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SIXTY YEARS OF GOODMAN’S IDENTITY: 

ITS UNRECOGNIZED IMPLICATIONS FOR REGRESSION-BASED INFERENCE 

 

 

ABSTRACT 

 

This paper examines the implications of Goodman’s identity for estimation and inference using 

linear regression. Estimation requires the assumption of either random coefficients or 

measurement error. Under the former, regression is surprisingly potent: it can test the 

neighborhood model, aggregation bias and effects of covariates. Models with more than two 

groups are completely identified and yield more powerful tests. However, typical regression 

estimates of Goodman’s identity do not exploit these capabilities. Instead, most implementations 

unwittingly impose the neighborhood model, weight incorrectly and offer meaningless R2 values 

as “validation”. 
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Goodman (1953) asserts that the parameters in problems of ecological inference are related by an 

identity. He proposes that, under appropriate conditions, regression analysis can recover them. 

This proposal has subsequently been the basis of many regression-based applications.1 However, 

the implications of Goodman’s identity for these applications have not been thoroughly explored. 

 This paper demonstrates that regression techniques can be much more powerful than is 

generally understood. The literature has concluded that empirical techniques cannot distinguish 

between the neighborhood model and Goodman’s identity as the underlying source of observed 

data. It has also concluded that the form of aggregation bias, if present, is not identifiable in linear 

specifications. Lastly, it tends to ignore many plausible covariates of the behavior at issue.  

 This paper demonstrates that a generalized linear specification of Goodman’s regression 

with feasible corrections for heteroskedasticity provides valid tests of aggregation bias and the 

neighborhood hypothesis. These tests are not possible in most alternative estimation techniques, 

and are certainly more burdensome in those techniques that nominally permit them. In addition, 

unbiased estimates of the effects of covariates are available even if other components of the 

model, such as the exact form of aggregation bias, may be unidentified. Lastly, with more than 

two groups, aggregation bias can be identified without parameter restrictions. 

 Section I of this paper presents the general behavioral model that underlies Goodman’s 

regression in the context of a single application of Goodman’s identity. Section II discusses the 

neighborhood model, aggregation bias, heteroskedasticity and weighting in the context of this 

model. Section III extends this model to the R×C case, in which more than two groups are present 

in the population and more than one characteristic or choice can be at issue. Section IV concludes. 
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 I. The behavioral model for Goodman’s regression 

Goodman’s identity (Goodman, 1959, 612) relates the proportion of a population with a particular 

characteristic or making a particular choice to the proportions of the population comprised by its 

two constituent groups. Let 

xi = the proportion of the population in area i that belongs to 

group 1, 

1−xi = the proportion of the population in area i that belongs to 

group 2, and 

yi = the proportion of the population in area i with the 

characteristic or making the choice at issue. 

The relationship between these three quantities in area i is Goodman’s identity:2 

 y x xi i i i i   1 2 1  (1) 

where 

β1i = the proportion of group 1 in area i with the characteristic or 

making the choice, and  

β2i = the proportion of group 2 in area i with the characteristic or 

making the choice, 

are the two unknown parameters of interest.3 

 Equation 1 can be rewritten as 

 y xi i i i i    2 1 2 . (2) 

Equation 2 demonstrates that the proportion of the population with the characteristic or making 
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the choice can be represented as a linear function of the share of group 1 in the population. This 

suggests an apparent analogy between equation 2 and the conventional representation of the linear 

regression model. 

 Accordingly, Goodman (1953, 664 and 1959, 612) suggests that the parameters in this 

behavioral identity can be estimated by an Ordinary Least Squares (OLS) regression of yi on xi, 

with observations on n different areas displaying a variety of values for xi. In this example, 

“Goodman’s regression” is 

y a bx ei i i   .  (3)

Goodman asserts that, under appropriate conditions, this regression yields a and b as unbiased 

estimators of β2i and β1i−β2i (1953, 664 and 1959, 612).4 

 However, the behavioral model that underlies OLS regression specifies that the dependent 

variable is only partially determined by the explanatory variable. It also depends upon a random 

component that is additive and orthogonal to the explanatory variable (Greene (2003, 10-11), for 

example). The properties of this random variable allow the conventional empirical OLS model to 

yield unbiased estimators. 

 In contrast, Goodman’s identity is exact. In equation 2, the value of yi is completely 

determined by the value of xi. Consequently, the analogy between Goodman’s regression and the 

conventional linear regression model is superficial. This model cannot reveal the true properties 

of estimators from Goodman’s regression. Instead, those properties must be derived analytically 

from the implications of the identities upon which they are based. 

 As written, the parameters of Goodman’s identity are not identifiable. In equation 2, a 

1 
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different identity holds for each area. Each area requires two unique parameters, but provides only 

one observation (Achen and Shively (1995, 12), King (1997, 39)). 

 If the regression of equation 3 were to be calculated, its results would be meaningless. The 

slope of the regression would not contain any random components. Consequently, it would be a 

constant rather than an estimator. Its value would be 
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The second equality of equation 4 replaces yi with its equivalent in terms of xi, as given in 

equation 2. 

 Without further assumptions, the two ratios to the right of the second equality in equation 

4 cannot be simplified. Consequently, the slope that would be estimated by the regression of 

equation 3 is not interpretable. It is certainly not equal to the difference β1i−β2i for any i. 

 Clearly, Goodman’s identity requires assumptions that reduce the number of underlying 

parameters in order to be empirically useful. However, this is not sufficient. If, for example, the 

behavioral parameters were assumed to be constant across all areas, β1i=β1 and β2i=β2 for all i. 

Equation 2 would then be the same for each area, and depend on only two unknown parameters: 

 y x xi i i   1 2 1 .  (5) 

 Data on yi and xi from only two areas would determine these parameters exactly, because 

equation 5 is exact. An empirical regression of yi on xi would be unnecessary. It would yield a 

slope coefficient identically equal to β1−β2 and an intercept identically equal to β2. The prediction 
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errors for each observation would be identically zero and R2 would be identically one.5 

 These last two characteristics do not appear in the literature. This implies that the 

assumption of parameter constancy across observations, alone, cannot endow Goodman’s identity 

with empirical relevance. Moreover, the exact solutions embodied in equations 2 or 5 have been 

ignored in favor of statistical formulations inspired by equation 3. This implies that the collective 

intuition anticipates some random element in the behaviors at issue. 

 In sum, sensible interpretations of Goodman’s regression in equation 3 require two types 

of elaborations in Goodman’s identity. First, an assumption must be adopted to reduce the number 

of parameters in equation 1. Second, an assumption must endow it with random components. 

 The first requirement can only be satisfied by specifying that the parameters for each area 

are functions of a limited number of variables: 

    1 1 2 2i i i if x f x , , .z z1i 2iand  (6) 

This reduces the number of parameters to that necessary to characterize f1 and f2.6 

 Equation 6 has two additional virtues. First, it incorporates “aggregation bias”, the 

possibility that the proportion of a group with the characteristic at issue depends on that group’s 

share in the area’s population. This is represented by the explicit presence of xi in f1 and f2.7 

Second, equation 6 explicitly includes covariates of yi other than xi. The vectors z1i and z2i contain 

any other determinants of the proportions of the two groups with the characteristic or making the 

choice at issue. 

 Neither aggregation bias nor covariates can be introduced explicitly into equation 1. The 

appearance of either would violate the identity. The quantities yi and xi cannot be expressed as 
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functions of zi because they are observable directly. Consequently, equation 6 is the only 

formulation that can preserve Goodman’s identity, yet expand it to incorporate aggregation bias 

and covariates. 

 The second requirement cannot be satisfied by simply adding a random component 

directly to the right side of equation 1. As should be obvious, this tactic fails because it again 

would invalidate Goodman’s identity. However, random components can be embedded in all of 

the quantities already present to the right of the identity.8 

 First, the parameters can contain random as well as deterministic components. This 

“random coefficients” formulation is nearly explicit in Goodman (1959, 612), where he asserts 

that parameters will vary across areas but share the same expected value.9 It is absent from most 

of the subsequent literature, but is central to Achen and Shively (1995), Ansolabehere and Rivers 

(1995) and King (1997). Here, it implies that equation 6 be augmented as 

      1 1 1 2 2 2i i i i i if x f x   , , ,z z1i 2iand  (7)

where E(ε1i)=E(ε2i)=0, ε1i and ε2i are orthogonal to xi, z1i and z2i.10 

 Second, the population share xi may be measured with error. If xi is the true value, the 

measured value xi
* would differ from it by an additive random error: 

x xi i i
* ,   (8) 

where νi has E(νi)=0 and is orthogonal to xi.11 For example, analyses of voting behavior often 

compare votes in an election from one year with population proportions from a census in another. 

If these proportions change, the measured proportions may differ from the relevant proportions. 

 Together, equations 1, 7 and 8 yield a general restatement of Goodman’s identity: 

2 
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         y f x x f x xi i i i i i i i i i i        1 1 2 2 1* * * *, , ,     z z1i 2i  
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Equation 9 demonstrates that this generalization is still an identity. Nevertheless, it has the 

statistical character that is absent in equation 2 and present in equation 3. The two deterministic 

terms to the right of the identity in equation 2 have their counterparts in the first two terms to the 

right of the identity in equation 9. However, equation 9 contains a third term to the right of the 

identity that includes all of the random elements introduced through the assumptions of random 

coefficients in equation 7 and measurement error in equation 8. 

 Equation 9 demonstrates that appropriate estimation of Goodman’s identity, under this 

complete generalization, presents substantial challenges. First, the measurement error νi appears 

both among the explanatory variables and the unobserved component of yi. This ensures that the 

OLS formulas for b0 and b1 will yield inconsistent estimators (Greene (2003, 85)). Second, for 

most choices of interest, zi could plausibly contain many elements. OLS estimators will generally 

suffer from bias if the specifications of f1 or f2 are incorrect.12 

 These challenges also represent general sources for unsatisfactory results in any 

estimations of equation 3. For example, estimations can yield values for b0 and b1−b0 that are 

outside the Duncan-Davis bounds (King (1997, chapter 5)) and even the logical bounds of zero 

and one.13 Achen and Shively (1995) suggest that this problem could arise if f1 and f2 are 
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incorrectly assumed to be constant (page 15), or if measurement error is present (chapter 3). More 

generally, inconsistency or specification bias are inherent threats to estimates of Goodman’s 

regression. Either or both could be responsible for almost any inadequacy observed in actual 

examples. 

 

 II. Goodman’s regression in the absence of measurement error 

Empirical implementation of equation 9 requires some response to its challenges. The most 

daunting problem, measurement error, may be remediable through instrumental-variables 

techniques. However, these techniques do not appear to have been attempted in the ecological 

regression literature.14 The rest of this paper therefore defers discussion of this issue, and assumes 

as a maintained hypothesis that xi is measured without error. In this and the following sections, 

the discussion focuses on tests for possible misspecifications given this assumption and, for the 

most part, the additional assumption of linearity in the underlying model. 

 In the absence of measurement error, random coefficients are necessary to endow 

Goodman’s identity with any random component. Its presence in the literature since, arguably, 

Goodman (1959) indicates that it has intuitive appeal as well. It therefore represents the most 

pragmatic strategy for interpreting Goodman’s regression. Without measurement error, equation 9 

becomes 

         y f x f x f x x x xi i i i i i i i i     2 1 2 1 1 1, , , .z z z2i2i 1i     (10) 

 The expected value of the residual term in equation 10 is zero: 

        E x x x E x Ei i i i i i i i   1 2 1 21 1 0      .  
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This term is also uncorrelated with the deterministic component of yi. Therefore, OLS estimates 

of the functions f1 and f2 will be unbiased if the empirical equation represents them correctly 

(Greene (2003, 44)). In particular, aggregation “bias” will not bias OLS estimators if the 

regression equation correctly specifies the form in which xi enters f1 and f2. 

 Equation 10 reveals an important principle of specification. The first term to the right of 

the equality indicates that f2 appears in the expanded Goodman’s identity without transformation. 

However, the second term to the right of the equality indicates that the difference f1−f2 is 

interacted with xi. Therefore, correct empirical specifications require that these interactions appear 

in the estimated equation. 

 

A. Goodman’s regression and the “neighborhood model” 

These interactions provide a compelling test for a very controversial assumption. The 

“neighborhood model” (Freedman, et al. (1991) and Klein, Sacks and Freedman (1991)) assumes 

that, within any area, the proportions of each group with the characteristic or making the choice at 

issue are identical. Variation in yi across areas arises from variations in the determinants of that 

characteristic or choice across areas, rather than from variations in characteristics or choice 

proportions across groups coupled with variation in population composition across areas. 

 This assumption requires that, at a minimum, the deterministic components of the choices 

for each group within an area are the same. In other words, the neighborhood model imposes the 

restriction 

f f f1 2   (11) 
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on equation 10.15 This implies that the second term to the right of the equality in equation 10, the 

interaction term in which f1−f2 multiplies xi, disappears, because f1−f2=0. 

 Under the neighborhood model, then, equation 10 becomes 

    y f x x xi i i i i i   , .zi  1 2 1  (12)
 

The restriction that f1−f2=0 is testable, regardless of the specifications for f1 and f2, by comparing 

the explanatory power of the estimating equations for equations 10 and 12. Therefore, the 

neighborhood model can always be distinguished empirically from Goodman’s identity. This is 

true whether or not aggregation bias or covariates are present, and regardless of the functional 

form that defines their presence. 

 For example, in the simplest form of Goodman’s identity, covariates and aggregation bias 

are both absent. Consequently, equation 7 is 

f x and f xi i1 1 2 2( , ) ( , ) .z zi i    (13) 

Goodman’s identity, as reformulated in equation 10, becomes 

    y x x xi i i i i i         2 1 2 1 2 1 .  (14) 

In this reformulation, yi is determined by a constant and a linear term in xi. Equation 3 is the 

appropriate empirical representation of this relationship. 

 Equation 11, applied to the version of Goodman’s identity in equation 13, specifies f1 and 

f2 as identical constants, f1=f2=β1. With this restriction, the neighborhood model of equation 12 

becomes 

  y x xi i i i i     1 1 2 1 .
  (15) 
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In this model, yi does not depend on xi at all. Its empirical counterpart is 

y a ei i  .  (16) 

 In the absence of covariates and aggregation bias, the estimating equation for Goodman’s 

identity is equation 3 and the estimating equation for the neighborhood model is equation 16. It is 

obvious that the difference between the two can be tested. If, in estimates of equation 3, b is 

statistically different from zero, then equation 16, and the version of the neighborhood model that 

it represents, must be rejected. 

 Previous papers have incorrectly asserted that Goodman’s identity and the neighborhood 

hypothesis cannot be distinguished empirically (Freedman, et al. (1991, 682), Klein, Sacks and 

Freedman (1991), Lichtman (1991, 787), Achen and Shively (1995, 14), King (1997, 41-44), 

Kousser (2001, 105-7) and Wakefield (2004, 397), as examples). These assertions are based on an 

inappropriate comparison between the version of Goodman’s identity in equation 13, which does 

not embody aggregation bias, and the “linear model” version of the neighborhood model 

proposed by Freedman, et al. (1991), which does. 

 This “linear model” specifies that yi does not depend on covariates. With linear 

aggregation bias, the model is:16 

f x z xi i i( , ) .  1 10   (17) 

In this case, the deterministic component of equation 12 is linear in xi: 

  y x x xi i i i i i       1 10 1 2 1 .   (18)
 

The empirical counterpart to this equation represents yi as dependent on a constant and a linear 

term in xi, which is the specification in equation 3. 
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 This demonstrates that equation 3 is the empirical representation of both the simplest form 

of Goodman’s identity, equation 14, and the “linear model” of Freedman, et al. (1991), equation 

18. The fact that these two very different models imply the same estimating equation has been 

interpreted to indicate that empirical evidence regarding the relationship between yi and xi cannot 

distinguish between Goodman’s identity and the neighborhood model 

 This interpretation is false because the comparison between equations 14 and 18 is 

inappropriate. The neighborhood model of equation 18 embodies linear aggregation bias but the 

version of Goodman’s identity in equation 14 does not. In other words, the neighborhood model 

of equation 17 is not a restricted version of Goodman’s identity 13, as required by equation 11. 

The appropriate comparison to the neighborhood model of equation 18 requires linear aggregation 

bias in Goodman’s identity, as well. 

 With linear aggregation bias, equation 7 demonstrates that Goodman’s identity requires17 

 f x x and f x xi i i i1 1 10 2 2 20 1( , ) ( , ) .z zi i         (19) 

Equation 19, with the restriction of equation 11, yields the neighborhood model of equation 17, as 

it should. Furthermore, it implies that Goodman’s identity, as represented in equation 10, is 

           
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 Equation 20 contains a quadratic term in xi. Therefore, equation 3 is not the appropriate 

empirical counterpart. Instead, equation 20 must be estimated by an equation of the form 

y a bx dx ei i i i   2 ,  (21) 

where the notation is consistent with the general model presented in equation 24 below. 
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 The regression of equation 21contains only three estimators, a, b and d. In contrast, the 

model of equation 20 contains four parameters, β1, β10, β2 and β20. None of these parameters are 

individually identified. 

 However, tests of the neighborhood hypothesis do not require individual identification of 

all parameters, because this hypothesis does not specify their individual values. Instead, it 

specifies only that β1=β2 and β10=β20. In other words, the neighborhood model in this context 

requires only that the differences β1−β2 and β10−β20 both equal zero.18 

 Equation 21 identifies the second of these differences with an unbiased estimate, the slope 

d. If the neighborhood hypothesis is false, this slope should be non-zero. If it is correct, this slope 

should be zero, the quadratic term in equation 19 should be unnecessary, and equation 3 should 

adequately represent the sample relationship between yi and xi. 

 Consequently, the question of whether the neighborhood model is valid or not, in the 

presence of linear aggregation bias, can be rephrased as the empirical question of whether 

equation 3 or equation 21 is a better fit to the data. If d differs significantly from zero, then the 

regression of equation 21 is superior. In this case, the neighborhood model must be false. 

 The tests of the neighborhood model with neither covariates nor aggregation bias in the 

comparison of equations 14 and 15, and without covariates but with linear aggregation bias in the 

comparison of equations 17 and 19, are examples of the more general test available in the 

comparison of equations 12 and 10. These tests are more powerful if yi depends on covariates. 

 This can be illustrated in a relatively general linear multivariate model of f1 and f2. This 

model specifies that the arguments of f1 and f2 are the same: z1i=z2i=zi. In addition, f1 and f2 are 

linear in all arguments: 
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where zi is a vector, k is the number of covariates in zi and zij is the jth covariate in zi. Equation 22 

apparently includes all empirical examples of Goodman’s regression, including those of equations 

2 and 20, as special cases.19 

 Under equation 22, equation 10 becomes
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Each of the elements of zi appears linearly and interacted with xi.20 The latter appears in both 

linear and quadratic terms.  

 Consequently, the appropriate estimating equation would be 

y a bx c z dx h z x ei i j ij
j

k

i j ij i
j

k

i     
 
 

1

2

1

,  (24) 

where ei represents the empirical residual term. The estimated coefficients a, b, cj, d and hj would 

be unbiased estimators of β2+β20, β1−β2−2β20, β2j, β10+β20 and β1j−β2j, respectively. The difference 

hj−cj would be an unbiased estimator of β1j. Linear combinations of all identified parameters 

would be estimated without bias by the same linear combinations of the corresponding 

estimators.21 β1, β10, β2 and β20 would not be individually identified. 

 In terms of equation 23, the neighborhood model imposes the restrictions that β1=β2 and 

β1j=β2j for all j from zero through k. For all j from one through k, the restrictions that β1j=β2j imply 
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that β1j−β2j=0. This further implies that, in the regression of equation 24, all of the hj should be 

statistically indistinguishable from zero. If this hypothesis is rejected by the t-test for any of the hj, 

the neighborhood model is false. 

 In addition, under the neighborhood hypothesis the coefficient of xi in equation 23 is equal 

to −2β20, because β1=β2. Similarly, the coefficient of xi
2 in equation 23 is equal to 2β20 because 

β10=β20. Consequently, this hypothesis asserts that coefficients of xi and xi
2 should sum to zero. In 

the regression of equation 24, this implies that b+d=0. Once again, if the relevant F-statistic 

rejects this implication, the neighborhood hypothesis must be false.22 

 In other words, any linear specification of the neighborhood model in the form of equation 

23 is empirically distinguishable from the model of Goodman’s identity, even though some or 

even many individual parameters in the model may be unidentified. The neighborhood hypothesis 

imposes unique, testable constraints on Goodman’s identity. The same is almost certainly true of 

any neighborhood model that might specify the parameters of Goodman’s identity as nonlinear 

combinations of the explanatory variables. 

 Unfortunately, the most common empirical implementations invoking Goodman’s identity 

omit interactions of f with xi, yielding the linear form of equation 12. These implementations 

therefore impose the neighborhood model as a maintained hypothesis, almost surely 

inadvertently. Kousser (2001), who is explicitly hostile to the neighborhood model (pages 105-7, 

110), is an ironic example (pages 110-5). 
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B. Goodman’s regression, aggregation bias and covariates 

The model of equation 23 and its empirical implementation in equation 24 address two other 

issues that are central to ecological investigations, and previously taken to be intractable. First, 

aggregation bias is present in equation 23 and its affects, β10 and β20, are not identified.23 However, 

equation 24 provides a strong test for the absence of aggregation bias. 

 This bias is present if either β10 or β20 is nonzero. Therefore, its absence requires 

β10=β20=0. This implies the restriction β10+β20=0 as a necessary condition. The coefficient on xi
2, 

d, identifies this sum. Accordingly, if the corresponding t-statistic rejects the the hypothesis that 

d=0, it also rejects the null hypothesis of no aggregation bias.24 

 Second, even in the presence of unidentified aggregation bias, equation 24 identifies the 

behavioral determinants of the proportions of the two groups making the choice at issue. The 

coefficients of zi for groups 1 and 2 are identified by the estimated coefficients fj−cj and cj, 

respectively. In other words, appropriate controls for aggregation bias allow unbiased estimates of 

the behavioral determinants of characteristic or choice proportions, even if they do not identify 

the exact effects of aggregation bias, itself. 

 

C. Heteroskedasticity, weighting and R2 in Goodman’s regression 

Tests for the neighborhood model and the absence of aggregation bias are well-defined only if the 

estimator of the coefficient variance-covariance matrix has appropriate statistical properties. 

Similarly, individual parameter estimates identify relevant behavioral determinants only if they 

can be distinguished statistically from zero. Lastly, linear combinations of parameters are only 

meaningful when associated with valid confidence intervals. 
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 Inference is complicated in equation 10 because the residual term is heteroskedastic 

(Goodman (1959, 612); Ansolabehere and Rivers (1995, 9-10)), an inherent property of random 

coefficient models (Greene (2003, 318-9)). Heteroskedasticity does not impose bias on OLS 

estimators of f1 and f2, if they are specified correctly (Greene (2003, 193-5)).25 However, it must 

be addressed in order to construct any valid test of statistical significance.26 

 Achen and Shively (1995, 47-8) and Lewis (2001, 177) discuss feasible strategies in the 

context of ecological regression.27  In addition, White heteroskedasticity-consistent standard 

errors (Greene (2003, 219-220)) can be employed to provide valid tests of hypotheses regarding 

parameters, without estimating the structural components of the theoretical residual variances. 

 Unfortunately, these strategies are rarely employed. Instead, “weighting” is the typical 

response. Weighting corrects for heteroskedasticity only if the weights for each observation are 

proportional to the inverse of the residual-specific standard deviation (Greene (2003, 225)). The 

standard deviations relevant to equation 10 are conveniently invariant to the specification of f1 

and f2 because neither appears in its residual. They require only estimates of the variances of ε1i 

and ε2i and their covariance, in addition to the known values of xi. 

 However, the “conventional weight” in ecological regression practice is the reciprocal of 

the square root of areal population (Kousser (2001, footnote 23)). This weighting is unrelated to 

the heteroskedasticity apparent in equation 10. It will almost certainly compound it.28 

 Instead, the R2 value from equation 3 is occasionally offered as evidence of statistical 

significance (Grofman, Migalski and Noviello (1985, 206)) or, more casually, “model 

performance” (Kousser (2001, 111-2)). If this value is from a regression that does not correct for 

heteroskedasticity, then it has no relationship to the statistical tests of interest – the validity of the 
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neighborhood model, the absence of aggregation bias, and the importance of behavioral 

determinants. 

 If the R2 value is from a weighted regression, it is almost certainly meaningless, whether 

or not the weights correct appropriately for heteroskedasticity. Unless the weights are the inverses 

of an explanatory variable that enters linearly in the original specification, the weighted regression 

will have no constant term (Greene (2003, 226)). In this case, the R2 value is not bounded 

between zero and one and does not represent the proportion of variance in the dependent variable 

attributable to the explanatory variables (Greene (2003, 36-7)). 

 

D. Summary 

This section demonstrates that, in the case of a single application of Goodman’s identity, 

Goodman both over- and under-estimates the efficacy of OLS. He conjectures (1959, 612) that 

“standard methods of linear regression can be used to estimate” the parameters of this identity. 

While this method can yield unbiased estimates of these parameters, it cannot, without important 

modifications, subject them to the necessary significance tests. 

 With these modifications, however, OLS can provide convincing tests of the 

neighborhood hypothesis, for the absence of aggregation bias and for the presence of covariates. It 

can also generate the necessary confidence intervals for parameters and parameter combinations. 

While there may be formulations of the neighborhood model and aggregation bias that are not 

contained in the relatively general linear model analyzed explicitly here, it is likely that 

appropriate extensions of this analysis will preserve the general conclusions. For these reasons, 

OLS should be an attractive technique for empirical implementations of a single Goodman’s 
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identity. 

 King’s maximum-likelihood method of ecological inference (King (1997)) is the principal 

alternative. His statistical model is comparable to OLS with the White heteroskedasticity-

consistent variance estimators in that it yields consistent estimates29 and valid hypothesis tests. It 

also allows for explicit treatment of aggregation bias (King (1997, chapter 9). It is superior in that 

it explicitly incorporates the Duncan-Davis bounds. Consequently, its estimates are guaranteed to 

be feasible and more precise. This precision is apparent in Silva de Mattos and Veiga (2004). 

 However, OLS may be preferable to King’s method for the purposes of incorporating 

multiple covariates and testing the neighborhood hypothesis.30 In the first case, the inclusion of 

covariates in King’s method is computationally burdensome (King (2003, page 49)).31 Given the 

many interaction terms that may appear in the unrestricted model of equation 10, specifications of 

f1 and f2 with multiple covariates may not be tractable, at least currently, within this method. If so, 

tests of the neighborhood hypothesis and aggregation bias may be infeasible. 

 In the second case, the EzI software package, which provides stand-alone implementation 

of King’s estimation procedure, does not appear to allow the imposition of the constraints implied 

by the neighborhood hypothesis. It may be possible to implement these restrictions in the EI 

package of Gauss programs upon which EzI is based, but only with additional programming. In 

comparison, tests of the neighborhood hypothesis in the OLS context require only the standard t- 

and F-tests. 

 Other estimation techniques are unambiguously inferior to OLS for most purposes. The 

estimation procedure of King, Rosen and Tanner (1999) may yield biased estimates of the 

underlying model (Silva de Mattos and Veiga (2004)), is difficult to calculate, and is very 
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burdensome in the presence of covariates. Tests of the neighborhood hypothesis and aggregation 

bias may be infeasible. The three estimators proposed in Grofman and Merrill (2004) have no 

known relationships to the underlying parameters, no significance measures and no known 

extensions to covariates. The neighborhood hypothesis, aggregation bias and covariates cannot be 

specified in the contexts of their models, much less tested. 

 

 III. Goodman’s regression with multiple groups and characteristics 

Both the positive and negative aspects of Goodman’s regression are amplified when the number 

of groups in the population is greater than two.32 All parameters in the linear multivariate model 

analogous to that of equation 22 are identified, and the test for aggregation bias has much greater 

power than in the two-group case. However, heteroskedasticity is more complicated. 

 The case with three groups illustrates these points. Augmenting the notation of section I: 

x1i = the proportion of the population in area i that belongs to 

group 1, 

x2i = the proportion of the population in area i that belongs to 

group 2, 

x3i = the proportion of the population in area i that belongs to 

group 3, equal to 1−x1i−x2i, and 

β3i = the proportion of group 3 in area i with the characteristic or 

making the choice at issue. 

The analogues to the identities in equations 1 and 2 are then 
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In this case, the analogue to the linear multivariate model of equations 7 and 22 is
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where r={1, 2, 3} identifies the group. The substitution of equation 26 into equation 25 yields
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The regression counterpart of equation 27 is 
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 The model of equation 27 contains 2+k parameters in addition to those in equation 23, for 

a total of 3[2+k] parameters. However, the regression of equation 28 estimates 3+k coefficients in 

addition to those in equation 24. The additional coefficient is attributable to the interaction term in 

x1ix2i. Under conventional practice, this term would be, incorrectly, omitted. 

 As a consequence of this interaction term, the number of coefficients in the three-group 

regression of equation 28 equals the number of underlying parameters. Moreover, all are 

identified, in contrast to the two-group regression of equation 24.33 As in equation 24, tests of 

significance on the estimated values for β1j, β2j and β3j indicate whether covariates are important. 

 Equation 28 also provides powerful tests for the neighborhood model and for the presence 
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of aggregation bias. The neighborhood model implies 2k+4 restrictions on equation 27. The 

requirements that β1=β2=β3 and β10=β20=β30 imply four restrictions: the absolute values of the 

coefficients on x1i, x2i, x1i
2, x2i

2 and x1ix2i should be identical, 

�b1�=�b2�=�d1�=�d2�=�d12�. The requirement that β1j=β2j=β3j implies 2k restrictions, the 

coefficients on zijx1i and zijx2i should all equal zero, or h1j=h2j=0 for all j. The failure of any one of 

these restrictions would invalidate the neighborhood model. 

 Aggregation bias is present if β10≠0, β20≠0 or β30≠0. The null hypothesis that it is absent, 

β10=β20=β30=0, implies three restrictions: The coefficients on x1i
2, x2i

2 and x1ix2i should all be 

equal to zero, or d1=d2=d12=0. The failure of any of these restrictions indicates that aggregation 

bias is present. 

 This test is more powerful than that in the case of two groups because the three restrictions 

can be simultaneously satisfied if and only if aggregation bias is truly absent, β10=β20=β30=0. For 

example, if β20=−β30≠0, the second restriction would hold but the third would fail: d2=0 but d12≠0. 

Therefore, the failure of any one of these restrictions indicates unambiguously that aggregation 

bias is present. 

 At the same time, the last three terms of equation 27 demonstrate that the residual in this 

regression contains three random components, rather than the two of equation 23. The variance of 

the random component for each area therefore depends on the population proportions of all three 

groups in that area, the variances of the three group-specific random components and the three 

unique covariances among them. Tests of the restrictions implied by the neighborhood hypothesis 

or the hypothesis of aggregation bias require corrections for the consequent heteroskedasticity. 

As the number of groups increases beyond three, the interaction terms between xki and xmj 
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proliferate more rapidly than do the underlying parameters. With R groups, Goodman’s identity is
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The generalized linear specification of the propensities, according to equation 16, is 
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This specification contains k+2 parameters for each of the R groups, or R[2+k] in total. 

 With this specification, the deterministic part of yi is
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Rearranging, this becomes 
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The number of coefficients estimated in the successive terms of this expression is one, R−1, k, 

R−1, [R−1][R−2]/2 and k[R−1]. Therefore, the total number of estimated coefficients is 

R[2+k]+½R[R-3]. This exceeds the number of parameters by ½R[R-3], which is equal to zero 

when R=3 and positive when R>3. 

 Consequently, models with R>3 groups are actually overidentified. In order to ensure that  

estimates are consistent with the underlying model, ½R[R−3] restrictions are necessary. The 
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effect of these restrictions on the explanatory power of the regression provides a general test of 

the underlying specification of Goodman’s identity. 

 In contrast to the number of groups in the population, the number of alternative 

characteristics or choices has few, if any, implications for Goodman-based estimation. The 

identities of equations 1 and 25 do not depend on this number, and are therefore valid regardless 

of its value. Consequently, the estimations of equations 23 and 27 do not depend on the number of 

alternatives. 

 Analogous identities and estimating equations would apply to any additional alternatives. 

However, they would ordinarily be based on parameters that were specific to these alternatives. 

Identification in each would be based on the results above. Multiple characteristics or choices 

would provide additional leverage for identification across equations only if the underlying 

behavioral theory indicated that equations for different alternatives shared common parameters. 

 This section demonstrates that OLS, properly specified, should be a relatively attractive 

estimation technique for the “R×C model”, that with more than two groups, more than two 

choices or both. Estimates are unbiased and valid standard errors are available. With more than 

two groups, identification is complete and may imply testable restrictions. Tests of the 

neighborhood hypothesis and aggregation bias are straightforward. 

 At least four other estimation techniques have been suggested for the R×C problem. 

King’s method for ecological inference (King (1997, chapter 15)) and the binomial-beta 

hierarchical model (Rosen, Jiang, King and Tanner (2001)) are both computationally burdensome 

when fr is constant for all r.34 More complicated specifications of fr would compound the 

difficulties. There appears to be little applied experience with the procedures of Judge, Miller and 
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Cho (2004) or Greiner and Quinn (2009). In any event, the questions of how the restrictions 

implied by the neighborhood model or the absence of aggregation bias would be imposed in these 

techniques are, as of now, not only unanswered but unasked. 

 

IV. Conclusion 

This paper demonstrates that regression-based applications of Goodman’s identity can be much 

more effective than previously understood. OLS estimates of the generalized Goodman’s 

regression in equation 23 are unbiased. They are also heteroskedastic, but corrections are feasible. 

 With these corrections, OLS estimators provide valid statistical tests for the neighborhood 

model and aggregation bias. In addition, they provide unbiased estimates and standard deviations 

for the effects of covariates. Moreover, identification in these models improves as the number of 

groups in the population increases. With these properties and its well-known flexibility, OLS 

should be a valuable tool in the analysis of models that, correctly-specified, require a single 

application of Goodman’s regression. In cases with many covariates, it may be superior, despite 

the risk of estimators outside of the Duncan-Davis bounds and the ingenuity embodied in recent 

alternatives (King (1997), King, Rosen and Tanner (1999) and Lewis (2004) as examples). 

 Current applications of Goodman’s regression typically fail to realize any of its potential. 

Most empirical exercises impose the neighborhood assumption, estimate incorrect standard errors 

and offer neither hypothesis tests nor confidence intervals. Instead, they are distorted by arbitrary 

weights that exacerbate heteroskedasticity, and justified with meaningless R2 values. Sixty years 

after it was first promulgated, Goodman’s identity has yet to be fully appreciated. 



26 
 

 
References 

 
Achen, Christopher H. and W. Phillips Shively (1995) Cross-Level Inference, The University of 

Chicago Press, Chicago. 

 

Adolph, Christopher and Gary King (2003) “Analyzing second-stage ecological regressions: 

Comment on Herron and Shotts”, Political Analysis, Vol. 11, No. 1, Winter, 65-76. 

 

Adolph, Christopher, Gary King, Michael C. Herron and Kenneth W. Shotts (2003) “A consensus 

on second-stage analyses in ecological inference models”, Political Analysis, Vol. 11, No. 1, 

Winter, 86-94. 

 

Ansolabehere, Stephen and Douglas Rivers (1995) “Bias in ecological regression”, working 

paper, Stanford University, Palo Alto, CA. 

 

Bourke, Paul, Donald DeBats and Thomas Phelan (2001) “Comparing individual-level voting 

returns with aggregates: A historical appraisal of the King solution”, Historical Methods, Vol. 34, 

No. 3, Summer, 127-134. 

 

Cho, Wendy K. Tam (1998) “Iff the assumption fits ...: A comment on the King ecological 

inference solution”, Political Analysis, Vol. 7., 143-164. 

 



27 
 

Collet, Christian (2005) “Bloc voting, polarization, and the Panethnic Hypothesis: The case of 

Little Saigon”, Journal of Politics, Vol. 67, No. 3, August, 907-933; 

 

Ferree, Karen E. (2004) “Iterative approaches to R × C ecological inference problems: Where 

they can go wrong and one quick fix”, Political Analysis, Vol. 12, No. 2, Spring, 143-159. 

 

Freedman, David A., Stephen P. Klein, Jerome Sacks, Charles A. Smyth and Charles G. Everett 

(1991) “Ecological regression and voting rights”, Evaluation Review, Vol. 15, No. 6, December, 

673-711. 

 

Goodman, Leo A. (1953) “Ecological regressions and behavior of individuals”, American 

Sociological Review, Vol. 18, No. 6, December, 663-664. 

 

Goodman, Leo A. (1959) “Some alternatives to ecological correlation”, American Journal of 

Sociology, Vol. 64, No. 6, May, 610-625. 

 

Greene, William H. (2003) Econometric Analysis, Fifth Edition, Prentice Hall, Upper Saddle 

River. 

 

Greiner, D. James and Kevin M. Quinn (2009) “R×C ecological inference: bounds, correlations, 

flexibility and transparency of assumptions”, Journal of the Royal Statistical Society, Series A, 

Vol. 172, Issue 1, 67-81. 



28 
 

 

Grofman, Bernard and Samuel Merrill (2004) “Ecological regression and ecological inference”, 

chapter 5 in King, Gary, Ori Rosen and Martin Tanner, eds., Ecological Inference: New 

Methodological Strategies, Cambridge University Press, New York, 123-143. 

 

Grofman, Bernard, Michael Migalski and Nicholas Noviello (1985) “The ‘Totality of the 

Circumstances Test’ in Section 2 of the 1982 Extension of the Voting Rights Act: A social 

science perspective”, Law & Policy, Vol. 7, No. 2, April, 199-223. 

 

Hanushek, Eric A., John E. Jackson and John F. Kain (1974) “Model specification, use of 

aggregate data, and the ecological fallacy”, Political Methodology, Winter, 89-107. 

 

Herron, Michael C. and Kenneth W. Shotts (2003a) “Cross-contamination in EI-R: Reply”, 

Political Analysis, Vol. 11, No. 1, Winter, 77-85. 

 

Herron, Michael C. and Kenneth W. Shotts (2003b) “Using ecological inference point estimates 

as dependent variables in second-stage linear regressions”, Political Analysis, Vol. 11, No. 1, 

Winter, 44-64. 

 

Herron, Michael C. and Kenneth W. Shotts (2004) “Logical inconsistency in EI-based second-

stage regressions”, American Journal of Political Science, Vol. 48, No. 1, January, 172-183. 

 



29 
 

Irwin, Laura and Allan J. Lichtman (1976) "Across the great divide: Inferring individual level 

behavior from aggregate data", Political Methodology, Vol. 3, No. 4, 411-439. 

 

Judge, George G., Douglas J. Miller and Wendy K. Tam Cho (2004) “An information theoretic 

approach to ecological estimation and inference”, chapter 7 in King, Gary, Ori Rosen and Martin 

Tanner, eds., Ecological Inference: New Methodological Strategies, Cambridge University Press, 

New York, 162-187. 

 

King, Gary (1997) A Solution to the Ecological Inference Problem: Reconstructing Individual 

Behavior From Aggregate Data, Princeton University Press, Princeton. 

 

King, Gary (2003) EI: A Program for Ecological Inference, http://gking.harvard.edu/files/ei.pdf. 

 

King, Gary, Ori Rosen and Martin A. Tanner (1999) “Binomial-beta hierarchical models for 

ecological inference”, Sociological Methods & Research, Vol. 28, No. 1, August, 61-90. 

 

Klein, Stephen P., Jerome Sacks and David A. Freedman (1991) “Ecological regression versus the 

secret ballot”, Jurimetrics, Vol. 31, 393-413. 

 

Kousser, J. Morgan (2001) “Ecological inference from Goodman to King”, Historical Methods, 

Vol. 34, No. 3, Summer, 101-126. 

 



30 
 

Lewis, Jeffrey B. (2001) "Understanding King's ecological inference model: A method-of-

moments approach", Historical Methods, Fall, Vol. 34, No. 4, 170-188. 

 

Lewis, Jeffrey B. (2004) “Extending King’s ecological inference model to multiple elections 

using Markov Chain Monte Carlo”, chapter 4 in King, Gary, Ori Rosen and Martin Tanner, eds., 

Ecological Inference: New Methodological Strategies, Cambridge University Press, New York, 

97-122. 

 

Lichtman, Allan J. (1974) "Correlation, regression, and the ecological fallacy: A critique", Journal 

of Interdisciplinary History, Vol. 4, No. 3, Winter, 417-433. 

 

Lichtman, Allan J. (1991) “Passing the test: Ecological regression analysis in the Los Angeles 

County case and beyond” Evaluation Review, Vol. 15, No. 6, December, 770-799. 

 

Liu, Baodong (2007) “EI extended model and the fear of ecological fallacy”, Sociological 

Methods & Research, Vol. 36, No. 1, August, 3-25. 

 

Quinn, Kevin M. (2004) “Ecological inference in the presence of temporal dependence”, chapter 

9 in King, Gary, Ori Rosen and Martin Tanner, eds., Ecological Inference: New Methodological 

Strategies, Cambridge University Press, New York, 207-232. 

 

Redding, Kent and David R. James (2001) "Estimating levels and modeling determinants of black 



31 
 

and white voter turnout in the South, 1880-1912", Historical Methods, Fall, Vol. 34, No. 4, 141-

158.  

 

Rivers, Douglas (1998) “Review of ‘A Solution to the Ecological Inference Problem: 

Reconstructing Individual Behavior from Aggregate Data”, The American Political Science 

Review, Vol. 92, No. 2, June, 442-443. 

 

Robinson, W.S. (1950) “Ecological correlations and the behavior of individuals”, American 

Sociological Review, Vol. 15, No. 3, June, 351-357. 

 

Rosen, Ori, Wenxin Jiang, Gary King and Martin A. Tanner (2001) “Bayesian and frequentist 

inference for ecological inference: the R × C case”, Statistica Neerlandica, Vol. 55, No. 2, July, 

134-156. 

 

Silva de Matos, Rogerio and Alvaro Veiga, “A structured comparison of the Goodman regression, 

the truncated normal, and the binomial-beta hierarchical methods for ecological inference”, 

chapter 15 in King, Gary, Ori Rosen and Martin Tanner, eds., Ecological Inference: New 

Methodological Strategies, Cambridge University Press, New York, 351-382. 

 

Voss, D. Stephen (2004) “Using ecological inference for contextual research”, chapter 3 in King, 

Gary, Ori Rosen and Martin Tanner, eds., Ecological Inference: New Methodological Strategies, 

Cambridge University Press, New York, 69-96. 



32 
 

 

Wakefield, Jon (2004) “Ecological inference for 2x2 tables”, Journal of the Royal Statistical 

Society: Series A (Statistics in Society), Vol. 167, Part 3, July, 385-445. 

  



33 
 

Endnotes 

1 According to Google Scholar, Goodman (1953) has been cited 563 times. Its successor, 

Goodman (1959), has been cited an additional 497 times. 

2 Throughout, square brackets contain quantities that are the objects of explicit algebraic 

operations. Parentheses contain arguments to functions. 

3 This is the “two-party, no abstention” case of Achen and Shively (1995, 30) and the “basic 

model” in King (1997, chapter 6). The parameters of Goodman’s identity describe behavior at the 

aggregate level, here the “area”. However, the “ecological inference problem” is often stated as 

the challenge of recovering parameters governing individual behavior from aggregate data 

(Robinson (1950, 352), Goodman (1953, 663)). Achen and Shively (1995) present behavioral 

models in which the aggregate parameters in Goodman’s identity become explicit functions of 

individual-level parameters (chapters 2 and 4). King (1997, 119-122) discusses difficulties with 

models of this sort. Typically, they require data at the individual level or assumptions that 

effectively impose homogeneity on the deterministic component of individual behavior within an 

aggregate unit. Therefore, the discussion here follows King (1997, 119) and focuses on the 

problem of obtaining valid parameter estimates and constructing valid tests of behavior at the 

aggregate level. 

4 This analogy is common in subsequent literature. As examples, it is explicit in Kousser (2001, 

equation 13) and implicit in Collet (2005, 914) and Liu (2007, 6). 

5 Similarly, the area-specific parameters of equations 1 or 2 could be identified for area i if the 

parameters β1i and β2i were constant over time, xi and yi were observed twice, and the group share 
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xi was different for the two observations. In this case, yi would necessarily also vary across the 

two, again providing an exact solution. The regression of equation 3 would still yield the 

incomprehensible results of equation 4. Regressions using only repeated observations for a single 

area would achieve a perfect fit. Although many empirical examples, such as that of voting 

behavior, offer repeated observations within area, it appears that only Lewis (2004) and Quinn 

(2004) have explored this identification strategy. 

6 This is a general form for the model of “deterministic heterogeneous transition rates” in Achen 

and Shively (1995, 39-45). 

7 “The assumption that the coefficients are independent of the regressors is the critical problem in 

ecological inference.” (Rivers (1998, 442)). King (1997, 40) states that this assumption is 

“wrong” and Achen and Shively (1995, 13) characterize it as “always dubious” (page 13). Both 

assert, correctly, that if this assumption is false, typical specifications of Goodman’s regression 

are biased. The latter add, again correctly, that the bias cannot be corrected through weighting 

(page 51, footnote 19). 

8 Measurement error in yi is also possible. However, the dependent variable in many applications 

of Goodman’s identity measures voting behavior. Official counts of voters and votes are exact, at 

least for the purpose of determining electoral outcomes. Therefore, it will usually be appropriate 

to treat these counts as measured without error. 

9 Goodman (1953) refers to the constants in his identity as both “parameters” and “average 

probabilities” (pages 664 and 663, respectively). This apparent ambiguity may have been an early 

anticipation of the random coefficients model. 

10 The “sophisticated Goodman model” of Achen and Shively (1995, 51) sets f1 and f2 constant in 
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equation 7. These functions can presumably be more complicated in their “extended sophisticated 

Goodman model” (page 68). 

11 Chapter 3 of Achen and Shively (1995) is an exposition of the substantial challenges that 

measurement error presents in the context of Goodman’s regression. Lichtman (1974, 422) also 

identifies measurement error as an important concern in ecological regression. Irwin and 

Lichtman (1976, 415-416) point out that aggregation may create correlations between xi and the 

unobserved component of yi, as well. Equation 8 reverses the conventional notation, in which the 

superscript asterisk identifies the true value (Greene (2003, 84)). This is convenient below, where 

measurement error is disregarded. Measurement error is also possible in z1i and z2i, but the 

consequences would be similar in form and tractability to those associated with measurement 

error in xi. 

12 Goodman (1959, 612-3) identifies this problem. It reappears in, as examples, Hanushek, 

Jackson and Kain (1974), Lichtman (1974) and Kousser (2001, 108). 

13 Achen and Shively (1995, 75) conclude that "(l)ogically impossible estimates in ecological 

regression ... are encountered perhaps half the time, and more often as the statistical fit improves. 

Ecological regression fails, not occasionally, but chronically." King (1997, 57) states that failures 

occur “often”. In contrast, Kousser (2001, 117-8) asserts that impossible estimates are relatively 

infrequent. 

14 For example, Achen and Shively (1995, 35, footnote 5) note that, in the study of consecutive 

elections, attrition and accession to the electorate will ordinarily generate measurement error in 

the explanatory variable. However, they conclude that “(t)hese fine points are always ignored in 

practice.” Judge, Miller and Cho (2004) offer an attempt to confront them. 
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15 Equation 10 demonstrates that this is the “weak form” of the neighborhood model. The “strong 

form” would also require that the random components of group behavior be identical within area, 

ε1i= ε2i. This would impose the additional restriction of homoskedasticity on the empirical error 

terms, which could also be tested. The heteroskedasticity in the unrestricted form of equation 10 

is discussed below. 

16 Freedman, et al. (1991, 682) suggest the “nonlinear” neighborhood model as an alternative in 

which β1i=β2i=yi. This is a tautology rather than a model, because it reduces Goodman’s identity 

in equation 1 to yi≡yi. It is simply a restricted version of the “model” represented by King’s 

tomography plots (1997, figure 6.3, as an example). These plots demonstrate that an infinite 

number of pairs of values for β1i and β2i satisfy Goodman’s identity, as reformulated in King’s 

equation 6.27, for each area. For each area, the nonlinear neighborhood model arbitrarily chooses 

the single pair that satisfies the restriction β1i=β2i. Statistically, this “model” is no better than that 

consisting of any other pair of values from each of these lines. Each of these “models” will “fit” 

the data perfectly, by absorbing all degrees of freedom. Any procedure of this type will have no 

predictive value because it is “nihilistic” (Kousser (2001, 105): It implicitly asserts that scientific 

analysis is not applicable because voting behaviors across areas have nothing in common. If this 

assertion is implausible, than all procedures of this type, including the nonlinear neighborhood 

model, are irrelevant. 

17 The notation here extends that of equation 5. As there, β1 and β2 represent the fixed components 

of the propensity of each group to make the choice in question. The new parameters, β10 and β20, 

represent the effects of population composition on these propensities. This model and the more 

general version in equation 22 specify f2 as functions of the group 2 proportion [1−xi] for 
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consistency with the analysis of Goodman’s regression when the population contains more than 

two groups, in section III below. With only two groups, f2 could be specified as a function of the 

group 1 proportion xi instead. The fundamental results are identical with either specification. 

18 King (1997, 41-44) also discusses the case of linear aggregation bias without covariates. As 

here, King concludes that Goodman’s model implies equation 20, and that its individual 

parameters are not identified. However, he does not address the separate question of whether the 

difference between Goodman’s identity and the neighborhood hypothesis is identified. 

19 Equation 22 extends the notation used previously, as discussed in footnote 16. It reduces to 

equation 19 if β1j=β2j=0 for all j from one to k. It reduces to equation 13 if, in addition, β10=β20=0. 

Achen and Shively (1995, 13 and 73, footnote 14) refer to this latter model when they assert that 

“(j)ust one technique for handling ecological data has been widely adopted in practice: the linear 

(unextended) version of Goodman ecological regression”. 

20 Achen and Shively (1995, 40, footnote 8) also note that the complete multivariate linear 

specification of Goodman’s identity requires interaction terms. 

21 According to Achen and Shively (1995, 58) and King (1997, 32-3), linear combinations of the 

area-specific parameters are often of interest. Kousser (2001, 107) suggests them as specification 

checks. 

22 Collectively, these tests must have very high power. If all fail to reject their respective null 

hypotheses, the neighborhood model could still be false only in the unlikely event that β1≠β2 and 

β10≠β20, yet β1+β10−β2−β20=0. 

23 Rivers (1998, 443) asserts that this model is unidentified. King (1997, section 3.2), Voss (2004, 

72-73) and Wakefield (2004, 398) provide additional examples. Achen and Shively (1995, 
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chapters 5 and 6) discuss identifying strategies which could be effective here, if behaviorally 

appropriate. In this case, for example, the assumption that β1=0 is sufficient to identify β2, β10 and 

β20. 

24 This test does not restrict the treatment of zi in f1 and f2. It requires only that these functions be 

linear in xi. More complicated functions of xi would presumably suggest analogous tests. This test 

should have relatively good power. If d is statistically indistinguishable from zero, aggregation 

bias could only be present in the unlikely event that β10=−β20≠0. 

25 Achen and Shively (1995, 47-8) and Lewis (2001, 177) note that OLS estimates of equation 24 

are unbiased where f1 and f2 are constants. 

26 King (1997, 65-8) asserts that heteroskedasticity can severely distort inference in ecological 

regression models. As an example, the results in Bourke, DeBats and Phelan (2001, 132)) are 

subject to this distortion because their standard errors are not corrected for heteroskedasticity. 

Achen and Shively (1995, 47-50 and 128) claim that heteroskedasticity is empirically 

unimportant. However, they are essentially uninterested in inference (page 58). 

27 These discussions assume that ε1i and ε2i are uncorrelated with ε1j and ε2j for all i and j. 

Autocorrelation (Cho (1998, 145-6)) would require additional corrections to standard errors. 

Inexplicably, Cho reports OLS standard errors without any indication that they have been 

appropriately corrected. 

28 King (1997, 61-5) and Achen and Shively (1995, 57-61) are critical of weighting by the inverse 

square root of population. Ansolabehere and Rivers (1995, 10) agree that this weighting almost 

certainly fails to correct for heteroskedasticity. In contrast, Kousser (2001) asserts without proof 

that it does correct for heteroskedasticity (page 112) and that it yields meaningful changes in the 
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values of ecological regression estimators (page 110). Achen and Shively (1995, 58-9) extend this 

latter argument. Both are wrong. With the correct deterministic specification, weighted least 

squares estimators are unbiased and consistent for the behavioral parameters with any weighting 

scheme that is not correlated with the true residuals, including the equal weights of OLS (Greene 

(2003, 192-5)). In other words, the incorrect population weights may alter point estimates 

somewhat, but have no effect on their expected values and distort their standard errors. Kousser 

(2001) is an example of incorrect standard errors afflicted with both the heteroskedasticity of 

equation 10 and that imposed by inverse square root of population weights. 

29 In general, maximum likelihood estimation is guaranteed to yield consistent estimators, 

assuming, as throughout this paper, that the underlying behavior is appropriately represented by 

the model (Greene (2003, 467-8)). King’s method is explicitly maximum likelihood. The White 

heteroskedasticity-consistent variance estimates are equivalent to maximum likelihood estimates 

(Greene (2003, 520)). 

30 It may also be convenient to take advantage of the simplicity of OLS by testing for aggregation 

bias in Goodman’s regression as described above. If it is absent, King’s method can then be 

invoked without the burden of exploring aggregation bias in that context. 

31 King (1997, page 170) suggests that covariates might be addressed by estimating β1i and β2i 

with ecological inference under the assumption that f1 and f2 are constants, and then regressing 

these estimates on covariates. Redding and James (2001) is an example. This strategy implicitly 

acknowledges that these covariates should have appeared in the initial specification of f1 and f2. 

The consequences of this misspecification are, predictably, difficult to ascertain (Adolph and 

King (2003), Adolph, King, Herron and Shotts (2003) and Herron and Shotts (2003a, 2003b)), but 
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probably unfortunate (Herron and Shotts (2004)). 

32 Achen and Shively (1995, 34-38 and 129-131) provide a brief discussion of Goodman’s 

identity and regression in the context of transition matrices with more than two electoral choices. 

33 The coefficients on the zij , cj, identify β3j. With these results, the coefficients on zijx1i and zijx2i, 

h1j and h2j, identify β1j and β2j, respectively. The coefficient on x1ix2i, d12, identifies β30. With this 

result, the coefficients on x1i
2 and x2i

2, d1 and d2, identify β10 and β20, respectively, and the 

constant a identifies β3. With this last result and β30, the coefficients on x1i and x2i, b1 and b2, 

identify β1 and β2, respectively. 

34 King (1997, chapter 15) suggests a simplification relying on iterative applications of the 

bivariate truncated normal distribution. This strategy may yield biased estimates of the underlying 

behavioral model (Ferree (2004)). 


