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ABSTRACT

We employ the small periodic cluster model for caleulating electronic i
energy levels in both perfect solids and in point defect structures. The model
is based on the representation of the one-electron energy spectrumn of the
crystal by the eigenvalues of a small periodic cluster of atoms arranged
spatially according to the structure of the investigated system. To imple-
ment the calculations in practice semiempirical MO-LCAQO approximations
are used. The model is applied to study the properties of the perfect lattices
of graphite and boron nitride, point defects in these structure and the band
structure of solid HF and (SN),, metallic polymers. Good agreement with % : 5
experiment is obtained, \ i

I. INTRODUCTION ’ o

In view of the aceumulation of rather extensive data on the : 1
electronic and dynamical properties of both perfect crystals and 1

lattice imperfections, theoretical interest has been developed in ' \
calculational methods that treat both phenomena with similar ‘ o
methods [1]-[3]. While calculations that treat the perfect crystal _

yield theoretical values for crystal properties that are related to
the periodic character (band structure;, erystal conformation, ete.),
point defect models tend to probe the properties that are related
to the localized character of the defect (charge distribution around ‘
the defect site, local crystal deformation, etc.). The combination - ES

of both techniques enables the correlation between the defect levels
and the perfect crystal band edges and also provides a good method - TIas. ,..
for examining the quality of the potential used in the calculations. : i
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II. THE SMALL PERIODIC CLUSTER (SPC) APPROACH

In the small-priodic cluster method one uses a real-space rather
than a reciprocal-space approach to the determination of the one-
electron eigenvalue-spectrum of periodic structures. Finite size
periodic clusters of atoms are used to construct the electronic
secular equations in the LCAO representation, yielding as a solu-
tion a subset of the infinite eigenvalue spectrum of the corresponding
infinite solid. The method can be used to investigate both the band
structure of a regular solid at discrete points in k-space and the
energy levels associated with point defects in the otherwise perfect
solid. P

Crystal orbitals ;(#) are constructeélf as linear superpositions

of atomic orbitals ¥, (¥ — ﬁn,a) where 1 denotes the atomic orbital

quantum numbers (@ = 1s, 2s, 2pz, 2py, 2p;, etc.) for the orbitals

used :
a N k :
Y(F) = N-t Z Z D el — R 1)

p=1 n=l a=1 an ‘l
N denotes the number of primitive unit cells adn % indicates the
number of inequivalent atoms in each primitive unit cell. The vec-
tors {Ry,,} indicate the position of the N% atomic sites on a finite

periodic array. The geometry of such an atomic cluster is convently Conv i‘i\itfht'j

described by an interatom distance matrix D™ and three inter-
atom direction-cosine matrices EMY, E® and E™ where z, 3
and z indicate some arbitrary directions. These are constructed in

the following way : A Eenira Bornwon-K:ié’_r_nan (BVK) cell is built,
This cell is then extended in space by translating it in the z, y andZ

directions. Each atom in the central cell is allowed to interact with
its neighbors, either inside the cell or outside it, up to a maximal
range R¢(N, 2). The range R.(N, %) is chosen so that each atomic
species on a given sublattice in the central BVK cell, experiences

an identical erystalline coordination. The elements of the distance -

and direction cosine matrices, indicate the intra-cell and inter-cell
distances and orientations used to established the periodicity. The
Brillouin zone (BZ) constructed from these small periodic clusters,
contain N discrete points in k-space. The energies of the various ke
crystals bands at these N points can be calculated by solving the
eigenvalue problem associated with an Nh-atom pseudomolecule
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with geometry defined by D), E;m’, EX® and E& and with ’
_the representation given in Eq. (1) for the trial vectors. This
amounts to the calculation of the electronic eigenvalue problem of

e = o - T k=
s '

O e~ T - #

N+2  see@2N 2N+ 1 2 e, N+ see 2N 2N+ 7
OO0 o= ——O Lo —O—0O \

Fig. 1. ! 3 N [ S
Construction of the small periodic cluster, R :

a) Linear chain of 2p 4 1 atoms.
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the central BVK cell that is embedded in the field of all other cely
produced by translating it through space.

Fig. 1 demonstrates two simple cases where the interaction
geometry is constructed to yield periodic ch;étﬁr . In the first
example, the central BVK cell consists of a linea: mensional chain ©ON¢ ¥
of N = 2p + 1 atoms (k = 1). Thid8xtended by the atoms labelled 1§
1 to B on one side and by the atoms labelled 2p+1top+1on
the other side. When the maximal interaction range is taken to be
Re¢(N, 1) = pa, where a is the nearest neighbor distance, each atom
in the central cell experiences an identical coordination. In the
second example, the hexagonal two-dimensional graphite structure
is considered. The central BVK cell now consists of a p Xp array f‘AF
of primitive unit cells each with A = 2 atoms (N = P%, a total
number of 2p? atoms). The central cell is extended by p/2 (for
even p) or by p1/2 (for odd p) Rn‘mitive cells in the plane directions.

The eigenvalue problem associated with the central BVK cell is
now defined as the solution of the LOAO secular equations related
to the 2p® atoms with interaction range p.a.

The variational equations are : '

o N h :
| ‘ L3)

Z Z [Fitom — Sitm Ei] Cox=0 (@ C_ Y

u=1 n=1 a=1 ' e - : r

where the matrix elements are given by :
Bl = Gtalli=Ron) | B | A7 — R > 3) }(,,-\
Sirom = QP — Rog) | 47— By 34
' /

and T is the Hartree-Fock operator. When an explicit form is used
for F, the F3f, , elements are given by :
Eifin = Bt + > > P, lunadoms [ w'a, ity) —
u’s,l't ﬂ’ﬂ’
: 1 " o ' !
— 5 (Bnak'ty | Mmgu’s, )] (4)

where the core-Hamiltonian matrix element is given by :

Za 'K:\Xh

> 1 l |
Hotm = tulft — Rpg) | —sVE— Z ~——— 581 — Rm,p
e 8.4 ‘?ﬁ' —Ra "p ~
v Y R (5)
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and the two-electron matrix elements are : X l/l 5 R

»
(!J.na, )\mﬂ | El'vga’, ?\’tﬁ’) — Sq /

e — Figs Wiy —Rts)) (6)

where Z, is the nuclear chafge. The elements P%% , of the charge

matrix are deﬁned the expansion coefficients of Eq. (1) by
and fm‘\s c %
« {)‘ (#)* 3)
? fsm = g Clpr i ' (7)

/u;\t

where oy denotes the highest occup1ed level in the ground state
and n; is the occupancy number.

When T is replaced by some effective one-electron Hamiltonian,
as is done in the extended Huckel [4] (EXH) theory, the FiP,
elements are given by :

= <X,u(F1 “'ﬁn.ot)h('-’l —-ﬁm.P)

, : |
Fitm = Szfm (13 + 18] 3 (8)
where 8%%,  denotes the overlap integral, I} and I denote the

orbital energy for orbitals ., A situated at sites o and B respectively,
and G is the empirical Wolfgang-Helmholtz parameter. Equation (2)
is solved with the elements given in Eq. (3) by either using the
self-consistent form of Eqs. (4)-(7) or the form given in Ed. (8) for
the matrix elements. To facilitate computations, the INDO approxi-
mations [3] to equations (4)-(6) are adopted in the former case. The
empirical constants appearing in this approximation are the core

energies I} and the bonding parameter [3.
In the case of a perfect periodic structure, the eigenvectors

» . .
and eigenvalues obteained, be analyzed in terms of the wave

vector kn, by recognizing that :
G, = Cini = Cla(k;) €757 = Cl(k;) €75 (9)
E; = E.. = Eq(k;) (10)

" 2
where the band index y ranges from 1 to ok and k; = N—n n for
a
i = 0,1, N— 1. Thus, the band structure EY(fc'—) is obtained for-

N k- points in the BZ. The charge matrix (Eq 7) is expressed in
thls representation by : s
Pus = > Puoil o
: £
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Pualfe) = > e CL(E) Gtk
S &

where

(12)

The diagonal element of (11) is{ the p orbital charge on atom «
due to all o, occupied bands. _ 'y

The total energy of the &g. bands is Obt{xined in‘ the Hartres:
Fock representation by : ; :

1 8 ap o5 YAVA)
Etot = 5 Z P:n,).m H;m,)\m - Fun,?\m] + Z RA e RB , (13)
pnAm,of ) A<B :
and in the effective-one-electron Hamiltonian picture, by
b
Epot = Z nsE; Z’Z Z niEy(ks) ;;? (14)
7
i Y W T "s

where n; is the occupation number of level 5.

In the defect problem, we either change the chemical identity
of a specific atom in the central BVK cell (substitutional impurity)
or reject this atom (point vacancy) and repeat the solution of,
Eq. (2). The spectrum obtained corresponds to a superlattice of,
defects with a defect-defect distance greater than Rg(N, &).

The convergence problems associated with the energy solution
in the SPC approach involving the self-consistent scheme (Eq. 4-7)
%  \apa fundion of 2
(a) Convergence of the lattice sums iR the magnitude of Re(N, h)
~used to calculate the elements in Eq. (3). .

are .

(b) Convergence of reciprocal space sums i.e. the number of K<

values entering in the calculation of the charge matrix in Eq. (11)

(c) Convergence of the results as a function of the size & of the
basis set employed. In most computations a minimal valence
basis set will be used neglecting the contribution of the highegg
orbitals. SO

Convergence problems (a) and (b) could be reduced to one if one
uses the maximal range R, (N, &) permitted for an NA-atom cluster.
In this case, for a given A, both R,(N, %) and the number of K
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points yielded in the SPC representation, are uniquely determined

by N. In the non-self consistant approach (using Eq. 8), the st

element Fj?,, depends only on the orbital pair (wnx) and (M)

consequently the convergence problem (b) does not occur in ',

evaluating these elements._‘ The total energy (Ed. 14) depends \

however on the number of k-points included in a particular cluster '

representation. ‘ . : | |
After one establishes a reasonable convergence in the sums ;

a — b for a particular choice of the porbital energies I* (in EXH

and INDO schemes) and a bonding parafneter:?i (INDO cheme),

the resulting wave functions are subjected to a Mulliken population-

analysis to yield atomic charges. Similarly, the wave functions are

used to compute the total electronic charge density p(F) that is.

used in turn to compute the electrostatic Poisson potential V(F,,I_i) . }
- by solving : '

V2V el ) = — dmpl(?) Z“L - (15).

4 Vtot,(?a R) == Velec(fi) -+ Z I«-RI%F’
" ;

re—— IHW‘%&”&W TR R, R A e J,i,u"‘ HETE. eyt = i

When the basis functions used can be expanded in gaussians, eq. (15)

can be analytically solved [3]. The potential Vi(7, R) is used to

characterize the potential rearrangements introduced by a defect

in the crystal. It can also- be used in other problems where a
- erystalline potential is required. R '

The crystal conformation under static equilibrium is studied
minimizing E,(d) with respect to the unit cell parameters denoted
by the components of 4. This is done by solving iteratively the
equation : : o

8d = — AASE, () ~ (e

Near the minimum, the first derivative method (eq. 16) is non
convergent and a simple mapping procedure is used. This results i B
ﬁaﬂi“"

S e ey

in the equilibrium unit all parameters d,, and the fattice cohesion
Eii(d,y) — Egyl(o0) relative to its isolated ocnstituents. At the
vicinity of equilibrium, the second derivative of E,.,(d) with respect
to symmetrical crystal coordinates is numerically evaluated, to
yield force constants. ' '

The calculation procedure used with the SPC method consists
of the following steps :
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Perfect lattice 1
a) One chooses a (:lust;er size that.is sufficient to establish the con-
vergence oriterion previously discussed to within a prescribed

tolerances:
b) For each set of the empirical parameters {I7, G} in the EXH

method and {I“ B} in the INDO method, one obtains in at
single solution, ‘a subset of energy eigenvalues at some high
symmetry points in the BZ. When sufficient experimental data L
concerning band-to-band transition energles band widths, work
function and atomic charges exists, a least-square procedure is
used to obtain the ebst agreement with the experimental band
structure and charges by adjusting these parameters. These have
been previously parameterized to yield various molecular pro-
perties [2]. The values of these parameters arrived at in such
procedures [5] are used as an initial guess for the refinement

_ process. ‘

¢) The crystal equilibrium unit cell parameters and cohesive energy
are calculated by the minimization procedure indicated in Eg.
(16). The results are compared with crystallographic and thermo-
chemical data. Similarly, force constants (and possibly elastic
constants) are evaluated from second derivatives and compared
with values deduced from phenomenological lattice dynamical
treatments.

Since the SPC method yields only a discrete energy subsets
the density of states and photoelectron emission energy profile,
can be calculated.only via a low-resolution histogram. However,
if the results of step b) and ¢) are satisfactory, one can use either
a conventional tight-binding calculation with the parameters

arrived at in those steps or a perturbative k. p expansion to
obtain quasicontinuous results. This is unnecessary if only discrete

optical data are considered.

When satisfactory results are obtained for the perfect lattice,
one proceeds with the examination of the properties of imperfec-
tions in these solids. The procedure used is :

a) The cluster size is gradually increased to obtain stability of the
defect levels with respect to the interaction radius. At this limit,
defect-defect interactions in this defect superlattice represen-
tation, are suppressed and the isolated defect limit is approached.

2§
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b) The features introduced by the defect on the crystal orbitals
are examined. These include the charge distribution in the
defect orbitals (if this orbital is singly occupied, the wave func-
tions obtained can be used to calculate EPR hyperfine splitting
constants), the energy separation between the defect oribtals
and the band edges (to be compared with thermoluminescence
‘and photoconductivity data) and the defect formation energy.
Similarly, lattice relaxation around the defect site could be

examined.

The main disadvantages of the SPC ﬁlethod are :

1) Since translational symmetry is not used to reduce the size of
the secular equations, one has to treat relatively large matrices.
On the other hand, problems in which this symmetry is lost (point
defects, calculation of vibrational force constants, ete.), are
conveniently treated. !

2) The defect one-electron energies obtained correspond to a defect-
superlattice rather than to an isolated defect,.

3) Due to computational difficulties involved with big clusters,
semi-empirical rather than ab-initio LCAO methods, are used.

- The main advantages of the method are :

1) Relations between perfect and defect crystal energy spectr;um,‘
can be conveniently examined.

2) A single calculation for the perfect crystal yields several evenly
spread k-points in the BZ. These are usually high symmetry
points whose energy is related to many optical data. Parametri-
zation of the semi-empirical scheme can thus be conveniently

performed.

3) Since translational symmetry (Bloch conditions) is not imposed
explicitely on the wave funetion one can easily examine pro-
blems where this symmetry is lacking, such as the stability of
a given crystal structure against atom displacements, point
defect problems, ete. ‘

In what follows, we will briefly describe the results obtained
by applying the SPC method to some simple solids. These include
the band structure and vacancy formation in graphite and hexa-
gonal boron nitride ame determination of some electronic and
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dynamical properties of the protons in the hydrogen-bonded HF

erystal.and, Pes wly lnﬁtﬂl\ofﬁt‘a -fu— tv weballic (-ﬁ")v\ ri-’eZW\t'/l.

III. RESULTS

A. Boron wnitride

The band structure of the perfect lattice of hexagonal boron
_nitride (point group Das) was previously [6] calculated using the
SPC approach with the self-consistent iterative extended Huckel [?]
scheme. The results obtained by using the EXH method are shown
in Table I and compared with the available experimental data and
with the scaled tight binding calculation of Doni et al. [8] and the
OPW calculation of Nakmanson [?]. The band structure along the

Fig. 2. — Band structure of hexagonal boron nitride,
calculated by the SPC method, using the EXH approximation, -
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P—1 —Q—P line is shown in Fig. 2. The agreement with '

experimental data is seen to be quite good.

The nitrogen vacancy problem has been investigated [1?] -using
both EXH and IEXH methods. The results compared favorably
with thermoluminiscence and EPR data previously pubh'sfled [20].

Recently, it was demonstrated that carbon atoms have a signi--

ficant role in determining the nitrogen vacancy EPR and optical
properties [21]. We have calculated the electronic spectrum of an
SPC of boron nitride replacing a nitrogen atom by a carbon. The
results are schematically shown on Fig. 3. It is seen that the carbon
atom introduces 3 additional levels in the energy gap : a doubly

——degeneratcy state an a singly degenerate aqstte. These are str(:lg’llg\ ¢

localized around the carbon site. The sepgration ferm of the cgstate

from the edge of the conduction band (4.87 ev) and from the

ay

Fig. 3. — Defect levels in boron nitride.
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(,a\\‘a;iﬂie“t
valence band (1.4 ev) is conisstent with the experimental deter-
mination [2!], [22]. When the carbon atom is vertically displaced
from its substitutional site (increasing R._j in Fig. 3), an additional
7 level splits from the conduction band. This level is characterized
by a symmetrical charge distribution on the three boron atoms
surrounding the defect. The calculated square of the LCAO coeffi-
cient on these boron atoms is 0.020. This compares favorably with
the value of 0.0187 determined from the experimental hyperfine
splitting constant [2'] using the Hartree-Fock value of (r-3) [23],
The separation of the defect level from the edge of the conduction
band is calculated to be 1.1 ev .Lattice relaxations around this site
stabilize the system and lower the defect level to within 1.38 ev.
from the conduction edge. This compares reasonably well with the
experimental value [20], [21] of 1 + 0.1 ev determined from the

temperature variation of the EPR signal and from thermolumi-

nescence,

B. Graphite

Results for the band tructure of perfect graphite solid
using standard parameters in the EXH method have been
published [19], [6]. Since considerable experimental data exists on
band-to-band transitions in graphite, it is possible to improve the
agreement between the SPC results and experiment by varying the
parameters I of the EXH expression (Eq. 8). The results of such a
procedure are shown in Table II. The band structure along the
P — I' — Q — P line is shown in Fig. 4. The results were obtained
using the parameters Ij, = 2145, I =‘E§h«: 0.8 I, with
It = — 114 and G = 1.85. Good agreement is obtained with
most of the experimental data. '

Next, the problem of carbon vacancy in graphite is studied by
the SPC method. It is observed that upon rejecting a carbon atom
from the hexagonal skeleton, some new one-electron energy leve
appear. In particular, the pointc I""-f] ‘) in the perfect lattice band
structure is transformed into a o’ e state (D3, point symmetry
and the doubly degenerate@ state is transforme to a e’ orbital.
These are the levels predicted to appear in a graphite vacancy
structure by the « defect molecule » model of Coulson et al. [34].
It is shown here that if one uses the SPC representation to describe
the perfect lattice states (rather than just four atoms as is done
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we obtain E, = 12.84 ev.. Optimizing now the total energy with
respect to relaxation of the bond lengths around the vacant site,
we obtain E’” = 12.25 ev for a contraction of 4.2 9, of the R, bond
length. Using the experimental value of E; [3!] we obtain E,; =
4.81 ev. This compares favorably with the experimental values
3.3 = 0.9 ey [*] and 5.5 4 1 cv [*?] and with the observe d average

Aa :
basal plane contractjon of " > 2 % [%3]. The details of the vacaney

levels and other defects in graphite are being further studied using
the SPC model. -

C. Hydrogen fluoride

The band structure of solid HF calculated by the INDO method.
in the one dimensional chain approximation (point group cgp) is
shown in Fig. 5. No optical data is yet available to compare the
calculated band structure.




The crystal conformation of the zigzag HF chains has been a
controversial subject for long time [#4]-[#8]. Crystallographic mae-
surements [4], Raman frequency assignment [45] and residual
entropy measurements [46] have been used to investigate the proton
positions. We utilize here the SPC model for a HF chain having
an intramolecular distance Rmr = d, an intermolecular distance
a and a chain angle «. 11 orders of neighbors were found to be
sufficient to assure the convergence of the lattice sums and the
k-sums. We use the optimization method denoted in Eq. (16) to
minimize the total crystal energy. Using a fixed Ry distance
(experimental value 2,49 A [4]) we find d,, = 1,015 A and & = 1220
and a cohesive energy of 17.9 kecal/mole. The experimental « value

is 120 © [%4]. This results suggests that the protons assume asym-

metric positions (dsx 7 Rrr/2) as suggested by residual entropy -

|
!
|
200 |
-é 150 !
~ |
: |
e 1
“ 100+ |
50—
0
=0 | T 1 T |
-06 04  -02 ) 02 04 06
R(A)
1-Rep = 2. 734
2-Rpp = 2. 494
3-Rep= 2.404
4-Rpp =2.25A
§Rpr =2.00A

Fig. 6. — Potential for proton displacement in solid HF.
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‘mental chain angles is 7.45 ebv.

measurements [46]. The intramolecular bond length d is increased
by ~ 0,01 A relative to the isolated molecule value. The crystal
potential energy as a function of proton positions is shov n in Fig. 6

where the characteristic double-well is obtained. The energy ;
required to form an ionic Bjerrum defect (by translating a specific , o
proton to the opposite part of the potential well) is calculated to V| :
be 83.9 keal/mole. _ o |

The vibrational force constants for solid HF are computed / ey
from the total Hartree-Fock energy by computing numerically the : G {

second derivatives. This results in 7.2 X 108 dyn/cm and 6.1 X 105" 7
dynfem ofr the asymmetric and symmetric stretching force s

constants, respectively. The experimental values deduced from IR |
and Raman spectre [45] are 6.5 X 10% and 5.3 x 105 dyn/cm res- ¥
pectively. ‘

D. Polysulfur nitride (SN)a

Polysulfur nitride (SN), has been shown to be a one dimensional
metallic conductor even at Helium temperatures and to exhibit a
negative Seebeck coefficient [47]. The origin of this metallic behavior
has been previously assigned to - a.-
tien [48]. Recent crystallographic studies [#°] have shown that (SN)y
is characterized by an algternating structure with RY =1,544
and R® = 1,74 A alternatively and chain angles around 120°. We
have applied the SPC method to study the band structure of (SN)a
chains. We use 2s, 2p orbitals for nitrogen and 3s, 3p and 3d orbitals
for sulfur and employ the CNDO/2 SCF-LCAO scheme to caleulaté
the eigenvalue spectrum. The band structure for the lowest valence |
bands, is shown in Fig. 7. Experimental R{}® values are employed 5

i s evidgat.

and « = 1800 is used for simplicity. It @ 3evident that the highest
populated band is only half occupied in the ground state resulting
thereby in metallic behavior. The Fermi energy is calculated to
be 7.5 ev. The corresponding value for the chain having the experi-

The problem of bond alternacy in the (SN)s structure, 18
investigated in the SPC method by calculating the first derivative
of the total Hartree-Fock energy with respect to A (defined as

L

VWAANWS (_,'u“p +.

RQ = RY — A) for several R values. It is observed that for )
1.7 < 106 A a negative value is obtained, indicating that the 5
structure with A £ 0 is more stable than the A = 0 structure, §
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Fig. 7. — Band structure of the (SN),, chain (CNDO appromma.bion)
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