is nothing in the unper-
turbed LCAO set that corresponds to the localized 3d
states and to the hyperlocalized core states if we limit the
number of host bands to the first 20 or so bands.
Consequently, the ordinary impurity Green's-function
method becomes impractical owing to the many host
bands (10 —10 ) it requires, as discussed by Lindefelt and
Zunger. They have developed a simple method —the
quasiband approach —for effectively circumventing this
problem. It has and continues to be used for numerous
applications. ' ' ' ' ' Here, for the sake of experimen-
tation, we try the alternative Williams, Feibelman, and
Lang adspace augmentation instead of the equivalent
quasiband method for generating a variationally suffi-
cient Green's function. According to the adspace idea of
Williams et al. we can perform the projection to the im-

purity orbital subspace using the added impurity-centered
local-impurity orbitals g&i~(r) defined in Sec. IIIC. In
the impurity orbital subspace we use the augmented
Green's function G(e), which is separated in two parts;
one is the added orbital block which is constructed from
the 3d orbital and the core orbitals (ls, 2s, 2p, 3s, and
3p), and the second is the ordinary Green's-function block
constructed from the 4s, 4p, 4d, and 4f outer orbitals.
The augmented perturbed Green's function G(e) is de-
fined using the matrix element of the perturbed Hamil-
tonian H as

(eS H)G(e) =I, —
where S is the overlap matrix and 3. is the unit matrix. In
addition, we define the augmented unperturbed Green's
function G (e) using the unperturbed Hamiltonian Ho
and the corresponding overlap matrix S, as

(eS H)G (e)—:3. —
where

G (e)=

'5p, hr, p, 'l'a'
0E' —E~(~

0

Go(e)

tial of Eq. (5). As a result, changes in the wave function
amplitude both at the impurity nucleus and its neighbors
are taken into account in the self-consistency cycle. Note,
however, that only the impurity-induced changes in charge
and spin densities need to be updated iteratively in this
Green's-function approach.

The impurity orbital subspace can be decomposed in
the case of an interstitial 3d impurity into the irreducible
representations of the Td group as a&, t2, and e. The a&
representation is formed from the ls, 2s, 3s, 4s, and 4f
orbitals; the t2 representation is formed from the 2p, 3p,
3d, 4d, and 4p orbitals; and the e representation is formed
from the 3d and 4d orbitals, respectively. We neglect in
this application the t& representation (having contribu-
tions only from l =4 and beyond) and the a2 representa-
tion.

D. Augmented Careen*s function and the Dyson equation
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E. Calculated properties

The host crystal local density of states, n r i'(e), project-
ed on the impurity-centered local host orbitals fi"' (r)
(i.e., given in subspace I) is calculated directly from the
Careen's function as

nPi'(e) = ——g 1m[6 (e)]r g„,
Mg

(10)

where Mi is the number of members in the partner I,.
The impurity local density of states, n r„i(e), projected on
the impurity-centered local-impurity orbitals g„i (r), is
given similarly by

n r i i(e) = — g I ™[6«)]r,i li, ~

Mg

The change in the local density of states hnr &i(e) is de-
fined as the impurity-induced piece, i.e, the difference

b, nr „i(e)=nr „t(e) n'r i'(e) . —

The change in the charge density bp ( I
r

I
) is similarly

defined as

~p ( Ir I
)= g dI [pr, it( IrI &

—pPi'( IrI &]
I,pl

where pr i is the perturbed charge density for spin o and
ppi' is the unperturbed (and unpolarized) host charge den-
sity. p~ l and p~ l' are calculated by projecting the density
of states on the corresponding local orbitals, i.e.,

pr, ii( IrI &= f nr, it«) I+i.i' ( IrI &
I
«(14)

and

ppi'(
I
r

I
& = f '

n pt'(e)
I
+i' '(

I
r

I
)

I

'de . (15)

Here, I'&l' and I'l' ' are the impurity and host radial orbi-
tals of Eqs. (4) and (2), respectively, eF is the Fermi ener-

gy, and dI denotes the number of the partner in the I
representation.

The number of electrons occupying bound states in the
'band gap in the impurity orbital subspace is defined as

Here, 5&t &t /(e —e&i ) represents the added 3d and
core orbital block, e&i is defined as epi =Hpt p'7, , and0 0 0

60(e) is the ordinary unperturbed CTreen's function of Eq.
(3). The augmented perturbed Green's function G(e) cor-
responding to the perturbation potential 5U= (H—H—)—e(S—So) is related to 6 (e) by Dyson's equation:

G(e)=G (e)+6 (e)(5U)6(e) . (9)

In this equation, the one-to-one correspondence of the
basis function in 6(e) and in G (e) is (4s-s), (4p-p),
(4d-d)„and (4f f) for the ordinary Green's-function
block. In Eq. (8), we can think of e&t as the energy of the
atomic 3d orbital or the core orbital which corresponds to
the higher-energy states in the quasiband structure of Lin-
defelt and Zunger. [However, here this constant is arbi-
trary, since whatever constant we use for the 3d orbital
and the core orbital block of Ho is subsequently removed
when we construct the 3d and the core orbital block of the
perturbation matrices 5U=(H H) —e(S——S ).]

&,i=nb

Icosi

I' (16)

per orbital, where nb denotes the occupation number of
the bound states, and the impurity wave function in sub-
space I is

f"'( )= g c„g„"' ( ) .
pli, ,a

(17)

The normalization condition of Eq. (17) in the whole
space is

(18)

The total change in the number of states for the irredu-
cible representation I below the given energy e (i.e., the
phase shift) 5r(e) is given by

5r(e)= ——ImlndetII1 —6 (e)5UIIr .

Since 5r(e) gives the information in the whole space, we
can obtain the information on subspace II combined with
the information from 4nr &i(e) in the impurity orbital
subspace without expanding the perturbation to the sur-
rounding host silicon shells.

The total change in the magnetic moment AM induced
by the impurity atom is calculated from the change
N+(eF) and N (eF) in the number of states for each spin
below the Fermi level ez by

hM =N+(eF ) N(eF ) .— (20)

The charge neutrality conditions, i.e., the Friedel sum
rule, requires

bZ =N+(eF)+N (eF),

where hZ is the change in the charge. In the case of an
interstitial impurity we have AZ =Z, where Z denotes the
atomic number of the impurity atom in the case of neutral
impurity.

The impurity-induced change in the local magnetic mo-
ment hm (i.e., in the impurity orbital subspace) is related
to the change in the local density of states hnr &i(e) of
Eq. (12) by

5m = Q [pr Ft(EF) pr p ( i)e)F
I,pl

where
EF

p r,&t(&F ) =d I f ~n r i,i(e)de (24)

denotes the occupation number of the pl component of
the I representation with spin o in the impurity orbital
subspace. Since hM gives the total magnetic moment in
the whole space, and b m gives the local magnetic moment
in the impurity orbital subspace, we can find out how
much of the spin density is expanded through the crystal
using the difference between ddsc and hm.

The effective local orbital occupation number N„i(e) in

N (eF) is related to the phase shift 5r(eF) of Eq. (19)
through

N (eF)= g d15F(eF) .
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the valence band is defined as

X&I(e)= g dI J b.nr pI(E )dg .
r, ~

(25)

Hh'f = p~5p(0) =524.25p(0) kG,
3

(26)

where pz is the electron Bohr magneton, and 5p(0) is the
spin density at the nucleus (in a.u. ) defined by

5p(r) =bp+(r) —hp (r), (27)

where the impurity-induced change in the charge density
for spin o, i.e., bp (r) is defined in Eq. (13). The hyper-
fine field from contribution (ii), Hh'f', is related to the g
shift hg and the average of r over the orbital ( 1lr )„
ai e=e+ as

Hhf' =2pgbgS( 1 lr ),„=125bgS( 1 lr )„kG . (28)

The isomer shift of iron as observed in the Mossbauer
effect is given by

2 2Z

3E
'

[ I d. (0)
I

' —14,(o)
I
']a(r„'&

= —0.157[
~ P, (0)

(

—
( P, (0)

) ] (in mm/sec), (29)

where Er denotes the energy of the resonant gamma ray
(14.4 keV), Z is the nuclear charge, b.(r„) is the change
in the second moment of the nuclear charge distribution
accompanying nuclear excitation (in units of 10 f~),
] P, (0)

~

is the electron charge density of source nuclei at
the nucleus, and

~ P, (0)
~

is the charge density of the ab-
sorber (both in a.u.). In Eq. (29), we use
b, (r„)= —14.3 X 10 f, which is determined from the
Mossbauer experiment of the free ion (Fe and Fe+) in Xe
and the density of the free atom using the Dirac-Fock-
Slater method.

G. Perturbation potential and the self-interaction
problem

Most electronic structure calculations on transition
atom impurities in semiconductors ' ' ' ' ' were
performed within the local-spin-density formalism
(LSD), implemented either in an extended-crystal
Careen's-function approach ' ' ' ' or within finite-
cluster models. ' Involving a local statistical approxi-
mation to exchange and correlation, the local-spin-density
approximation, much like its predecessor, the Thomas-

F. Impurity hyperfine field and isomer shift

The main contributions to the hyperfine field of a mag-
netic impurity are (i) the contribution from the Fermi
contact interaction (including Fermi direct contact in-
teraction and core polarization), (ii) the contribution from
the interaction with the orbital magnetic moment of the
electrons, and (iii) the contribution from the dipole-dipole
interaction. Contribution (iii) is usually as small as a
few kilogauss (kG), and will be ignored here. The hyper-
fine field from the contribution (i), H'„'f, is related to the
spin density at the nucleus" 5p(0) by

~ VLsD[PI]= ——+ &,-.[~pl+ V..[p '+~p ]

per [
—(H)] (30)

Fermi model (but unlike the Hartree-Pock model) involves
an unphysical interaction of each spin orbital with itself
(self-interaction). This sets up spurious self-Coulomb
repulsion, self-exchange, and self-correlation interactions.
Whereas these terms have a vanishing effect on extended
delocalized states, they may have a significant effect on
localized states. Such is the case for isolated transition
atoms, where a self-interaction free model shows that,
relative to LSD, (i) the 3d orbitals move to substantially
more negative energies (thereby increasing the s-d separa-
tion); (ii) the 3d orbitals become more localized, whereas
the non-d valence orbitals become more expanded; (iii) the
exchange splitting between spin-up and spin-down 3d or-
bitals increases; (iv) the contact spin density at the nucleus
is increased; (v) the total exchange energy becomes more
negative, whereas the total correlation energy becomes less
negative; and (vi) the total ground-state density becomes
more localized. Whereas self-interaction corrections were
applied recently with substantial success to atoms, mole-
cules, and solids, ' showing significant improvements
relative to the uncorrected formalism, until recently
they were not considered for impurities. Of particular in-
terest here are the interstitial 3d impurities that are likely
to maintain their localized atomiclike characteristics more
than the substitutional impurities, as the former have only
weak bonds with the (chemically saturated) host ligand
atoms. Here, application of the uncorrected local-density
formalism within a 17-atom cluster with hydrogen termi-
nators and spherically symmetrized atomic potentials
has first shown reasonable results. In particular, the
high-spin (S = —,

'
) ground state of Si:Fe+ was correctly

predicted. However, subsequent calculations "have in-
dicated that this success resulted primarily from the un-
derestimation of the crystal-field (CF) splitting
(b.cF——0.025 eV was obtained in Ref. 50) attendant upon
the spherical approximation to the crystal potential.
When nonspherical components were introduced self-
consistently, "AcF increased and outweighted the ex-
change splitting h~, producing thereby a low-spin ground
state, in contrast with experiment. It was further
shown '" that, whereas the local-spin-density formalism,
when carried out with the full-potential anisotropy, does
not describe correctly the symmetry of the many-electron
ground state (much like the situation in free atoms), a
self-interaction free model produces the correct result.
Since, however, the earlier self-interaction corrected (SIC)
were applied perturbatively. ",it seems to us to be of in-
terest to apply them now nonperturbatively (i.e., self-
consistently) and examine the consequences of this ap-
proach. To this end, we have carried out self-consistent
spin-polarized calculations for Si:Fe and Si:Fe+ using the
impurity Careen's-function approach with general poten-
tials and the self-interaction correction. We discuss below
the construction of the perturbation potential in this ap-
proach.

For the case of LSD, the spin-polarized perturbation
potential 6VLsD is given by
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where V, , and V„, are, respectively, the electron-electron
(e-e) and exchange-correlation (xc) potentials in LSD (we
use the Ceperley-Adler exchange correlation as given by
Perdew and Zunger ), p' ' denotes the charge density of
the host crystal, ad Ap denotes the charge perturbation
for spin o. pi is the total impurity (I) charge density de-
fined by pI P' '——+bp(

I

r
I

). Bars indicate that the
charge density is computed self-consistently from the
LSD potential. For the case of SIC-LSD, we have

~ VsIc-LsD [pl ]=~ VLSD [pI ]—~Vsic (31)

(32)

It consists of a self-Coulomb (first-term) and a self-
exchange-correlation (second-term) correction. Here, qadi
are the occupation numbers (used here as 1 for occupied
spin-orbitals and 0 otherwise) and F&i' are the impurity-
centered radial orbitals of Eq. (4). We compute
F„'i' (

I
r

I
) by averaging over the degenerate partner orbi-

tals before filling the states. We start with some trial or-
bital set IF&~' (

I

r
I

) I and use it to compute the perturba-
tion matrix elements in this local orbital representation.
Using it, we solve Dyson's equation [Eq. (9)] to obtain the
perturbed Green's function from which we obtain the lo-
cal density of states n fbi(e) i.n Eq. (11) for all representa-
tions I =a i, e, and t2. Projecting it (as well as the unper-
turbed host density of states) on the local orbitals
Fzi~( I

r
I

) and summing over all occupied states, we ob-
tain the impurity-induced change in the charge density
bp (

I
r

I
) of Eq. (13). This is then used in Eqs. (30) or

(31) to construct the new perturbation potential. Together
with the (fixed) host crystal potential V' '(

I

r
I

), this
gives the effective impurity potential used to solve for the
new impurity local orbitals IF„'i' (

I
r

I
) I in the effective

impurity Schrodinger equation of Eq. (5). The process is
repeated iteratively until self-consistency in b, V(

I
r

I
)

(equal or better than 0.8 mRy) is obtained. We use the
Jacobian update method to obtain very rapid conver-
gence.

The main approximations in our calculation involve the
neglect of space correlation energies and of lattice distor-
tions. Recent calculations of the multiplet energies for 3d
impurities in semiconductors suggest that most (but not
all) of the multiplet energy in exchange derived and,
hence, well represented by a spin-polarized calculation.
The use of unrelaxed lattice geometries seems justified
since (i) experimentally, there is no measurable static
Jahn-Teller distortion' in Si:Fe+, (ii) there is an isotropic
g shift and hyperfine coupling constant, ' and, theoreti-
cally (iii) Lindefelt and Zunger find small (-3'%) sym-
metry conserving distortion based upon their nonmagnetic
quasiband crystal-field calculation.

where 6VfsD [pi] is the LSD perturbation potential com-
puted from the density pi(r) [self-consistent for SIC po-
tentials, rather thanpl(r) as in Eq. (30)], and 5Vg c is the
orbital-dependent self-interaction correction, i.e., Refs. 53
and 56,

IV. RESULTS

A. Unperturbed Careen, 's function

Figure 2(a) depicts the total host crystal density of
states and Figs. 2(b)—2(h) show the ordinary unperturbed
Green's function Go(e) of Eq. (3), including its real part
and imaginary part (shaded). We note that ImG, , '(e)
[solid lines in Fig. 2(b)] has three peaks inside the valence
band. The first peak at E„—11 eV is constructed pri-
marily from the tails of the s orbital on the neighboring
silicon atoms. The second peak at E,—7 eV is composed
of the tails of s and p orbitals. In contrast, the third peak
at F.,—4 eV is constructed mainly from the tails of the p
orbitals of the six octahedrally coordinated second-
neighbor silicon atoms (whose distance from the
tetrahedral interstitial impurity site is 1.15 times the
nearest-neighbors distance). In the imaginary parts of the
Go(e) for the d orbital component in the tz and e repre-
sentations [Figs. 2(f) and 2(h), respectively] we note that
the amplitude of ImG~'~(e) [Fig. 2(h)] is larger than that

of ImG~ ~'(e) [Fig. 2(f)] at E, —4 eV to E, —1 eV region.
O, t2

Note that ImG~ ~'(e) is constructed mainly from the tails
of the p orbitals on the four tetrahedrally coordinated
nearest neighbors; on the other hand, ImG~'~(e) at F., —1

eV is constructed mainly from the tails of the p orbitals
on the six octahedrally coordinated second-neighbor sil-
icon atoms. The larger coordination of the second neigh-
bors outweighs the difference in the distance between the
impurity site and its neighbors. Because the amplitude of

O, e O, tz
ImG~'q(e) is larger than that of ImG~ ~ (e), we expect that
the 3d impurity orbital in the e representation can have a
larger hybridization with the tails of the sp hybrid orbi-
tals on the surrounding silicon atoms compared with the
t2 states. This is the key to understanding the crystal-
field splitting between the e and t2 representations of the
3d impurity states at the tetrahedral interstitial site, as
will be discussed in Sec. V..

We also note that the representation-by-representation
local density of states of Si, projected at the interstitial
site [Figs. 2(b)—2(h)] is significantly different from the
distribution of states given by a small silicon cluster
model. Since the impurity states of an interstitial 3d
'atom in silicon evolve from the hybridization of an atom-
ic 3d orbital with these distributions, it is not surprising
that our Careen's-function calculation gives substantially
different results than the cluster calculation (see also Sec.
V E). The fundamental reason for this difference is that a
small cluster model, involving a hierarchy of ligand shells
(i.e., first- and second-nearest neighbors to the tetrahedral
interstitial site ) does not represent correctly the hierar-
chy of peaks in the local density of states (Fig. 2). Stated
simply, the host states of symmetries e and tz (relative to
the interstitial site) are misplaced in the small cluster
model relative to the continuum representation (compare
Fig. 3 in Ref. 50 to our Fig. 2), leading to a different pat-
tern of hybridization. We will return to this point in Sec.
VE.
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FIG. 2. (a) Total host density of states calculated by the LCAO method, and (b)—(h) the unperturbed ordinary Green's function
G '~ (e), for the representation 1 =a&, e, and tq and the orbital components a=s, p, d, and f. The dotted (solid) line shows the real
(imaginary) parts of the Green s function. The vertical horizontal lines denote the band edges.

B. Impurity levels of Si:Fe in the SIC-LSD approach

Figure 3 shows the phase shifts 5r(e) [defined in Eq.
(19)] which gives the change in the number of states of the
irreducible representation I below a given energy e in the
whole space (not just in the impurity orbital subspace) for
each spin o. Figures 4, 5, and 6 show the change within
the impurity orbital subspace b,n r ~(e) in the local density
of states for each orbital component (a=pl), spin o and

representation I =a
& (Fig. 4), e (Fig. 5), and t2 (Fig. 6), as

given in the SIC-LSD formalism. The number of elec-
trons Qz~ [cf., Eq. (16)] in gap bound states in the impuri-
ty orbital subspace for each plcr spin orbital, is also indi-
cated in these figures. Figure 7 summarizes schematically
these results as an energy-level diagram: it shows the
peak energy and width at half value in the local density of
states in impurity orbital subspace. For the a

&
representa-

tion, the three peaks of 5, (e) [i.e., Figs. 3(a) and 3(b)] in-
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Phase Shifts: LSD-SIC
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FIG. 3. Phase shift, 5r(e}, of Si:Fe calculated in the LSD-SIC method for spin o. (+ or —) and representation I =a~, e, and t2,
showing the bonding ( b}, antibonding (a), resonances (E.), virtual bound states (VBS), and bound states (BS).

side the valence band correspond to the resonant states
(R) caused by the attractive impurity potential in at rep-
resentation. These resonant states are delocalized in the
impurity orbital subspace, as there is little charge in
+tl 4g(e) and 611@ 4f(e) (cf., Fig. 4) at the vic. inity of the

resonant energy in the impurity orbital subspace. For the
e representation, a large hybridization between the impur-
ity 3d orbital and the tails of the sp hybrid orbitals of
the surrounding silicon atoms gives rise to the bonding
(b) states [i.e., e in Figs. 7, 3(c), and 3(d)] inside the
valence band and to the antibonding (a) bound states (BS)
[i.e., e' in Fig. 7 and e in Fig. 3(c)] being pushed up

into the band gap. The bonding states (e ) are mainly
constructed from the 3d orbital. The antibonding BS in

the band gap are more extended than the e states. Forb

the tz representation, we find the two delocalized resonant
(R) states [i.e., t in Figs. 7, 3(e), and 3(f)] inside the
valence band. In addition, we also find the bonding (b)
valence-band states [i.e., t in Figs. 7, 3(e), and 3(f~)and
the antibonding virtual bound states (VBS) (i.e., t in
Fig. 3) at the top of the valence band for up-spin states.
The bonding states (t )in ~Figs 3(e) and 3.(fl are con-
structed mainly from the 3d orbitals, whereas the anti-

bonding states [i.e., t~ in Figs., 3(f)] have less 3d charac-
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Change of the Local Density of States
in Impurity Subspace: LSD-SIC
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ter. For down-spin states, because of the exchange split-
ting this antibondinq state is found in the band gap as a
bound state [i.e., (t ) in Fig. 3(f)]. We define the ex-
change splitting 6„' as the difference be'tween the down-

spin and up-spin one-electron orbital energies which carry
most of the impurity 3d character. For the e representa-
tion, we find these to be the bonding e+ orbitals, hence
5„' =e(e ) —e(e+ ). For the t2 representation we similar-
ly have b,„'=e(t~ ) e(t+). Note th—at other definitions
are possible too, e.g., one would have used the splitting be-
tween the antibonding t+ orbital energies as a measure for

However, these orbitals are not the counterparts of
the atomic d+ orbitals which define the exchange split-
ting in the atomic limit. A third definition, of the "effec-
tive exchange energy" is possible too (i.e., differences in
total energies required to Aip a spin in a given representa-
tion) but will not be used in the present work. We define
the crystal-field splitting as the difference bcF=e(e+)

—e(t+ ) (e.g., Figs. 7 and 3). The width in the local densi-

ty of states of eb is larger than that of t [cf., Figs. 5(a),
5(b), 6(a), 6(b) and 7], because the stronger hybridization
induces a larger width in the local density of states. We
find b.„ to be 0.7 eV and the crystal-field splitting b,cF is
0.8 eV. The ratio between the exchange splitting and the
crystal-field splitting, b,„/b, cF, is 0.88, i.e., our results
suggest that crystal-field effects surpass exchange effects
in the neutral charge state.

The three impurity-induced a I valence-band resonances
(i.e., Figs. 3 and 7) are largely delocalized and hostlike:
The total change in the number of states is O. l —0.2 near
the energy of these resonances. On the other hand, the
change of the local density of states (LDOS) in this energy
region in impurity orbital subspace is only 0.01—0.02.
These resonances contribute a small local magnetic mo-

ment Am, , =0.01p~. %e find broader, bonding e

states in the valence band, which peak around E,—2.8 eV
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C. Impurity levels of Si:Fe in the LSD approach

Figure 8 shows the phase shifts 5f(e) given by Eq. (19)
in the LSD formalism. Figure 9 shows the change of the
local density of states b, nr ~(e) of orbital component
a=3d, 4s, and 4p for each spin o =+ and representation

' I =a&, e, and t2 in the impurity orbital subspace. Figure
10 shows the peak energy and the width at half value of
the local density of states in the impurity orbital subspace.
The overall feature of the calculated results is qualitative-
ly similar to that obtained in the SIC-LSD method (i.e.,
Sec. IVB), but the exchange splitting b,~ in the LSD is
about 0.3 eV, less than half its size in the SIC-LSD calcu-
lation (b,„=0.7 eV). The crystal-field splitting AcF is
now 0.9 eV, i.e., a little larger than that in the SIC-LSD
(i.e., AcF ——0.8 eV). The ratio between the exchange split-
ting and the crystal-field splitting, b,„/b, cF, is 0.33, con-
siderably smaller than that in the SIC-LSD result (i.e.,
b,„/b, cp ——0.88).

9
R

t+-rxrrxrxzxrxxxztin
R~/////r///rrr///g

8+

tRvr / /////// / // / / IA

I/ II// r II r II I I I I~

Si:Fe'
LSD-SIC

-12-

FIG. 7. Calculated impurity-induced levels and the width of
the half value of the peak for Si:Fe in SIC-LSD, showing the
bonding (b), antibonding {a},resonance (R), up-spin {+), and
down-spin ( —) levels.

[i.e., Figs. 5(a) and 5(b)] and carry a local magnetic mo-
ment of b,m, =0.78pz. Their antibonding (up-spin)
counterpart is in the gap at E, +0.44 eV and contribute
hm, ' =0.38pz. The tz states appear first as two deep
resonances peaking at E„—8.5 eV and E„—6.5 eV, then a
bonding resonance at E, —1.8 eV whereas the antibonding
states (i.e., Figs. 3 and 6) appear just near the valence-
band maximum (VBM), contributing together a local
magnetic moment of Am, =0.81pz. The down-spin t2

state at E,+0.26 eV is occupied in the neutral ground
state by three electrons and contributes a negative local
magnetic moment of Amtg'P = —0.58p~.

To summarize, we find the most (-80%) of the 3d
amplitude in the impurity orbital subspace in Si:Fe exists
as localized resonance inside the valence band, dominating
the magnetism (hm = 1.61pz versus bm 8'~

= —0. 19p,11), and the impurity charge (6.76 out of 8.0
valence electrons are in the valence band, and 18 are in the
core). We will see that this coexistence, in a similar ener-

gy range, of localized impurity states with itinerant host
states with which charge can be exchanged without sur-
passing an excitation barrier, is the key to the remarkable
stability of various charge states.

D. Orbital configurations and moment distributions

The total impurity occupation hZ in the whole space is
given by Eq. (22). From the phase shifts 5r(e) shown in
Figs. 3 and 8 we calculate hZ and divide it into two con-
tributions: from the valence band denoted as VB states
(including here occupied core states) and from the gap
states denoted as gap. These are shown in Table II for the
SIC-LSD and LSD (they are identical in both cases). We
find that b,Z satisfies the Friedel sum rule (b,Z =26.0)
and that the total charge is shared in a 1:3 proportion be-
tween the e and t2 states [total representation occupations
of (core)' ' a, ' e t2 ]. Hence, there are five gap elec-
trons (two in e with spin-up and three in t2 with spin-
down), contributing a total magnetic moment of —1@~.

The local-impurity orbital occupation number Nzt(e) in
the impurity orbital subspace is given by Eq. (25). We
calculate N&1(e) and divide it into the same two contribu-
tions: valence band and gap states. They are shown in
Tables III and IV for the SIC-LSD and LSD cases,
respectively. We find the total charge in the impurity or-
bital subspace to be p =25.7236e in the SIC-LSD case and
p =25.4448e in the LSD case. Whereas the total charge
hZ in the whole space is 26.0, the charge in the impurity
orbital subspace is less than b,Z. Therefore, locally, iron
has a small positive net charge (nuclear charge minus elec-
tronic charge) Q„«——0.276e in SIC-LSD and
Q„„=0.555e in LSD, indicating a small Fe-to-Si ionic
charge transfer. We hence find that 99% (98%) of the
electron charge [i.e., (1—Q„«/AZ)100] is localized in the
impurity orbital subspace in the SIC-LSD (LSD) models.
We find that, in agreement with the nonmagnetic quasi-
band crystal-field (QBCF) calculation and with Ludwig
and Woodbury, ' "a population analysis of the electronic
charge (Tables III and IV) reveals that the s electrons are
largely transferred into d orbitals [effective orbital config-
uration calculated from Eq. (25):

(core)18.04@0.064p —0. 133d 8.184d —0.384f —0.00

for SIC-LSD and

( core )
18.04 —0.114 0.083d 7.914d —0.434f —0.00
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for LSD]. This s~d population inversion decreases the
effective size of the atom (as extended s states are convert-
ed to more localized d states) without converting it into
ion. Therefore, this suggests a simple chemical reason for
its fast diffusivity and low solubility —the occurrence
of a rather small diffusing species.

The total magnetic moment AM in the whole space is
given by Eq. (20). From the phase shifts 5r(e) shown in
Figs. 3 and 8 we calculate AM and divide it into a
valence-band contribution and a gap contribution (Table
II). In the calculation of the magnetic moment, we as-
sume the g factor to be 2.0 for the 3d states of iron im-
purity. Hence, not surprisingly, we find a total moment

hM =2.0p~ per iron impurity.
The local magnetic moment Am in the impurity orbital

subspace is given by Eq. (23). From the change of the lo-
cal density of states b,nr &l(e) given by Figs. 4, 5, 6, and
9, we calculate Am, given in Tables III and IV. We find
local moments of Am =1.42pz in the SIC-LSD case and
Am =1.14pz in the LSD case. Whereas the total mag-
netic moment bM is 2.0@~, much like in the d free
atom, the local magnetic moment Am in the impurity or-
bital subspace is reduced and the remaining

1 — '
X 100=29%%uo

1.42
2.0
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of the magnetic moment is delocalized through the crys-
tal, indicating substantial covalency. This local moment
is reduced both relative to that of the bulk silicide
FeSi (1.94—2.38@II), and to ferromagnetic iron (2.2tu, s
[Ref. 58(b)]). A population analysis of the local moment
(Table III) shows it to evolve primarily from the valence d
orbitals [distribution of local magnetic moments among
the various orbitals

( core)0. 004~ 0.014 0.013d l.294d 0. 104f0.00]

to be shared in a 5:1 proportion between the e and t2
valence representations [distribution of local magnetic
moments among the various representations of

( or )0..00 0;01 1.17I0.24'

and to be. dominated by the valence-band resonances
(b,m =1.611LIs), with a smaller contribution from the
gap states (Am s'~= —0. 19ps ). The significant difference
between the Fe impurity in silicon as opposed to 3d im-
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(6.43) form resonances in the valence band, and 0.96 (1.02)
appear as gap states, in the SIC-LSD (LSD) calculation,
respectively. Regarding the magnetism, we find that most
of it evolves from the valence-band resonances: Out of
the 6.76 (6.43) valence electrons, 5.15 (5.23) electrons re-
side in two-electron bonds, whereas the remaining 1.61
(1.20) are uncoupled from the electron pairs and contri-
bute to the local magnetic moments. In addition, the 0.96
(1.02) electrons in the gap levels contribute an opposite
term to the local moments, i.e., —0.19 ( —0.06). This can
be compared with the qualitatively similar Pauling-
Zerner ( ' population analysis of ferromagnetic iron: In
their description 5.78 of the iron electrons form (spd)
two-electron bonds, whereas the remaining 2.22 electrons
are unpaired, contributing to the saturation moment.

E. Hyperfine field and spin density
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purities in ionic crystals is that in the former case, most
of the amplitude of the 3d spin orbitals exists as localized
bonding resonances in the valence band, whereas in the
latter case, the d orbitals are isolated as nonbonding
states, appearing exclusively in the band gap.

Hence, we conclude that out of the 8 valence electrons
of Fe, 0.276 (0.555) are delocalized away from the impuri-
ty site in SIC-LSD (LSD) calculations, respectively. Of
the remaining 7.72 (7.44) iron valence electrons, 6.76

FIG. 10. Calculated impurity-induced levels and the width of
the half value of the peak for Si:Fe in LSD, showing thy bond-

ing (b), antibonding (a), resonance (8), up-spin (+), and
down-spin ( —) levels.

Figures 11 and 12 show the spin density 5p(r) in the
impurity orbital subspace in the LSD-SIC and LSD calcu-
lations. At the impurity nucleus site we find the negative
spin polarization that originates from the negative net
core polarization. On the other hand, in the bond region
at r =0.03—2.9 a.u. , we find a large positive spin polari-
zation originates from the 3d polarization, whereas past
r=2.9 a.u. , we find a small negative 5p(r) due to the extra
localization of the up-spin d orbitals relative to the
down-spin orbitals. The negative spin polarization at the
impurity nucleus is caused by the repulsive intra-atomic
Coulomb interaction between the core electrons and the
unpaired 3d electrons.

In Table V, we show the contribution of each orbital to
the Fermi contact hyperfine field FI'h'r' [i.e., Eq. (26)], both
in SIC-LSD and in LSD. The main contribution to Hh'f'

comes from the negative core polarization of the filled
core s orbitals; however, Hhf is determined by the large
cancellation between the negative contribution from Is
and 2s orbitals, and the positive contribution from 3s core
and 4s orbital. In the SIC-LSD case, the contribution to
the Fermi contact interaction (both direct and core polari-
zation) from the core states is —24.50—278.52
+ 179.70= —123.32 kG for the Is, 2s, and 3s states,

respectively, and that from the 4s (a, -like) valence-band
states is only +8.18 kG, yielding a total contact term of
—115.14 kG-.

The hyperfine field contributed by the electron orbital
magnetic moment [Eq. (28)] is estimated from the experi-

TABLE II. Impurity occupation [Eq. (22)] and total magnetic moment [Eq. (20)] (in the whole space)

for Sj:Feo, calculated both in SIC-LSD and LSD. We present separately the contributions due to occu-

pied states in the valence band (VB, including all lower corelike states), as well as the contribution of the

gap states alone.

VB
Impurity occupation (hZ)

Gap Total
Net Magnetization (AM)

VB (p~ ) Gap (p~ ) Total (p~ )

Core
a&

e
t2
(Sum)

18.0
0.0
0.0
3.0

21.0

0.0
0.0
2.0
3.0
5.0

18.0
0.0
2.0
6.0

26.0

0.0
0.0
0.0
3.0
3.0

0.0
0.0
2.0

—3.0
—1.0

0.0
0.0
2.0
0.0
2.0
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TABLE III. Impurity occupation [Eq. (2S)] and the local magnetic moment [Eq. (23)] in the impuri-
ty orbital subspace of Si:Fe calculated in the SIC-LSD method.

VB
Impurity occupation

Gap Total
Net magnetization

Gap {p~) Total {pz)
Core
a~
e
t2

(Sum)

18.0
0.0577
1.8064
4.9000

24.7641

0.0
0.0
0.3837
0.5758
0.9595

18.0
0.0577
2.1901
5.4758

25.7236

0.0
0.0121
0.7844
0.8136
1.6101

0.0
0.0
0.3837

—0.5758
—0.1921

0.0
0.0121
1.1681
0.2378
1.4180

4s
4p
3d
4d
4f
(Sum)

net

0.0605
—0.1384

7.3217
—0.4769
—0.0028
24.7641

0.0
0.0072
0.8574
0.0949
0.0
0.959S

0.0605
—0.1312

8.1791
—0.3820
—0.0028
2S.7236
0.2764

0.0095
0.0190
1.5675
0.0115
0.0026
1.6101

0.0
—0.0072
—0.2736

0.0887
0.0

—0.1921

0.0095
0.0118
1.2939
0.1002
0.0026
1.4180

TABLE IV. Impurity occupation [Eq. (2S)] and the local magnetic moment [Eq. (23)] in the impurity
orbital subspace of calculated Si:Fe in the LSD method.

VB
Impurity occupation

Gap Total VB (pg)
Net magnetization

Gap (p~) Total (pz)

Core
a)
e
f2

(Sum)

4s
4p
3d
4d
4f
(Sum)

18.0
—0.1141

1.6483
4.8931

24.4273

—0.1128
0.0722
6.9614

—0.4922
—0.0013
24.4273

0.0
0.0
0.4777
0.5398
1.0175

0.0
0.0051
0.9455
0.0669

- 0.0
1.0175

18.0
—0.)141

2.1260
5.4329

25.4448

—0.1128
0.0773
7.9064

—0.4253
—0.0013
25.4448
0.5552

0.0
—0.0017

0.6073
0.5985
1.2041

—0.0022
0.0136
1.1688
0.0234
0.0005
1.2041

0.0
0.0
0.4777

—0.5398
—0.0621

0.0
—0.0051
—0.1149

0.0579
0.0

—0.0621

0.0
—0.0017

1.0850
0.0587
1.1420

—0.0022
0.0085
1.0539
0.0813
0.0005
1.1420

TABLE V. Comparison of different orbital contributions (in
kG) to the contact hyperfine field in Si:Fe .

Orbital LSD SIC-LSD

mentally determined g shift (hg =+0.0676 [Ref. 18(a)]
or 0.0677 [Ref. 18(b)]) and the calculated value of
(1/r ),„at e=eF (for SIC-LSD (1/r ),„=05940.
a.u. , while for LSD (1/r ),„=0.8150 a.u. ). We find
this contribution to Hh~ to be + 5.02 kG in SIC-LSD,
and to be +6.90 kG in LSD. Note that Hh'~' is small and
positive because the orbital magnetic moment is quenched
(l. =0, J=1, S =1 in the case of Si:Fe; tz states are ful-

ly occupied). Neglecting the small dipolar term, the total
calculated Hh~ of —110.12 kG is reasonably close to the
observed value of Hht ~, 147.6 kG [Ref. 18(b)] or 152.2
kG [Ref. 18(a)]. We find a spin density at the Fe nucleus
of 5p(0)= —0.220 a.u. in reasonable agreement with
the observed values of

~
5p(0)

~

=0.282 a.u. 3 [Ref. 18(b)]
or 0.299 a.u. [Ref. 18(a)]. Whereas only the absolute
magnitude of 5p(0) and Hht is available from experi-
ment, ' our calculation shows both to be negative.

F. Doner ionization energy from Si:Fe to Si:Fe+
and the self-regulating response

1$
2s
3$
4s

Total

—19.61
—202.23

136.81
5.21

—'79.82

—24.50
—278.52

179.70
8.18

—115.14

To understand the apparent localized nature of Si:Fe+
with its attendant high-spin configuration,

's we per-
formed calculations for this ionized state. Using Slater's
transition-state approximation, we removed half an elec-
tron from either the e+ or the t' gap levels [Fig. 13(a)],
placing the ionized charge in the conduction-band
minimum (CBM) and seeking a self-consistent solution.
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We find that although the highest occup'ied orbital of the
tate [Fi . 13(a)], the lowest ener-neutral system is the e+ state, ig. a,
eeds instead from the t or i agy ionization process proc

[F' . 13(b)]. Remarkably, upon ionizi gnizin the t or ita,1g.
orbital moves down in energy, p

'

gex osin the t ast ee+ori
hi hest occupied state of the ion and y pthereb roduc-the ig es occ
the observed high-spin (weak-fie ) 'g-~' ld,'confi uration and

=E,+0.32 eV, in gooda donor energy e(t' )—vBM
with the observed value ' ' oagreement wi

'
n in the cluster385+0.01 eV. Unlike the situation in

calculation, no stable acceptor state (Fe, e/Fe ) is found
level that would accommodate the

This

orbital, the highly localized (bonding) spin-up resonances
ce band are relieved from their Coulombin the valence an are r

more ne a-'
h th ionized orbital and move to more g-repulsion wit e io

'

n-s intive energies. e va enTh 1 nce-band resonance for dow - p'

orbital becomes less - i e and-1'k nd more hostlike upon ioniza-

FIG. 13. Calculated impunty-induced d levels for (a) neutral
it shomin therit (b) ositively charged Fe impurity,

'
g

d i -do (—)bonding ( b), antibonding (a), spin-up (+, an spin-
levels in SIC-LSD.

tion. At the same time the d character o g pf the a states
t' ) increases substantially. The net effect is to keep the

total impurity charge almost cons pnstant u on ionization,
b th' '

mainly accomplished because the gap statesbut t is is ma'

( t ecomes muc'
) 0 much more d-like and localize r

because o increase ocr
'

d 1 alization of the valence-ban reso-
nances or own-spinf d -s in states. What appears to be appen-

that the impurity d states for down-spin are ein1ng 1S a
pushed up in energy upon ionization becau
creases of the spin polarization, thereby decreasing the

f the down-spin valence-band reso-impurity occupat1on o e - - o-
them more hostlike) and increasing t enances (ma ing t em mo

s moreof the gap states. Becoming thus mo
localized, their spin polarization increases an e an '-

b't 1 t' is now the highest occupiedbonding down-spin or i a
Hence, this ionization is accompanied by a switc

of 4 /Acp from below unity for Si:Fe
(1.4) for Si: e, wi:F + ith the attendant formation o a high-
spin state an an en ap' d h need local magnetic momen o
h, m =1.87ptI (Table VI). A population analysis of the

(T ble VI) shows a substantial increasemagnetic moment a e
and thein the t2 con ri u

't 'b tions between the ground states an t e
ionized states [distribution of local moments m t e i-
ferent representations is

0.0P 0.01 1.$7 0.24(core) a I e

for Si:Fe versus

0.00 0.02 1.21t0.64(core) a I e

f S' F + ]. This change evolves prima
'

yril from the
'

n of local mo-changed d orbital occupation [distribution
ments from different orbitals is

(core) 4s p0.00 0.004 0.013d 1.294d 0. 104f0.00

for Si:Fe versus

(core ' s 10
0.004 0.014 0.003d 1.734d 0. 114f0.00
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TABLE VI. Impurity occupation [Eq. (25)] and the local magnetic moment [Eq. (23)] in the impurity
orbital subspace of Si:Fe+ in Slater's transition states.

Core
a]
e
t2

(Sum)

VB

18.0
0.0489
1.6286
3.8183

23.4958

0.0
0.0
0.5711
1.5598
2.1309

18.0
0.0489
2.1997
5.3781

25.6267

Impurity occupation
Gap Total VB (~&)

0.0
0.0163
0.6404
2.1973
2.8540

0.0
0.0
0.5711

—1.5598
—0.9887

0.0
0.0163
1.2115
0.6375
1.8653

Net magnetization
Gap (p~} Total (p~)

4s
4p
3d
4d
4f
(Sum)

net

0.0532
—0.1402

6.1647
—0.5776
—0.0043
23.4958

0.0
0.0188
1.8995
0.2126
0.0
2.1309

0.0532
—0.1214

8.0642
—0.3650
—0.0043
25.6267
0.3733

0.0134
0.0264
2.9067

—0.0954
0.0029
2.8540

0.0
—0.0188
—1.1723

0.2024
0.0

—0.9887

0.0134
0.0076
1.7344
0.107
0.0029
1.8653

for Si:Fe+ ]. This population analysis reveals that the
change in the effective orbital configuration between the
ground state and ionized state is small [effective electronic
configuration of

( )18.04 0.064 —0. 133d 8. 184d —0.384f —0.00

for Si:Fe versus

( r )18.04 0.054 —0. 123d 8.064d —0.374f —0.00

for Si:Fe+ ' ]. Hence, the net impurity charge changes
only slightly upon ionization: from Q„,„=0.276e to
Q„„=0.373e for Si:Fe+ (i.e., for each ionized gap e ec-
tron, only 0. 195e is actually removed from the impurity
orbital subspace, the re'maining 1 —0.195=0.805 hole
charge being distributed throughout the crystal). The
reason for this self-regulating response ' is that the
valence-band resonances become more localized upon re-
moval of a gap electron, better penetrating the impurity
site and making up for most of the charge removed by
ionization. The effective Coulomb repulsion U"" is,
hence, very small ' [ U""-—,(b,Q„„) U =0.019U,
where U is the Coulomb repulsion of free ion]; and even
an "overcrowded" d configuration can be stable. This
phenomenon is particular to 3d impurities in covalent
media, where the existence of impurity resonances in the
valence band provides a feedback interaction channel that
does not exist in free atoms or in 3d impurities in ionic
solids. In this latter case, ionized species can be stabilized
by a massive relaxation of the crystal. The self-
regulating response has an obvious implication on the na-
ture of the isomer shift. We discuss this point next.

G. Change of the Mossbauer isomer shift upon ionization

We find a surprisingly small calculated change in the
isomer shift upon ionization, i.e., b,18(Si:Fe )—b, ts(Si:Fe ) = —0.06 mm/sec [using Eq. (29)]. This
change is about 1 order of magnitude smaller than the
change in the free atom upon an ionization, i.e., b.ts(Fe +)
—b, ts(Fe +

) = —0.349 mm/sec and 51s(Fe +
)

—b, &s(Fe + ) = —0.569 mm/sec, using Hartree-Pock
values. ' The mechanism leading to the small change in

the isomer shift upon ionization in our model is simple:
whereas Si:Fe has much of its charge density delocalized
on the ligands, when converted to Si:Fe+, charge flows
from the ligands to the impurity (through orbital relaxa-
tions), causing both Si:Fe and Si:Fe+ to have a compar-
able ionic charge at the impurity nucleus. We find indeed
that the net impurity charge Q„„increases in the impuri-
ty orbital subspace only 0. 195e upon ionization. This
mechanism suggests that the charge density on the impur-
ity site (as could be measured by the Mossbauer isomer
shift) will change only a little by ionizing the impurity,
whereas the largest change in density upon ionization
would occur on the ligands. ENDOR experiments on the
ionized impurity (i.e., in p-doped sample) could be used to
examine this prediction. Unfortunately, while existing
Mossbauer data "indeed show a vanishing change in the
isomer shift of Si:Fe upon ionization, the data available to
date are clouded by the occurrence of complexes.

H. Comparison of SIC-LSD with LSD

In Table VII, we summarize the results of the SIC-LSD
calculation with those obtained by the LSD calculation.
The major effects due to SIC parallel the changes in
atomic calculations discussed in Sec. III G. They are (i) a
strong shift of all the occupied pure d (i.e., e representa-
tion) levels to more negative energies (e.g. , the valence-
band resonance. e+ by 0.42 eV, and the gap level e+ by
0.33 eV), as they are relieved from the (repulsive) self-
interaction; (ii) a corresponding upward shift of the occu-
pied orbitals that contain substantial non-d character (e.g.,
the t+ and t valence-band resonances move up by 0.09b b

and 0.4 eV, respectively, whereas the t' gap level moves
up to 0.08 eV. This is a result of a feedback effect (non-d
orbitals are now screened better by the 3d orbitals that be-
came more localized), similar to that in free atoms (4s, 4p
orbitals expand, 3d orbitals contract due to SIC); (iii) an
upward shift of the unoccupied orbitals relative to the oc-
cupied orbitals (e.g., e+ moves up to 0.42 eV, penetrating
the conduction band). The main consequences of these
SIC-induced shifts are a strong enhancement of b,„/hcF
(from 0.33 to 0.88), an increase in the local magnetic mo-
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TABLE VII. Comparison of the SIC-LSD results with the
results of the LSD calculation for Si:Fe .

the case, more careful LSD-SIC calculations are needed to
correctly establish the theoretical ground-state symmetry.

SIC-LSD LSD

~CF

6„/b cF
Am~~

hm ~'~

gm total

e(t' )

e(e+ )

e(t'+ )

~(e' )

e(e+ )

~(t+ )

~(e' )

e(t )

~hf(i)

total

net

0.70 eV

0.80 eV

0.88

1.6 lpga

—0.19pg
1.42pg

E„+0.26 eV

E„+0.44 eV

E„—0.32 eV

E„+1.21 eV

E„—2.80 eV

E„—1.90 eV

E„—2. 10 eV

E„—1.27 eV
—115.14 kG

25.7236
0.2764

0.30 eV

0.90 eV

0.33
1.20p~

—0.06p~
1.14p~

E„+0.18 eV

E„+0.76 eV

E„—0.20 eV

E,+1.01 eV

E„—2.38 eV

E„—1.81 eV

E,—2. 10 eV

E„—1.67 eV
—79.82 kG

25.4448

0.5552

ment (from l. 14pii to 1.42@ii), a corresponding reduction
of the contact hyperfine field Hht (from —79.82 to
—115.14 kG) and an overall attraction of more electronic
charge to the impurity site [0.31 more d electrons and
0.03 fewer non-d electrons, changing the net ionic impuri-
ty charge from +0.555e (LSD) to +0.276e (SIC-LSD)].
(iv) Since in LSD b,„/b,cF & 1, we do not obtain the exper-
imentally observed high-spin ground state of Si:Fe+. We
do obtain this high-spin ground state of Si:Fe+ (S= —, ,
i.e., Hund's rule, high spin) using the SIC-LSD method,
confirming thereby the result obtained previously in a
non-self-consistent SIC-LSD calculation.

Our results are in marked contradiction with the cluster
calculation of DeLeo et al. who obtained a universal
high-spin configuration in their LSD calculation. It has
been previously shown "that this is an artifact of using
a discrete level structure attendant upon a small cluster
and the neglect of the nonspherical potential components
in the impurity cell. These approximations combine to ar-
tificially reduce the crystal-field splitting in their model,
leaving the exchange as the only strong interaction, hence
5„»b,cF in all cases. Instead, we find that 5 and b,cF
are in general comparable in magnitude and that the bal-
ance between them depends both on the impurity in ques-
tion and its charge state. Extensive LSD-SIC calculations
for all 3d impurities in silicon in numerous charge states
(to be reported later ) show that A„outweighs b,cF only
for the impurities studied extensively by Ludwig and
Woodbury (e.g., Fe+, Mn+, Cr+). Both at the low-Z end
of the 3d series ( V, T;, V+) and at the high-Z end (Co
and Ni), for which no data exist as yet, we predict a low-
spin ground state. We conclude that whereas simplified
LSD calculations can give a universal high-spin ground
state, as originally argued by Ludwig and Woodbury to be

V. DISCUSSION

A. Duality in the nature of the localization

Based upon the calculated results, we will discuss the
resolution to the apparent dichotomy between the co-
valently delocalized model and the atomically localized
model for Si:Fe that has been posed in Sec. II. We first
summarize the results for Si:Fe, consistent with the
CDM. For Si:Fe, we find that (i) in contrast to the dom-
inant role of the valence-band states in determining the lo-
cal magnetic moment, the hyperfine field Hh~ and the net
spin density at the nucleus 5p(0) determined largely by the
core states. Both calculated results are in good agreement
with experiment and suggest reduction by covalent hy-
bridization. (ii) The crystal-field splitting exceeds the ex-
change splitting (b,„/hcF ——0.88); hence, the t' gap level
is below the e+ level, which is the highest occupied state.
This level arrangement is characteristic of a strong-field
(covalent) situation' "and correctly produces' "(as also
does the weak-field model) S =1. (iii) The s electrons are
largely transferred into d orbitals ( s ~d promotion),
which agrees with Ludwig and Woodbury. ' " This s —+d
population inversion decreases the effective size of the
atom without converting it into an ion. This is the simple
chemical reason for its high diffusivity and low solubili-
ty. Our results for Si:Fe are thus consistent with the co-
valently delocalized model.

Si:Fe+ has different characteristics. We find that (i) al-
though the highest occupied orbital of the neutral. system
is the e+ state, the lowest energy ionization proceeds in-
stead from the t' orbital. Remarkably, upon ionizing
t"', the e+ orbital moves down in energy, exposing that
t' as the highest occupied state of the ion, thereby pro-
ducing the observed S = —', high-spin (weak-field) configu-
ration as b,„/AcF switches from below unity for Se:Fe to
above unity (1.4) for Si:Fe+. (ii) We find a donor energy
E(0/+ ) =E„+0.32 eV, in good agreement with the ob-
served value' ' of E„+0.385+0.01 eV. (iii) In agree-
ment with experiment, ' no stable acceptor state
(Fe /Fe ) exists in the gap, as the empty e' level that
would accommodate the next electron is in the conduction
band (i.e., Fig. 13). (iv) The net impurity charge Q„« in-
creases in the impurity orbital subspace only by O. 1 e upon
ionization. This self-regulating response ' of the
valence band to excitations of the "outer" gap electrons
means that the effective Coulomb repulsion U" is sub-
stantially smaller than what a linear dielectric screening
mechanism would grant us, and even an "overcrowded"
d configuration can be stabilized. (v) We predict a van-
ishingly small change of the isomer shift upon ionization,
i.e. b,is(Si:Fe+)—b,&s(Si:Fe )=—0.06 mm/sec (about 1

order of magnitude smaller than the change in free
atoms). The results for Si:Fe+ [(i) and (iii)] are hence con-
sistent with the atomically localized model and the others
for Si:Fe+ [(ii), (iv), and (v)] are consistent with the co-
valently delocalized model. In addition, our results for
Si:Fe clearly show that most of the spin density (-71%)
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is concentrated on the impurity cell (in agreement with re-
cent ENDOR measurements '), supporting the ALM.
Clearly, the electron density is considerably more extend-
ed than the spin density.

The resolution to the apparent dichotomy between the
covalently delocalized and atomically localized models for
Si:Fe lies therefore in this self-regulating response and in
the fact that different orbitals are responsible for the dif-
ferent aspects of the localization (duality, not dichotomy):
the contact spin density and hyperfine field are decided by
the hyperlocalized core states, the magnetism is largely
contributed by the localized valence-band resonances, and
the donor ionization, with its attendant high-spin configu-
ration, and the constancy of the Mossbauer isomer shift
are decided by a combination of delocalized gap states and
the feedback (self-regulating) response of the valence-band
resonances to excitations of the outer states.

250

CL
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C

2OO

4P

Q
150

x

I I I I I I

hemical Trend
e Field of
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r q
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B. Covalent reduction of the hyperfine field

Compared with the hyperfine field Kzt= —350 kG and
the contact spin density 5p(0)= —0.668 a.u. of the free
Fe atom (d ) calculated in the Hartree-Fock approxima-
tion, the EPR data' for Si:Fe yielding

~
Hq~

~

=147.6
or 152.2 kG and

~
5p(0)

~

=0.282 or 0.299 a.u. shows a
substantial reduction (-43%) in the hyperfine field and
the spin density. Recall that the contact hyperfine field
originates from mismatch between spin-up and spin-
down densities of the hyperlocalized s orbitals of the im-
purity, and that this mismatch is induced solely through
the polarization of these core states by the outer 3d elec-
trons which carry the magnetism. The intra-atomic
Coulomb repulsion U,d hence controls the contact hyper-
fine field. The reduction in this field Hqt relative to the
free atom results from covalent hybridization of the outer
3d orbitals: Since about 30% of the 3d character is found
to be delocalized through the crystal due to this hybridiza-
tion, the intra-atomic repulsion U,d with the localized
core electrons is diminished, leading to a smaller Hgf at
the nucleus. The correlation of Hzt with covalency is fur-
ther illustrated in Fig. 14 which shows the experimentally
observed hyperfine field of Fe impurity nuclei per elec-
tron spin S in various systems. The horizontal axis de-
picts covalency evaluated from the electronegativity of
Gordy and Thomas using empirical equations.
From these results, we can conclude that the absolute
value of the hyperfine field decreases with increasing co-
valency. The hyperfine field Hb~ of the Fe impurity in an
ionic crystal (e.g., Fe in CaCO&, MgO, CaO, A1203 in Fig.
14) is very close to the Hqt of the free atom obtained in
the Hartree-Fock calculation. In contrast, in the case of
a covalent semiconductor, as the covalent hybridization is
stronger, the impurity wave function becomes more ex-
tended than in the ionic crystals. Hence, we observe a
reduction in the spin density 5p(0) and H&t in Si:Fe.

We suspect that the reason of the very small g shift
[bg=g —(2.0023)=+0.0677 to + 0.0676 (Ref. 18) for
Si:Fe ] also results from a covalent reduction in the spin-
orbit coupling constant A,. Using the second-order pertur-
bation theory, Ag is given by Ag = —skip/Acp, where A,o
is the spin-orbit coupling constant of free atom (Fe, d ),

100
~Z

80 I I I I I I I I I I I I I I

0 10 20 30
C=(1.0-0.16 XF -Xh t -0.035 XF -Xh t )/n

(%)

FIG. 14. Chemical trend in Hi, ~ of Fe impurity in various
systems per electron spin S. C is the covalency ( Jo) given by
C =(1.0—0. 16

~
XF,—Xq„,

~

—0.035
~
XF,—Xq»,

~

)/n, where XF,
and Pi,„,are the electronegativity of Fe and the nearest-neighbor
host atom, and n is the number of the coordination around the
Fe impurity.

k is the reduction ratio of the spin-orbit coupling constant
defined by k—:A, /A, o', and bcF is the crystal-field splitting
between t2 and e states. We use A.o

———112 cm ' from
the free atom and b,cF——0.80 eV from the present calcula-
tion (Table VII). We can estimate k from the ratio be-
tween (r )„for Si:Fe and for Fe (d ). From the cal-
culated value of (r ),„ for Si:Fe (0.6150 at E=e(t' )

a.u. ) and that for Fe (d ) (3.8822 a.u. ) we obtain
k =0.1584. Therefore, we obtain bg =+0.0220. This
compares well with the experimentally observed value of
bg =+0.0677 or +0.0676. ' Hence, a small value of k
is consistent with covalent reduction.

C. Speculation on the redox ionization energy
in heme proteins and cytochrome- C

The origin of the stability of an overcrowded d config-
uration of Si:Fe is the self-regulating response ' caused
by the covalency and nonlinear screening. If one refers
the experimental donor ionization energy of Si:Fe to a
vacuum, one finds the d electrons to be bound by as
much as -4.8+0.2 eV. This value is characteristic of the
far more stable doubly-ionized Fe + impurity in heme
proteins and in electron-transporting biological systems
(e.g., 5.0—5.3 eV for an ionization energy of Fe + in a po-
lar electrolyte or for the strongly bonded iron in
cytochrome-C). We suspect that a similar self-regulating
(Le Chatelier) response is the reason why Fe +/Fe+
redox ionizations in heme proteins and electron-
transporting biological systems take so little energy,



31 CALCULATION OF THE SPIN-POLARIZED ELECTRONIC. . . 7897

despite the fact that the molecule is not severely distorted.
The electronic structures of heme proteins and
cytochrome-C have several similarities to that of the iron
impurity in a semiconductor: (i) The free-electron-like m

orbitals in the porphyrin ring show a small band gap be-
tween the bonding and antibonding states, (ii) the iron
3d orbitals hybridize strongly with the m. electrons in the
porphyrin ring, and (iii) an integer number of spins is ob-
served in the ineasurement of the magnetization in the
heme protein, suggesting a discrete bound state in the
band gap. We, hence, suspect that the small redox ener-
gies involved in these systems result from the same self-
regulating response, ' which is available to the 3d im-
purity in covalent semiconductors.

D. Comparison with other calculations

Hoshino and Suzuki calculated the spin-restricted
electronic structure and the donor ionization energy of
Si:Fe using a small cluster (FeSiio) embedded in a Bethe
lattice. They found that (i) ai, t2, and e bound states ex-
ist in the band gap, in the order e(a, ) & e(e) & e(t2); (ii) the
electron configuration of the ground states is d s
and a ie t2,' (iii) they identify the donor ionization energy
with the excitation of an electron from an a

~ gap state to
the conduction band (rather than from the t2 state), as
they argue that the e and t2 bound states are so strongly
localized on the impurity that no ionization could occur
at low energy. These results are in substantial disagree-
ment with our calculation and the results from nonmag-
netic calculations of the QBCF method. The crystal-
field splitting is too small (bcF-0.04 eV) compared
with our calculation (bcF——0.8 eV) and QBCF (hcF ——0.6
eV), and the energy of t2 bound states is higher than e
states. This is the opposite of our calculation, the QBCF
calculation, and the Ludwig and Woodbury phenomeno-
logical model. '@'. Also, we did not find any ai bound
states in the gap. Note that our self-consistent calculation
shows that even localized states could have a low-energy
donor transition due to the self-regulating effect.

Recently, DeLeo et al. calculated the spin-polarized
electronic structure of the 3d impurity in silicon using a
small cluster (Si ioH~6. Fe) in a multiple-scattering Xa
cluster (MS Xa cluster) method. They obtained (i) the
donor ionization energy of Si:Fe in the case of magnetic
states to be E(0/+ )=E„+0.53 eV, and a stable Fe ac-
ceptor level (for which there is no experimental evi-
dence' ), (ii) a vanishingly small crystal-field splitting
(AcF-0.025 eV), (iii) a very large exchange splitting b,„
for Si:Fe ( —1 eV), with the t level above the e+ level,
and (iv) sharp valence-band resonances. This situation
resembles a highly localized, atomiclike impurity in the
ionic crystal, where 6 /AcF&&1. It was subsequently
shown "that this atomiclike picture results both from
their spherical approximation and from the limited availa-
bility of host states capable of hybridizing with Fe in their
small cluster model (discussed in Sec. IVA). This un-
derestimates covalent interactions in favor of atomic lo-
calization. In accordance with this analysis we obtain in
our (non-SIC) LSD calculations very different results:
6 =0.3 eV & AcF, no acceptor state, a lo~er donor state

at E„+0.32 eV, a t level below the e+ level, and very
broad resonances.

Recently, Pecheur and Toussaint (PT) have performed
charge self-consistent tight-binding calculations on a
number of 3d impurities in Si. In general, they find con-
siderably larger crystal-field splittings than in the MS Xa
cluster calculation of DeLeo et al. 50 PT characterize
their results as corresponding to a picture of partially
delocalized 3d orbitals, contrasted with the atomically lo-
calized 3d orbitals evident in the cluster calculation. Both
conclusions agree with the present results. However, sig-
nificant differences remain between the tight-binding re-
suits for Si:Fe and the present results: The energy levels
in the latter calculation seem to be lowered substantially
relative to ours. For example, for Si:Fe they find the e'
and t' levels at E,+0.36 eV and E„—0.06 eV, respec-
tively, whereas in the present SIC-LSD calculation we
find them at E„+1.3 eV and E„+0.26 eV, respectively
(Table VII). They find no e+ state in the gap, whereas
our e+ level appears at E„+0.44 eV. Since their donor
orbital t' is inside the valence band for the neutral center
(where t' has three electrons), when ionized, they find it
to still be inside the valence band, hence they predict .a
negatiue donor energy (unobservable), while we find it at
E, +0.32 eV.

The results of the present study are similar to the spin-
unpolarized QBCF local-spin-density results of Zunger
and Lindefelt. Taking the spin-occupation average of
the e+ and e' gap level energies we find here E„+0.76
eV, compared with the QBCF results of E„+0.8 eV. The
comparison with the tz levels is complicated somewhat by
the fact that t'+ is a broad resonance and not a sharp gap
level like e+. The weighted average of the present calcu-
lation gives E„—0.01+0.4 eV compared with the QBCF
results of E, +0.12 eV. The population analysis also pro-
duces similar results, as discussed above. The use of the
method of Williams et al. for obtaining an augmented
Green's function produces essentially the same results as
the use of the quasiband method.

VI. SUMMARY

The spin-polarized electronic structure of an interstitial
iron impurity in silicon was calculated self-consistently
using the self-interaction-corrected local-spin-density
functional formalism. The salient features of our results
follow.

(i) The self-interaction correction is necessary to obtain
the correct high-spin ground state of Si:Fe+, in agreement
with our previous perturbative calculation " but in
disagreement with the results of the cluster model. Rel-
ative to the LSD it also changes the hyperfine field by
30%, bringing it close to experimental values reduces sub-
stantially the ionicity of the system, and increases the lo-
cal magnetic moment by 20%.

(ii) We find a ground-state configuration r e+ for
Si:Fe and t e+ for Si:Fe+. The donor energy corre-
sponding to the transition between these states is calculat-
ed to be E„+0.32 eV, in good agreement with experiment
(E„+0.385 eV). No stable acceptor state is found in the
gap. Strong valence-band resonances are found which
control the donor ionization energy through their orbital
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relaxation attendant upon ionizing the outer gap levels.
(iii) The calculated central hyperfine field of —110.12

kG is comparable to the observed value of 147.6 or 152.2
kG. We find most of the contact contribution to the hy-
perfine field to evolve from the polarized core orbitals,
largely through a balance between the large negative
ls+2s contribution ( —303 kG) and the positive 3s +4s
contribution (187.9 kG).

(iv) Whereas the total magnetic moment of Si:Fe is
2.0@~, the local moment is only 1.42pz, suggesting some
delocalization of the net spin density through the crystal.
Out of the 26 electrons of Fe, 0.276e are effectively
transferred to the ligands, suggesting only a small role of
ionicity. Of the remaining 25.724 electrons, 18 are in core
orbitals and 7.72 are in valence states. Of these, 6.76e
form valence-band resonances and 0.96e reside in gap lev-
els. Most of the magnetism evolves from the valence-
band resonances: They give rise to a moment of 1.61p~,
whereas the gap electrons contribute a negative moment
of —0. 19)M21. The distribution of the local magnetic mo-
ment among the different orbitals is

(
. )0.04 0.014 0.013d 1.294d0. 104f0.00

(i.e., essentially localized on 3d), whereas the distribution
among the representations is

( )0.0 0.01 1, 17t0.24core a
&

e

(i.e., a 5:1 ratio between e and t2 contributions). The ef-
fective orbital configuration of Si:Fe shows that almost
all of the 4s electrons have moved into the 3d shell.

(v) While 3d impurities in ionic host crystals have their
levels concentrated inside the band gap, with little cou-
pling to the host bands, in silicon, the existence of massive

valence-band resonances is indicative of substantial cou-
pling and controls the local magnetic moment, orbital oc-
cupations, and optical properties. Hence, whereas the
neutral center has some of its charge delocalized on the
ligands, when ionized, the ligand orbitals relax, returning
thereby to the impurity site much of the charge lost upon
its ionization. Consequently, the effectiue charge on the
impurity depends only weakly on its formal oxidation
state. This suggests a small change in the Mossbauer iso-
mer shift upon doping and leads to a remarkable reduc-
tion in the effective Coulomb repulsion U. This "self-
regulating response" of the valence-band states to pertur-
bations in the gap levels might very well be also the reason
why it takes so little energy to perform the Fe +/Fe +
redox reaction in iron-containing biological molecules
(e.g. , cytochrome- C).

Note added in proof We .were recently informed [P. W.
Anderson (private communication) for which we are
grateful] that P. W. Anderson and D. Haldane have sug-
gested earlier (unpublished results, 1976) the relevance of
the self-regulating response (discussed here and in Refs.
40, 41, and 59) to biological Fe-containing systems.
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