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A B S T R A C T

We present a strong-form meshfree collocation method for frictional contact of two deformable bodies within
the context of frictional crack problems. The method inherently achieves desirable features of meshfree
methods by completely avoiding the construction of meshes or grids, such that the only required numerical
approximation units are nodes (used as collocation points). For the recognition of a contact or crack surface,
a line segment is used without any connection with the node structure. A contact constraint due to two
body frictional contact is implemented in the strong-form meshfree discretization. Since the contact boundary
is a Neumann boundary, it contributes to the system of equations as a traction boundary condition, but
it does not yield extra unknowns. Although the material is linear elastic, the presence of the constraint
formulation leads to an iterative nonlinear solution procedure. The assembled discrete system generates a
consistent and stable solution despite the presence of contact constraints and the crack discontinuity, because
the constraint formulation and crack modeling are well combined with the strong-form meshfree collocation
method. Numerical experiments demonstrate the robustness and consistency of the method through comparison
with analytical and finite element solutions.
. Introduction

Meshfree methods have an advantage in modeling various types of
iscontinuity problems because they apparently do not require a mesh.
owever, weakly formulated meshfree methods such as the element-

ree Galerkin method (EFGM) [1] and the reproducing kernel particle
ethod (RKPM) [2] cannot avoid a so called integration cell. Although

he integration cell does not need the connectivity, it still demands
ome sort of cell structures which may prove cumbersome process in
iscontinuity modeling. Discontinuity modeling schemes such as the
isibility criterion [3,4] and intrinsic or extrinsic near-tip field en-
ichments [4] might circumvent further sub-division of the integration
ell from the weak formulation for crack problems, but they do not
ompletely remove inconvenience arising from the requirement of a cell
tructure.

To fully take advantage of the merit of meshless methods with-
ut the need for integration cells, strong-form based meshfree meth-
ds [5,6] have been proposed, with their own approaches to deal
ith the collocation scheme and derivative approximation techniques.
mong them, Aluru [6] proposed a meshfree collocation method based
n reproducing kernel approximations for solid mechanics problems,
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obtaining the second-order derivative approximation by directly dif-
ferentiating the zeroth-order approximation. The strong-form based
meshfree collocation method adopted in this study [7–9] has been
used for crack analysis [10], weak discontinuity analysis [11], phase
field simulation of microstructure solidification problems [12,13], and
thermo-mechanical contact problems [14]. Motivated by such success-
ful applications, we propose here a further extension of the strong-form
based collocation method to model arbitrary stationary cracks with
frictional contact on the crack surfaces.

For crack modeling, the strong-form meshfree collocation method
has its own distinct advantages. The main advantage of the method
is an easy adaptive nodal refinement near the tip region and contact
area. More specifically, when there is no intrinsic or extrinsic function
enrichments for the near tip field, the node refinement is essential for
the accurate stress analysis. This may apply to the contact problems in
the same way. Furthermore, the introduction of contact constraint does
not increase the size of the final system, not because extra unknowns
are created, but because Neumann boundary conditions are added by
contact surfaces (note that contact constraint is naturally treated as a
traction boundary). Another advantage is an easy and fast construc-
tion of the high-order derivative approximation based on the Tayler
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expansion using the moving least squares approximation. Because crack
problems usually require the second-order derivative of a variable func-
tion, an efficient high-order derivative approximation is inevitable for
discretizing the governing equations and is easily introduced through
the approach we propose. Moreover, the visibility criterion for crack
analysis can be easily combined with the fast derivative approximation.

Upon making use of such advantages, Lee et al. [15] success-
fully applied the strong-form meshfree collocation method to dynamic
crack propagations. The hybrid time integrators, based on the central
difference and Newmark schemes, were used to effectively eliminate os-
cillation occurred during the time marching fracture simulation. Yoon
et al. [16] analyzed dynamic fracture of a concrete beam. The Rayleigh
damping effect was incorporated into the strong-form meshfree collo-
cation method via the proportional damping algorithm to model the
dissipation of the driving force for dynamic fracture. More recently,
concrete tensile failure subjected to strain-rate effects was successfully
simulated by Kim et al. [17]. The proportional damping algorithm,
damage model and visibility criterion were combined together for the
simulation of the extremely high loading rate fracture in the framework
of the strong-form meshfree collocation method. In particular, an order
reduced strong formulation was developed to employ material models
including a damage model for local concrete failure. Rabczuk et al. [18]
summarized approaches of modeling cracks in other meshfree meth-
ods. Furthermore, they introduced a robust and efficient approach
for modeling discrete cracks using a set of cracked segments and the
visibility method motivated by the cracking particle method [19] where
the crack can be modeled by a discontinuous enrichment that can be
arbitrarily aligned in the body at each node.

Several collocation based numerical methods have been dealt with
contact problems. Examples include the isogeometric analysis colloca-
tion method and non-conventional numerical schemes using the kernel
function [20,21]. The isogeometric analysis collocation method, which
is not the strong-form based meshfree method, studied frictionless and
frictional contact problems for an elastic body [22,23] and a rod-to-
rod contact [24]. Recently, Almasi et al. [25] successfully applied the
strong-form meshfree collocation method to one-body frictional contact
problems. Motivated by this, this study focuses on further extension of
the strong-form meshfree collocation method to the contact between
two deformable bodies including a frictional crack. The crack is treated
as a strong discontinuity with a stress singularity before any contact
occurs at the crack surface, but it is handled as a contact interface
after contact. A constitutive equation for the contact surface is given
by contact kinematics and a penalty algorithm is implemented in
an explicit manner. Notice that the contact surface differs from the
material interface which does not allow any sliding. This study shows
how the contact constraint is effectively implemented in the strong-
form meshfree collocation formulation by using the penalty method
without yielding any extra unknowns along the interface. Although
the developed method generates the additional residual equations, it
preserves the nodal displacements as one and only category of unknown
variable to be determined from solving the global system of equations.
The stiffness matrix of the global system will be shown to be effective in
the nonlinear iterative solution process through numerical experiments.

The outline of the paper is organized as follows. In Section 2, we ex-
plain the fast particle derivative approximation which is optimized for
the strong-form meshfree collocation method. In Section 3, the strong-
form based contact formulation is presented for deformable multi-body
contact problems. In Section 4, numerical verification for the proposed
collocation method is performed for two-body frictional contact and
frictional crack problems. In Section 5, a summary is provided with
concluding remarks.

2. Particle derivative approximation

For the strong-form based discretization, the high-order derivative

approximation is crucial because the governing equation is mostly

2

given in the partial differential equation with high order. For instance,
the momentum equation for the solid mechanics problems involves the
second order derivative functions while the natural boundary condi-
tion is the first order derivative function. The strong-form meshfree
collocation method allows a non-exact form of the derivative approxi-
mation in a mathematical sense. In the weak formulation, the derivative
approximation is implemented in the integral calculation with an av-
erage sense due to numerical integration process but it is required
to be mathematically exact. However, in the strong formulation, it
needs to satisfy the reproducing property or consistency condition in
a sense of Taylor theorem, but it does not have to be mathematically
exact. It was already proved that the particle derivative approximation
achieves sufficient accuracy and efficiency for the strong form based
meshfree methods [7,8]. The weak formulation obtains the derivative
approximation by directly differentiating the approximation function.
However, the particle derivative approximation is derived from the
Taylor series expanded by the moving least squares method without
any differentiation process. As a result, no extra effort is taken to get
the derivative approximation. The strong-form meshfree collocation
method employs the particle derivative approximation instead of the
exact derivative of the moving least squares approximation. It implies
that the Taylor polynomial is able to approximate the given function
or the solution of the governing equation. Note that differentiation of
the moving least squares approximation is quite complicated and the
approximate derivative like the particle derivative approximation can
be used in the strong formulation as long as it achieves the reproducing
property or consistency condition [7–9].

The details of the moving least squares approximation and their
derivatives can be found in [7–9]. Here, we provide the brief deriva-
tion of the derivative approximation. The Taylor polynomial expanded
with the moving least squares approximation can approximate the
derivatives of the field variable up to the order of consistency. For
convenience, we start by defining some useful mathematical notations.
Let 𝐱 = (𝑥1,… , 𝑥𝑛) be an 𝑛-dimensional real vector and 𝜶 = (𝛼1,… , 𝛼𝑛)
be an 𝑛-tuple of non-negative integers for power and derivative of a
vector. The 𝜶th power of 𝐱 is defined by 𝐱𝜶 = 𝑥𝛼11 𝑥𝛼22 ⋯ 𝑥𝛼𝑛𝑛 . We define
the 𝜶th derivative of a smooth function 𝑓 (𝐱) with respect to 𝐱 as

𝐷𝜶
𝐱 𝑓 (𝐱) =

𝜕|𝜶|𝑓 (𝐱)
𝜕𝑥𝛼11 𝜕𝑥𝛼22 ⋯ 𝜕𝑥𝛼𝑛𝑛

(2.1)

here |𝜶| is the sum of all components of 𝜶, i.e., |𝜶| ≡ ∑𝑛
𝑖=1 𝛼𝑖.

Upon neglecting higher-order terms in a Taylor series, the 𝑚th-order
olynomial for approximating a continuous function 𝑢(𝐱) at the local
enter �̄� can be expressed as

(𝐱; �̄�) =
∑

|𝜶|≤𝑚

(𝐱 − �̄�)𝜶
𝜶!

𝐷𝜶
𝐱 𝑢(�̄�) = 𝐩⊤𝑚(𝐱; �̄�)𝐚(�̄�) (2.2)

here 𝜶! is the factorial of 𝜶, i.e., 𝜶! = 𝛼1!⋯ 𝛼𝑛!. Note that the
aylor polynomial can be decomposed into the polynomial basis vec-
or 𝐩⊤𝑚(𝐱; �̄�) and the corresponding derivative coefficient vector 𝐚(�̄�)
omputed at �̄� the local center. From the definition of the Taylor
olynomial, the polynomial basis vector takes the form

⊤
𝑚(𝐱; �̄�) =

[

(𝐱 − �̄�)𝜶1

𝜶1!
,… ,

(𝐱 − �̄�)𝜶𝐿

𝜶𝐿!

]

(2.3)

where 𝐿 = (𝑛 + 𝑚)!∕𝑛!𝑚! is the number of the components of the
polynomial basis vector 𝐩⊤𝑚 and (𝐱 − �̄�)𝜶𝑖 is the 𝜶𝑖th-power of 𝐱 − �̄�
defined by (𝐱− �̄�)𝜶𝑖 = (𝑥1 − �̄�1)𝛼1 (𝑥2 − �̄�2)𝛼2 ⋯ (𝑥𝑛 − �̄�𝑛)𝛼𝐿 . The derivative
oefficient vector can be written as
⊤(�̄�) =

[

𝐷𝜶1
𝐱 𝑢(�̄�),… , 𝐷𝜶𝐿

𝐱 𝑢(�̄�)
]

(2.4)

hich includes all of the derivatives for 𝑢(𝐱) at �̄� up to the 𝜶𝐿th-order.
Based on the idea of moving least-square approximation, minimiz-

ng with respect to 𝐚(�̄�) the discrete form of the weighted discrete
2-norm given by

=
𝑁
∑

𝑤
(𝐱𝐼 − �̄�)

[𝐩⊤(𝐱𝐼 ; �̄�)𝐚(�̄�) − 𝑢𝐼 ]2 (2.5)

𝐼=1 𝜌�̄�
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yields

𝐚(�̄�) = 𝐌−1(�̄�)𝐁(�̄�)𝐮 (2.6)

where 𝑢𝐼 = 𝑢(𝐱𝐼 ) and 𝐮⊤ =
[

𝑢1, 𝑢2,… , 𝑢𝑁
]

. The matrices 𝐌 and 𝐁 are
efined by

(�̄�) =
𝑁
∑

𝐼=1
𝑤
(𝐱𝐼 − �̄�

𝜌�̄�

)

𝐩𝑚(𝐱𝐼 ; �̄�)𝐩⊤𝑚(𝐱𝐼 ; �̄�), (2.7)

𝐁(�̄�) =
[

𝑤
(

𝐱1−�̄�
𝜌�̄�

)

𝐩𝑚(𝐱1; �̄�), ⋯ , 𝑤
(

𝐱𝑁−�̄�
𝜌�̄�

)

𝐩𝑚(𝐱𝑁 ; �̄�)
]

(2.8)

where 𝑤
(

𝐱𝐼−�̄�
𝜌�̄�

)

indicates the weight function with support size 𝜌�̄�. In
q. (2.6), substituting 𝐱 for �̄� gives the particle derivative approxima-
ion at an arbitrary position 𝐱; the constitution of 𝐚(𝐱) can be noted
rom Eq. (2.2). The derivative approximation is combined with the
eneralized nodal shape function and nodal solution as follows

𝜶
𝐱 𝑢(𝐱) =

𝑁
∑

𝐼=1
𝛷𝜶

𝐼 (𝐱)𝑢𝐼 (2.9)

where 𝜶 is a 2-tuple of non-negative integers for 2D case. Eq. (2.9) can
be rewritten in matrix form as following

⎛

⎜

⎜

⎜

⎜

⎝

𝐃𝜶1
𝐱 𝑢(𝐱)

𝐃𝜶2
𝐱 𝑢(𝐱)
⋮

𝐃𝜶𝐿
𝐱 𝑢(𝐱)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝛷𝜶1
1 (𝐱) 𝛷𝜶1

2 (𝐱) ⋯ 𝛷𝜶1
𝑁 (𝐱)

𝛷𝜶2
1 (𝐱) 𝛷𝜶2

2 (𝐱) ⋯ 𝛷𝜶2
𝑁 (𝐱)

⋮ ⋮ ⋱ ⋮
𝛷𝜶𝐿

1 (𝐱) 𝛷𝜶𝐿
2 (𝐱) ⋯ 𝛷𝜶𝐿

𝑁 (𝐱)

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑢1
𝑢2
⋮
𝑢𝑁

⎞

⎟

⎟

⎟

⎟

⎠

(2.10)

where 𝜶2 = (1, 0), 𝜶3 = (0, 1), …, 𝜶𝐿 = (0, 𝑚) when the 𝑚th order
olynomial vector 𝐩𝑚, 𝜶1 = (0, 0) is applied for the 2D case. Here, the
eneralized nodal shape function Φ𝜶

𝐼 (𝐱) denotes the 𝜶th derivative of
he shape function at node 𝐼 defined as

𝜶
𝐼 (𝐱) = 𝜶!𝐞⊤𝜶𝐌

−1(𝐱)𝐩(𝐱𝐼 ; 𝐱)𝑤
(𝐱𝐼 − 𝐱

𝜌𝐱

)

(2.11)

where 𝐞⊤𝛼 = [0,… , 1,… , 0] has only one nonzero term of 1 at the 𝜶th slot
n lexicographic order. The first low of the generalized shape function
atrix of Eq. (2.10) gives the zeroth-order shape function while the 𝜶th

ow yields the 𝜶th-order derivative shape function. Notice that the 𝜶th-
rder derivative shape function is an approximation of the derivative
unction of the zeroth-order shape function in a sense of the Taylor
heorem; it has the consistency which guarantees the reproducing prop-
rty for any function or its derivatives within the order of consistency
f Taylor polynomial. This enables the strong-form collocation method
o properly discretize the governing equations given in a differential
orm. In the conventional weak form based meshfree methods and
ther strong-form based meshfree methods [6,26], only the first low of
he coefficient matrix of Eq. (2.10) is taken for discretization and the
erivative function is calculated by directly differentiating these zeroth-
rder shape functions. Although direct differentiation may increase the
athematical preciseness of derivative approximation, it may demand

xcessive computational cost which turns out to cause more trouble-
ome computation in dealing with the second-order derivative function.
herefore, the particle derivative approximation given in Eq. (2.10)

s very attractive discretization tool for the strong-form based particle
ethods, which is equipped with sufficient mathematical preciseness

s well as excellent computational efficiency [7,8].

. Multi-body contact

.1. Problem description

We consider frictional contact between two deformable bodies as
hown in Fig. 1. The domain 𝛺(𝑖), 𝑖 = 1, 2, is bounded by 𝛤 (𝑖), i.e., �̄�(𝑖) =
(𝑖) ∪ 𝛤 (𝑖). Assume that 𝛤 (𝑖) is partitioned into 𝛤 (𝑖)

𝑢 , 𝛤 (𝑖)
𝑡 , and 𝛤 (𝑖)

𝑐 ,
hich are Dirichlet and Neumann boundary conditions and contact

onstraints, respectively, i.e., 𝛤 (𝑖) = 𝛤 (𝑖)
𝑢 ∪ 𝛤 (𝑖)

𝑡 ∪ 𝛤 (𝑖)
𝑐 with 𝛤 (𝑖)

𝑢 ∩ 𝛤 (𝑖)
𝑡 =

(𝑖) ∩𝛤 (𝑖) = 𝛤 (𝑖) ∩𝛤 (𝑖) = ∅. Displacements �̄�(𝑖) will be prescribed on 𝛤 (𝑖),
𝑢 𝑐 𝑐 𝑡 𝑢

3

Fig. 1. Notation for two-body contact.

while tractions 𝑡(𝑖) are to be given on 𝛤 (𝑖)
𝑡 . Finally, �̄� = 𝛺(1) ∪ 𝛺(2) is

used to denote the entire domain of interest.
The governing equations to find the displacement field 𝐮(𝑖) in 𝛺(𝑖)

are given by

div𝝈(𝑖) + 𝐛(𝑖) = 0 in 𝛺(𝑖) (3.1)

where 𝝈(𝑖) is the Cauchy stress tensor and 𝐛(𝑖) is a body force. For the
constitutive assumption, we consider the linear elastic material, i.e.,

𝝈(𝑖) = 2𝜇𝝐(𝑖) + 𝜆tr(𝝐(𝑖))𝟏 (3.2)

where 𝜆 and 𝜇 are Lamé constants, 𝟏 is the second-order identity tensor,
and 𝝐(𝑖) is the strain tensor defined by 𝝐(𝑖) = (∇𝐮(𝑖) + (∇𝐮(𝑖))⊤)∕2. The
Dirichlet and Neumann boundary conditions and contact constraints
are given by

𝐮(𝑖) = �̄�(𝑖) on 𝛤 (𝑖)
𝑢 ,

𝝈(𝑖)𝐧(𝑖) = �̄�(𝑖) on 𝛤 (𝑖)
𝑡 ,

𝝈(𝑖)𝐧(𝑖) = 𝐭(𝑖)𝑐 on 𝛤 (𝑖)
𝑐

(3.3)

where 𝐧 is the unit outward normal vector to 𝛺(𝑖), �̄�(𝑖) is the prescribed
displacement on 𝛤 (𝑖)

𝑢 , �̄�(𝑖) is the prescribed traction on 𝛤 (𝑖)
𝑡 , and 𝐭(𝑖)𝑐 is

the unknown contact traction on 𝛤 (𝑖)
𝑐 .

3.2. Contact kinematics

To describe contact kinematics for two-body contact between two
domains 𝛺(1) and 𝛺(2), we consider a point 𝐱 ∈ 𝛤 (1)

𝑐 and assume for each
such point 𝐱, a corresponding point �̄�(𝐱) ∈ 𝛤 (2)

𝑐 which is closest to 𝐱 in
the Euclidean sense, i.e., �̄�(𝐱) = arg min‖𝐱−𝐲‖. Notice that two surface
normals 𝐧(𝐱) and 𝝂(𝐱) are associated with 𝛤 (1)

𝑐 and 𝛤 (2)
𝑐 , respectively,

i.e., 𝝂(𝐱) ≈ −𝐧(𝐱), as

𝐧(1)(𝐱) = 𝐧(𝐱) on 𝐱 ∈ 𝛤 (1)
𝑐 ,

𝐧(2)(𝐱) = 𝝂(�̄�(𝐱)) on 𝐱 ∈ 𝛤 (2)
𝑐 ,

𝐧(1)(𝐱) = −𝐧(2)(�̄�(𝐱))
(3.4)

with the small displacement kinematic assumption, i.e., displacements
are sufficiently small so that variations in contact points and normal
can be neglected.

Given a displacement field 𝐮(𝑖) ∶ 𝛤 (𝑖)
𝑐 → 𝐑2, we define a gap function

𝑔 ∶ 𝛤 (𝑖)
𝑐 → 𝐑 as follows. For all 𝐱 ∈ 𝛤 (1)

𝑐 ,
(1) (2) ̄
𝑔(𝐱) = 𝑔0(𝐱) − [𝐮 (𝐱) − 𝐮 (𝐲(𝐱))] ⋅ 𝝂(𝐱), (3.5)
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where 𝑔0(𝐱) = (𝐱 − �̄�(𝐱))𝝂(𝐱) denotes the initial gap between two
odies or gap at zero displacement. To define the normal contact con-
itions, the contact traction is decomposed into normal and tangential
omponents via
(1)
𝑐 = 𝐭𝑁 − 𝐭𝑇 = 𝑡𝑁𝝂 − 𝑡𝑇 𝝉 (3.6)

where 𝝂 is the unit outward normal to 𝛤𝑐 and 𝝉 is the unit tangential
vector defined as

𝝂 = 𝐞3 × 𝝉 (3.7)

where 𝐞3 is the unit basis vector pointing out of the paper.
The gap function 𝑔 and contact pressure 𝑡𝑁 are then related through

he Kuhn–Tucker complementary conditions:

(𝐱) ≤ 0, 𝑡𝑁 (𝐱) ≥ 0, 𝑡𝑁𝑔(𝐱) = 0. (3.8)

Eq. (3.8)2 refers to the fact that if there is contact then the pres-
ure is compressive. Eq. (3.8)3 is the requirement that the pressure is
onzero only when contact occurs (i.e., 𝑔 = 0). Further, when 𝑔 < 0,

this condition requires that 𝑡𝑁 be zero, consistent with an out-of-contact
condition.

3.3. Penalty regularization

The contact constraints, i.e., both normal and frictional contact
constraints, are regularized using the penalty method. A penalty reg-
ularization for the normal contact constraint is given by

𝑡𝑁 = 𝜖𝑁 < 𝑔 > (3.9)

where 𝜖𝑁 > 0 is the normal penalty parameter and < ∙ > is the
Macaulay bracket. The impenetrability condition is exactly satisfied as
𝜖𝑁 → ∞. The penalty regularization for the frictional contact constraint
is given by

Φ ∶= ‖𝐭𝑇 ‖ − 𝜇𝑡𝑁 ≤ 0,

𝐯𝑇 − �̇�
𝐭𝑇

‖𝐭𝑇 ‖
= 1

𝜖𝑇
̇𝐭𝑇 ,

�̇� ≥ 0,

�̇�Φ = 0

(3.10)

where 𝜖𝑇 > 0 is the tangential penalty parameter, 𝜇 is the coefficient of
friction, and 𝜁 is a consistency parameter that expresses the collinear-
ity of the slip displacement 𝐮𝑇 and frictional stress 𝐭𝑇 in rate form.

pplying the backward Euler integrator to Eq. (3.10) yields

Φ ∶ = ‖𝐭𝑇 ‖ − 𝜇𝑡𝑁 ≤ 0,

𝐭𝑇 = 𝜖𝑇

(

𝐮𝑇 − 𝛥𝜁
𝐭𝑇

‖𝐭𝑇 ‖

)

,

𝛥𝜁 ≥ 0,

𝛥𝜁Φ = 0.

(3.11)

A trial state/return mapping algorithm is employed to determine
he Coulomb frictional traction. For implementation, the computational
lgorithm for Coulomb frictional traction is then given by:

1. The trial state is first computed by assuming no slip during the
increment:
𝐭trial
𝑇 = 𝜖𝑇 𝐮𝑇 ,

Φtrial = ‖𝐭trial
𝑇 ‖ − 𝜇𝑡𝑁 .

(3.12)

where 𝐮𝑇 = [𝟏 − 𝝂 ⊗ 𝝂](𝐮(1)(𝐱) − 𝐮(2)(�̄�(𝐱))) of point on 𝐱 ∈
𝛤 (1)
𝑐 , relative to the opposing surface 𝛤 (2)

𝑐 . Note that the normal
contact pressure 𝑡𝑁 is previously given by 𝑡𝑁 = 𝜖𝑁 < 𝑔 > in
Eq. (3.9).

2. Check the status of stick or slip condition based on the pre-
computed trial function Φtrial:

𝐭𝑇 =

⎧

⎪

⎨

⎪

𝐭trial
𝑇 if Φtrial ≤ 0 (stick),

𝜇𝑡𝑁
𝐭trial
𝑇

‖𝐭trial
‖

otherwise (slip).
(3.13)
⎩
𝑇
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3.4. Discretization for two-body frictional contact

We present the discretization of the governing equations for the
strong-form based meshfree collocation method. By substituting
Eq. (3.2) into Eq. (3.1), the governing equations in Cartesian compo-
nents can be written as

𝜇𝑢𝑖,𝑗𝑗 + (𝜆 + 𝜇)𝑢𝑗,𝑗𝑖 + 𝑏𝑖 = 0 in 𝛺(𝑖) (3.14)

where 𝑖, 𝑗 = 1, 2 in two dimensions and the repeated subscript follows
the summation convention. To solve the nonlinear systems of equations
using a full Newton–Raphson iteration scheme, the residual 𝐑 can be
defined as

𝐑(𝐮) = (𝐮) −  (𝐮) = 𝟎 (3.15)

which is a nonlinear function of the solution vector 𝐮 and  is nonlinear
due to the presence of contact tractions. Applying the Newton–Raphson
scheme to Eq. (3.15) in iteration 𝑗 yields

𝐑(𝐮𝑗 ) +
𝜕𝐑
𝜕𝐮

|

|

|

|𝑗
𝛿𝐮 = 𝟎 (3.16)

followed by the update

𝐮𝑗+1 = 𝐮𝑗 + 𝛿𝐮, (3.17)

in which 𝜕𝐑
𝜕𝐮 is the tangent stiffness matrix 𝐊, i.e., 𝐊 = 𝜕𝐑

𝜕𝐮 . For
convenience, we define 𝛶 = 𝛶𝑖 ∪ 𝛶𝑑 ∪ 𝛶𝑡 ∪ 𝛶𝑐 where 𝛶𝑖, 𝛶𝑑 , 𝛶𝑡,
and 𝛶𝑐 are sets of interior nodes, Dirichlet boundary nodes, Neumann
oundary nodes, and nodes on contact surface 𝛤𝑐 , respectively. The

tangent stiffness matrix 𝐊 is composed of the matrices 𝐊int, 𝐊D, 𝐊N,
and 𝐊c as shown in Eq. (4.20) in [25]. In the following, we provide
the components of 𝐊.

For simplicity, we denote Φ𝛼
𝐼𝐽 =Φ𝛼

𝐽 (𝐱𝐼 ). Substituting Eq. (2.9) into
q. (3.14) yields the discrete form of equations which are given by
𝑁
∑

=1
{[(𝜆 + 2𝜇)Φ(2,0)

𝐼𝐽 + 𝜇Φ(0,2)
𝐼𝐽 ]𝑢1𝐼 + (𝜆 + 𝜇)Φ(1,1)

𝐼𝐽 𝑢2𝐼} + 𝑏1(𝐱𝐼 ) = 0,

𝑁
∑

=1
{(𝜆 + 𝜇)Φ(1,1)

𝐼𝐽 𝑢1𝐼 + [𝜇Φ(2,0)
𝐼𝐽 + (𝜆 + 2𝜇)Φ(0,2)

𝐼𝐽 ]𝑢2𝐼} + 𝑏2(𝐱𝐼 ) = 0

(3.18)

or the interior nodes 𝐱𝐽 ∈ 𝛶𝑖. The components of the matrix 𝐊int are
int
𝐼1𝐽1 = [(𝜆 + 2𝜇)Φ(2,0)

𝐼𝐽 + 𝜇Φ(0,2)
𝐼𝐽 ], 𝐾 int

𝐼2𝐽1 = (𝜆 + 𝜇)Φ(1,1)
𝐼𝐽 ,

int
𝐼1𝐽2 = (𝜆 + 𝜇)Φ(1,1)

𝐼𝐽 , 𝐾 int
𝐼2𝐽2 = 𝜇Φ(2,0)

𝐼𝐽 + (𝜆 + 2𝜇)Φ(0,2)
𝐼𝐽 .

(3.19)

The discrete form of the Dirichlet boundary condition can be ob-
ained by substituting Eq. (2.9) into Eq. (3.3)1 as
𝑁
∑

=1
Φ(0,0)

𝐼𝐽 𝑢1𝐼 − �̄�1𝐼 (𝐱𝐽 ) = 0,
𝑁
∑

𝐽=1
Φ(0,0)

𝐼𝐽 𝑢2𝐼 − �̄�2𝐼 (𝐱𝐽 ) = 0 (3.20)

or 𝐱𝐽 ∈ 𝛶𝑑 . The components of the matrix 𝐊𝐷 are

𝐾𝐷
𝐼1𝐽1 =Φ(0,0)

𝐼𝐽 , 𝐾𝐷
𝐼2𝐽2 =Φ(0,0)

𝐼𝐽 . (3.21)

Similarly, for the discretization of the Neumann boundary condit-
ion, i.e., Eq. (3.3)2, substituting Eq. (3.2) into Eq. (3.3)2 yields

𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)𝑛𝑗 + 𝜆𝛿𝑖𝑗𝑛𝑗 (𝑢𝑘,𝑘) = 𝑡𝑖 on 𝛤 (𝑖)
𝑡 (3.22)

where 𝛿𝑖𝑗 is the Kronecker delta. For the discretization of Eq. (3.22),
substituting Eq. (2.9) into Eq. (3.22) results in
𝑁
∑

𝐽=1
{[(𝜆 + 2𝜇)Φ(1,0)

𝐼𝐽 𝑛1 + 𝜇Φ(0,1)
𝐼𝐽 𝑛2]𝑢1𝐼

+ [𝜆Φ(0,1)
𝐼𝐽 𝑛1 + 𝜇Φ(1,0)

𝐼𝐽 𝑛2]𝑢2𝐼} − 𝑡1(𝐱𝐼 ) = 0,
𝑁
∑

𝐽=1
{[𝜇Φ(0,1)

𝐼𝐽 𝑛1 + 𝜆Φ(1,0)
𝐼𝐽 𝑛2]𝑢1𝐼

(0,1) (1,0)

(3.23)
+ [(𝜆 + 2𝜇)Φ𝐼𝐽 𝑛2 + 𝜇Φ𝐼𝐽 𝑛1]𝑢2𝐼} − 𝑡2(𝐱𝐼 ) = 0
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for 𝐱𝐽 ∈ 𝛶𝑡. The components of the matrix 𝐊𝑁 are

𝐾𝑁
𝐼1𝐽1 = (𝜆 + 2𝜇)Φ(1,0)

𝐼𝐽 𝑛1 + 𝜇Φ(0,1)
𝐼𝐽 𝑛2, 𝐾𝑁

𝐼2𝐽1 = 𝜆Φ(0,1)
𝐼𝐽 𝑛1 + 𝜇Φ(1,0)

𝐼𝐽 𝑛2,
𝑁
𝐼1𝐽2 = 𝜇Φ(0,1)

𝐼𝐽 𝑛1 + 𝜆Φ(1,0)
𝐼𝐽 𝑛2, 𝐾𝑁

𝐼2𝐽2 = (𝜆 + 2𝜇)Φ(0,1)
𝐼𝐽 𝑛2 + 𝜇Φ(1,0)

𝐼𝐽 𝑛1.

(3.24)

To model normal and tangential constraints on the contact surface,
e replace 𝐭𝑐 with 𝐭𝑐 = 𝐭𝑁−𝐭𝑇 . Then, Eq. (3.3)3 in Cartesian components

an be written as

(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)𝑛𝑗 + 𝜆𝛿𝑖𝑗𝑛𝑗 (𝑢𝑘,𝑘) − 𝑡𝑁𝜈𝑖 + 𝑡𝑇 𝜏𝑖 = 0 on 𝛤 (𝑖)
𝑐 . (3.25)

pplying Eq. (3.9) to 𝑡𝑁 and Eq. (3.12) and (3.13) to 𝑡𝑇 yields

(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)𝑛𝑗 + 𝜆𝛿𝑖𝑗𝑛𝑗 (𝑢𝑘,𝑘) − 𝜖𝑁 < 𝑔(𝐱𝐽 ) > 𝑛𝑖 + 𝑡trial
𝑇 𝜏𝑖 = 0. (3.26)

or the stick case,

(𝑢𝑖,𝑗 +𝑢𝑗,𝑖)𝑛𝑗 +𝜆𝛿𝑖𝑗𝑛𝑗 (𝑢𝑘,𝑘)−𝜖𝑁 < 𝑔(𝐱𝐽 ) > 𝜈𝑖+𝐻(𝑔(𝐱𝐽 ))𝑡trial
𝑇 𝜏𝑖 = 0. (3.27)

For the discretization of Eq. (3.27), substituting Eq. (2.9) into Eq. (3.27)
results in
𝑁
∑

𝐽=1
{[(𝜆 + 2𝜇)Φ(1,0)

𝐼𝐽 𝑛1+𝜇Φ
(0,1)
𝐼𝐽 𝑛2]𝛿𝑢1𝐼 + [𝜆Φ(0,1)

𝐼𝐽 𝑛1 + 𝜇Φ(1,0)
𝐼𝐽 𝑛2]𝛿𝑢2𝐼 }

+ 𝜖𝑁𝐻(𝑔(𝐱𝐽 ))(𝛿𝐮(𝐱𝐽 ) ⋅ 𝝂)𝜈1 + 𝜖𝑇𝐻(𝑔(𝐱𝐽 ))(𝛿𝐮 ⋅ 𝝉)𝜏1 = 0,
𝑁
∑

𝐽=1
{[𝜇Φ(0,1)

𝐼𝐽 𝑛1+𝜆Φ
(1,0)
𝐼𝐽 𝑛2]𝛿𝑢1𝐼 + [(𝜆 + 2𝜇)Φ(0,1)

𝐼𝐽 𝑛2 + 𝜇Φ(1,0)
𝐼𝐽 𝑛1]𝛿𝑢2𝐼}

+ 𝜖𝑁𝐻(𝑔(𝐱𝐽 ))(𝛿𝐮(𝐱𝐽 ) ⋅ 𝝂)𝜈2 + 𝜖𝑇𝐻(𝑔(𝐱𝐽 ))(𝛿𝐮 ⋅ 𝝉)𝜏2 = 0

(3.28)

for 𝐱𝐽 ∈ 𝛶𝑐 in the case of stick region. Here, 𝛿𝐮 = 𝛿𝐮(1)(𝐱) − 𝛿𝐮(2)(�̄�(𝐱))
which means that 𝐱 ∈ 𝛤 (1)

𝑐 and �̄�(𝐱) ∈ 𝛤 (2)
𝑐 . The components of the

matrix 𝐊𝑐 for the stick case are
𝐾𝑐

𝐼1𝐽1 = 𝐾𝑁
𝐼1𝐽1 +𝐾𝑠𝑡𝑖𝑐𝑘

𝐼1𝐽1, 𝐾𝑐
𝐼2𝐽1 = 𝐾𝑁

𝐼2𝐽1 +𝐾𝑠𝑡𝑖𝑐𝑘
𝐼2𝐽1,

𝐾𝑐
𝐼1𝐽2 = 𝐾𝑁

𝐼1𝐽2 +𝐾𝑠𝑡𝑖𝑐𝑘
𝐼1𝐽2, 𝐾𝑐

𝐼2𝐽2 = 𝐾𝑁
𝐼2𝐽2 +𝐾𝑠𝑡𝑖𝑐𝑘

𝐼2𝐽2.
(3.29)

where 𝐾𝑁
𝐼1𝐽1, 𝐾

𝑁
𝐼2𝐽1, 𝐾

𝑁
𝐼1𝐽2, and 𝐾𝑁

𝐼2𝐽2 can be obtained from Eq. (3.24).
The components of the matrix 𝐊𝑠𝑡𝑖𝑐𝑘 in Eq. (3.29) are defined as

𝐾𝑠𝑡𝑖𝑐𝑘
𝐼1𝐽1 = (Φ(0,0)

𝐼𝐽 −Φ(0,0)
𝐼 ′𝐽 )𝐻(𝑔(𝐱𝐽 )) + [𝜖𝑁𝜈1𝜈1 + 𝜖𝑇 𝜏1𝜏1],

𝐾𝑠𝑡𝑖𝑐𝑘
𝐼2𝐽1 = (Φ(0,0)

𝐼𝐽 −Φ(0,0)
𝐼 ′𝐽 )𝐻(𝑔(𝐱𝐽 )) + [𝜖𝑁𝜈2𝜈1 + 𝜖𝑇 𝜏2𝜏1],

𝐾𝑠𝑡𝑖𝑐𝑘
𝐼1𝐽2 = (Φ(0,0)

𝐼𝐽 −Φ(0,0)
𝐼 ′𝐽 )𝐻(𝑔(𝐱𝐽 )) + [𝜖𝑁𝜈1𝜈2 + 𝜖𝑇 𝜏1𝜏2],

𝐾𝑠𝑡𝑖𝑐𝑘
𝐼2𝐽2 = (Φ(0,0)

𝐼𝐽 −Φ(0,0)
𝐼 ′𝐽 )𝐻(𝑔(𝐱𝐽 )) + [𝜖𝑁𝜈2𝜈2 + 𝜖𝑇 𝜏2𝜏2].

(3.30)

where Φ(0,0)
𝐼𝐽 is the interpolation operator for 𝐱 ∈ 𝛤 (1)

𝑐 , while Φ(0,0)
𝐼 ′𝐽 is

the interpolation of corresponding contact node for �̄�(𝐱) ∈ 𝛤 (2)
𝑐 . The

components of 𝐟 𝑐𝑠𝑡𝑖𝑐𝑘 vector are

𝑡𝑐1(𝐱𝐽 ) = 𝜖𝑁 < 𝑔(𝐱𝐽 ) > 𝜈1 − 𝜖𝑇𝐻(𝑔(𝐱𝐽 ))(𝑢𝑘𝜏𝑘)𝜏1,
𝑡𝑐2(𝐱𝐽 ) = 𝜖𝑁 < 𝑔(𝐱𝐽 ) > 𝜈2 − 𝜖𝑇𝐻(𝑔(𝐱𝐽 ))(𝑢𝑘𝜏𝑘)𝜏2.

for the slip case,

𝜇(𝑢𝑖,𝑗+𝑢𝑗,𝑖)𝑛𝑗+𝜆𝛿𝑖𝑗𝑛𝑗 (𝑢𝑘,𝑘)−𝜖𝑁 < 𝑔(𝐱𝐽 ) > 𝜈𝑖+𝜇𝑡𝑁 sign(𝑡trial
𝑇 )𝜏𝑖 = 0. (3.31)

For the discretization of Eq. (3.31), substituting Eq. (2.9) into Eq. (3.31)
results in

𝑁
∑

𝐽=1
{[(𝜆+2𝜇)Φ(1,0)

𝐼𝐽 𝑛1 + 𝜇Φ(0,1)
𝐼𝐽 𝑛2]𝛿𝑢1𝐼 + [𝜆Φ(0,1)

𝐼𝐽 𝑛1 + 𝜇Φ(1,0)
𝐼𝐽 𝑛2]𝛿𝑢2𝐼}

+ 𝜖𝑁𝐻(𝑔(𝐱𝐽 ))(𝛿𝐮(𝐱𝐽 ) ⋅ 𝝂)𝜈1
− 𝜇𝜖𝑁𝐻(𝑔(𝐱𝐽 ))(𝛿𝐮(𝐱𝐽 ) ⋅ 𝝂)sign(𝐮 ⋅ 𝝉)𝜏1 = 0,

𝑁
∑

𝐽=1
{[𝜇Φ(0,1)

𝐼𝐽 𝑛1 + 𝜆Φ(1,0)
𝐼𝐽 𝑛2]𝛿𝑢1𝐼 + [(𝜆 + 2𝜇)Φ(0,1)

𝐼𝐽 𝑛2 + 𝜇Φ(1,0)
𝐼𝐽 𝑛1]𝛿𝑢2𝐼}

+ 𝐻(𝑔(𝐱𝐽 ))𝜖𝑁 (𝛿𝐮(𝐱𝐽 ) ⋅ 𝝂)𝜈2
− 𝜇𝜖𝑁𝐻(𝑔(𝐱𝐽 ))(𝛿𝐮(𝐱𝐽 ) ⋅ 𝝂)sign(𝐮 ⋅ 𝝉)𝜏2 = 0
(3.32) 𝐸
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Fig. 2. Problem description of two-body frictional contact on an inclined surface.

for 𝐱𝐽 ∈ 𝛶𝑐 in the case of slip region. The components of the matrix 𝐊𝑐

or the slip case are
𝑐
𝐼1𝐽1 = 𝐾𝑁

𝐼1𝐽1 +𝐾𝑠𝑙𝑖𝑝
𝐼1𝐽1, 𝐾𝑐

𝐼2𝐽1 = 𝐾𝑁
𝐼2𝐽1 +𝐾𝑠𝑙𝑖𝑝

𝐼2𝐽1,

𝐾𝑐
𝐼1𝐽2 = 𝐾𝑁

𝐼1𝐽2 +𝐾𝑠𝑙𝑖𝑝
𝐼1𝐽2, 𝐾𝑐

𝐼2𝐽2 = 𝐾𝑁
𝐼2𝐽2 +𝐾𝑠𝑙𝑖𝑝

𝐼2𝐽2.
(3.33)

The components of the matrix 𝐊𝑠𝑙𝑖𝑝 in Eq. (3.33) are defined as

𝐾𝑠𝑙𝑖𝑝
𝐼1𝐽1 = (Φ(0,0)

𝐼𝐽 −Φ(0,0)
𝐼 ′𝐽 )𝐻(𝑔(𝐱𝐽 )) + [𝜖𝑁𝜈1𝜈1 − 𝜇𝜖𝑁 sign(𝑢𝑘𝜏𝑘)𝜈1𝜏1],

𝐾𝑠𝑙𝑖𝑝
𝐼2𝐽1 = (Φ(0,0)

𝐼𝐽 −Φ(0,0)
𝐼 ′𝐽 )𝐻(𝑔(𝐱𝐽 )) + [𝜖𝑁𝜈2𝜈1 − 𝜇𝜖𝑁 sign(𝑢𝑘𝜏𝑘)𝜈2𝜏1],

𝐾𝑠𝑙𝑖𝑝
𝐼1𝐽2 = (Φ(0,0)

𝐼𝐽 −Φ(0,0)
𝐼 ′𝐽 )𝐻(𝑔(𝐱𝐽 )) + [𝜖𝑁𝜈1𝜈2 − 𝜇𝜖𝑁 sign(𝑢𝑘𝜏𝑘)𝜈1𝜏2],

𝐾𝑠𝑙𝑖𝑝
𝐼2𝐽2 = (Φ(0,0)

𝐼𝐽 −Φ(0,0)
𝐼 ′𝐽 )𝐻(𝑔(𝐱𝐽 )) + [𝜖𝑁𝜈2𝜈2 − 𝜇𝜖𝑁 sign(𝑢𝑘𝜏𝑘)𝜈2𝜏2].

(3.34)

he components of the vector 𝐟 𝑐𝑠𝑙𝑖𝑝 are

𝑐
1(𝐱𝐽 ) = 𝜖𝑁 < 𝑔(𝐱𝐽 ) > 𝜈1 − 𝜇𝜖𝑁 < 𝑔(𝐱𝐽 ) > sign(𝑢𝑘𝜏𝑘)𝜏1,
𝑐
2(𝐱𝐽 ) = 𝜖𝑁 < 𝑔(𝐱𝐽 ) > 𝜈2 − 𝜇𝜖𝑁 < 𝑔(𝐱𝐽 ) > sign(𝑢𝑘𝜏𝑘)𝜏2.

. Numerical study

The proposed strong-form collocation algorithm is verified for two-
ody frictional contact and crack problems. Accuracy of the method is
alidated through the comparison with the results from Abaqus [27] us-
ng the plane stress element (CPS4R). Notice that a setting (i.e., material
roperties, frictional coefficient, boundary and loading conditions, etc.)
n Abaqus is identical to that considered in the proposed collocation
ethod.

.1. Two-body frictional contact on an inclined surface

We examine the ability of the proposed collocation method to distin-
uish between stick and slip conditions for two-body contact problems.
he method is applied to two-body frictional contact on an inclined
urface used by Kim et al. [28] as a patch test for the verification of
he mortar contact finite-element method (FEM).

A square domain of height 𝐻 and width 𝐿 is subjected to uniaxial
ompression as shown in Fig. 2. The interface is inclined as the contact
urface 𝛤𝑐 with the slope 𝑚 = 0.2. The uniform compression 𝑢𝑦 = −0.01
s applied at the top surface. The material properties are taken to be

= 1.0 and 𝜈 = 0.3, and the height and width of the block are both



A. Almasi, Y.-C. Yoon, T.-Y. Kim et al. International Journal of Non-Linear Mechanics 148 (2023) 104291

F
f
i
𝜇
c
s
i

Fig. 3. The displacement 𝑢𝑥 for 𝜇 = 0.19: (a) collocation and (b) FEM.
Fig. 4. The displacement 𝑢𝑥 for 𝜇 = 0.21: (a) collocation and (b) FEM.
Fig. 5. The displacement 𝑢𝑦 for 𝜇 = 0.19: (a) collocation and (b) FEM.
taken to be 𝐻∕𝐿 = 1.0. The normal and tangential penalty parameters
are chosen to be 𝜖𝑁 = 𝜖𝑇 = 106𝐸. We use 2100 uniformly distributed
collocation points for the test of this problem.

The displacement in the 𝑥-direction is displayed for 𝜇 = 0.19 in
ig. 3 and for 𝜇 = 0.21 in Fig. 4 along with the FEM solutions obtained
rom Abaqus. The results clearly show that the entire contact surface
s under slip when 𝜇 = 0.19 < 𝑚 = 0.2 and under stick when
= 0.21 > 𝑚 = 0.2, indicating that the meshfree collocation method

an appropriately distinguish between stick and slip conditions. Our
tudy reveals that the threshold friction coefficient for stick or slip
s 𝜇 = 𝑚 − (4.0 × 10−14). Fig. 5 shows the displacements in the 𝑦-

direction from both collocation and FEM for 𝜇 = 0.19. Both results
6

are almost consistent, indicating the accuracy of the proposed method.
For further verification of the meshfree collocation method, the normal
and tangential tractions on the contact surface are compared with FEM
solutions for 𝜇 = 0.19 in Fig. 6 and for 𝜇 = 0.21 in Fig. 7. Both results
are almost indistinguishable.

4.2. Frictional crack modeling

The performance of the proposed strong-form based contact formu-
lation is verified for modeling frictional crack problems. We first begin
by describing the modeling of a stationary crack with the strong-form
based meshfree collocation method. This approach is incorporated into
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Fig. 6. Comparison of (a) normal traction 𝑡𝑁 and (b) tangential traction 𝑡𝑇 from the collocation (COL) method with FEM solutions from Abaqus for 𝜇 = 0.19.
Fig. 7. Comparison of (a) normal traction 𝑡𝑁 and (b) tangential traction 𝑡𝑇 from the collocation (COL) method with FEM solutions from Abaqus for 𝜇 = 0.21.
d
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𝑢

𝜎

he modeling of the frictional crack, i.e., frictional contact on crack
urfaces, in Section 4.2.3.

.2.1. Crack modeling
We consider a domain 𝛺 including a crack in the framework of the

oint collocation method based on the strong formulation. The govern-
ng equations in the domain 𝛺 and Dirichlet and Neumann boundary
onditions on the boundary 𝛤 are given by Eq. (3.1) and Eqs. (3.3)1
nd (3.3)2, respectively. We discretize the governing equation with the
trong-form based collocation method for the interior, Dirichlet bound-
ry, and Neumann boundary nodes based on the Eqs. (3.18), (3.20),
nd (3.23), respectively.

We consider a cracked body on a square domain as shown in Fig. 8.
crack surface 𝛤𝑐𝑟(= 𝛤𝑐𝑟+ ∪ 𝛤𝑐𝑟− ) is treated as a natural boundary

ondition. The traction-free condition is imposed on the crack surface
𝑐𝑟, i.e.,

𝝈𝐧 = �̄� = 0 on 𝛤𝑐𝑟,

𝐧+ = �̄�𝑐𝑟+ = 0 on 𝛤𝑐𝑟+ ,

𝐧− = �̄�𝑐𝑟− = 0 on 𝛤𝑐𝑟−

(4.1)

here 𝐧+ and 𝐧− are the outward surface normal vectors on 𝛤𝑐𝑟+ and
𝑐𝑟− , respectively, and �̄�𝑐𝑟+ and �̄�𝑐𝑟− are the tractions on 𝛤𝑐𝑟+ and 𝛤𝑐𝑟− ,
espectively. The accuracy of the zero traction boundary conditions
as examined in authors’ previous studies [25]. It is obvious that the

mooth solution fields near the zero traction boundary proved that the
ero traction boundary conditions are captured accurately.

Imposing the traction-free condition in Eq. (4.1) on the crack sur-
aces generates the additional residual equations. However, it preserves
he nodal displacements as one and only category of unknown variable
o be determined from solving the global system of equations. The
isibility criterion [3,4,29–31] is used to deal with the displacement
iscontinuity due to a crack. The idea of the criterion is to cut the
7

omain of influence of the interested point and then ignore the nodes
laced at the opposite side of the crack as shown in Fig. 8. The domain
f influence of 𝛺𝑑 is divided into 𝛺+

𝑑 and 𝛺−
𝑑 by the crack line. The

visibility criterion causes a discontinuity in the approximation around
the crack tip. For this problem, analytical solutions for the displacement
and stress fields [32] are given for mode 𝐼 as

𝑢𝑥 =
𝐾𝐼
𝜇

√

𝑟
2𝜋

cos( 𝜃
2
)[1 − 2𝜈 + sin2( 𝜃

2
)],

𝑢𝑦 =
𝐾𝐼
𝜇

√

𝑟
2𝜋

sin( 𝜃
2
)[2 − 2𝜈 − cos2( 𝜃

2
)],

(4.2)

𝜎𝑥𝑥 =
𝐾𝐼

√

2𝜋𝑟
cos( 𝜃

2
)[1 − sin( 𝜃

2
) sin( 3𝜃

2
)],

𝜎𝑦𝑦 =
𝐾𝐼

√

2𝜋𝑟
cos( 𝜃

2
)[1 + sin( 𝜃

2
) sin( 3𝜃

2
)],

𝜎𝑥𝑦 =
𝐾𝐼

√

2𝜋𝑟
cos( 𝜃

2
) sin( 𝜃

2
) cos( 3𝜃

2
)

(4.3)

nd for mode 𝐼𝐼 as

𝑥 =
𝐾𝐼𝐼
𝜇

√

𝑟
2𝜋

sin( 𝜃
2
)[2 − 2𝜈 + cos2( 𝜃

2
)],

𝑢𝑦 =
𝐾𝐼𝐼
𝜇

√

𝑟
2𝜋

cos( 𝜃
2
)[−1 + 2𝜈 + sin2( 𝜃

2
)],

(4.4)

𝑥𝑥 =
−𝐾𝐼𝐼
√

2𝜋𝑟
sin( 𝜃

2
)[2 + cos( 𝜃

2
) cos( 3𝜃

2
)],

𝜎𝑦𝑦 =
𝐾𝐼𝐼
√

2𝜋𝑟
sin( 𝜃

2
) cos( 𝜃

2
) cos( 3𝜃

2
),

𝜎𝑥𝑦 =
𝐾𝐼𝐼
√

cos( 𝜃 )[1 − sin( 𝜃 ) sin( 3𝜃 )]

(4.5)
2𝜋𝑟 2 2 2
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a

Fig. 8. Problem description of a near-tip field crack (left) and modification of the domain of influence near the crack tip via the visibility criterion (right). The crack is expressed
by a straight-line segment (the solid red line) and crack surfaces are modeled by crack surface nodes on both sides of the line. The outward normal vector for each surface can
then be uniquely defined, which is required to impose the traction-free condition. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
w

T
i

𝐽

t

𝐼

Fig. 9. Non-uniformly distributed 1293 collocation points refined near the crack tip.
The coordinate of crack tip is (0, 0) which is located at the center of square patch.

where 𝑟 is the distance from the crack-tip, 𝜃 is the angle measured from
a line ahead of the crack, and 𝜇 is the shear modules. In addition, 𝐾𝐼
nd 𝐾𝐼𝐼 are the stress intensity factors according to mode 𝐼 and mode

𝐼𝐼 loadings, respectively.
In this study, the domain form of the interaction integral is con-

verted into a contour form of the interaction integral while it holds the
same concept. To this end, equidistant collocation points are placed
along the circular contour integration path to simplify the evaluation
of integration weights in the contour integration. The analysis requires
evaluations of the new conservation integral along a selected contour
in the far field. In terms of mixed-mode [33] stress intensity factor
solutions are obtained in terms of known auxiliary solutions and field
variables along a selected contour. For a mixed-mode crack prob-
lem [33,34], we present the contour form of the interaction integral
to determine 𝐾𝐼 and 𝐾𝐼𝐼 .

The relation between 𝐽 -integral and stress intensity factors in
mixed-mode crack problems is given by

𝐽 = 𝛼(𝐾2 +𝐾2 ) (4.6)
𝐼 𝐼𝐼

8

where 𝛼 = (1 − 𝜈)∕𝐸 for plane strain and 𝛼 = 1∕𝐸 for plane stress.
Upon considering the stress and displacement states consisting of the
superposed state (1) and state (2) as

𝝈 = 𝝈(1) + 𝝈(2), 𝐮 = 𝐮(1) + 𝐮(2),

J-integral for the stress can be computed by

𝐽 = 𝛼
[

(𝐾 (1)
𝐼 +𝐾 (2)

𝐼 )2 + (𝐾 (1)
𝐼𝐼 +𝐾 (2)

𝐼𝐼 )
2
]

= 𝛼
[

(𝐾 (1)
𝐼 )2 + (𝐾 (1)

𝐼𝐼 )
2
]

+ 𝛼
[

(𝐾 (2)
𝐼 )2 + (𝐾 (2)

𝐼𝐼 )
2
]

+ 2𝛼(𝐾 (1)
𝐼 𝐾 (2)

𝐼 +𝐾 (1)
𝐼𝐼 𝐾

(2)
𝐼𝐼 )

= 𝐽 (1) + 𝐽 (2) + 𝐼 (1,2)

(4.7)

here 𝐼 (1,2) is the interaction integral for state (1) and state (2) given
by

𝐼 (1,2) = 2𝛼(𝐾 (1)
𝐼 𝐾 (2)

𝐼 +𝐾 (1)
𝐼𝐼 𝐾

(2)
𝐼𝐼 ). (4.8)

o further express 𝐼 (1,2) in terms of state (1) and state (2), by consider-
ng J-integral as

= ∫

( 1
2
𝝈 ∶ 𝝐𝑑𝑦 − 𝐭 𝜕𝐮

𝜕𝑥
𝑑𝛤

)

= ∫

[

1
2
(𝝈(1) + 𝝈(2)) ∶ (𝝐(1) + 𝝐(2))𝑑𝑦 − (𝐭(1) + 𝐭(2)) 𝜕(𝐮

(1) + 𝐮(2))
𝜕𝑥

𝑑𝛤
]

= ∫

(

1
2
𝝈(1) ∶ 𝝐(1)𝑑𝑦 − 𝐭(1) 𝜕𝐮

(1)

𝜕𝑥
𝑑𝛤

)

+ ∫

(

1
2
𝝈(2) ∶ 𝝐(2)𝑑𝑦 − 𝐭(2) 𝜕𝐮

(2)

𝜕𝑥
𝑑𝛤

)

+ ∫

[

1
2
(

𝝈(1) ∶ 𝝐(2) + 𝝈(2) ∶ 𝝐(1)
)

𝑑𝑦 −
(

𝐭(1) 𝜕𝐮
(2)

𝜕𝑥
+ 𝐭(2) 𝜕𝐮

(1)

𝜕𝑥

)

𝑑𝛤
]

= 𝐽 (1) + 𝐽 (2) + 𝐼 (1,2),

(4.9)

he interaction integral (4.8) can be rewritten as

(1,2) = ∫

[

1
2
(

𝝈(1) ∶ 𝝐(2) + 𝝈(2) ∶ 𝝐(1)
)

𝑑𝑦 −
(

𝐭(1) 𝜕𝐮
(2)

𝜕𝑥
+ 𝐭(2) 𝜕𝐮

(1)

𝜕𝑥

)

𝑑𝛤
]

= ∫

[

(

𝝈(2) ∶ 𝝐(1)
)

𝑛𝑥 −
(

𝝈(1)𝐧 𝜕𝐮
(2)

𝜕𝑥
+ 𝝈(2)𝐧 𝜕𝐮

(1)

𝜕𝑥

)]

𝑑𝛤

= ∫

(

𝜎(2)𝑘𝑘 𝜖
(1)
𝑘𝑘 𝛿𝑖𝑗 − 𝜎(1)𝑖𝑗

𝜕𝑢(2)𝑖
𝜕𝑥1

− 𝜎(2)𝑖𝑗

𝜕𝑢(1)𝑖
𝜕𝑥1

)

𝑛𝑗𝑑𝛤

(4.10)

where 𝑑𝑦 = 𝑛 𝑑𝛤 .
𝑥
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Fig. 10. Surface plots of the displacement fields for a square patch with near-tip field for mode 𝐼 : (a) 𝑢𝑥 (COL), (b) 𝑢𝑥 (analytical), (c) 𝑢𝑦 (COL), and (d) 𝑢𝑦 (analytical).

Fig. 11. Surface plots of the displacement fields for a square patch with near-tip field for mode 𝐼𝐼 : (a) 𝑢𝑥 (COL), (b) 𝑢𝑥 (analytical), (c) 𝑢𝑦 (COL), and (d) 𝑢𝑦 (analytical).

9
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𝐾

Fig. 12. Stress fields of a square patch with near-tip field for mode 𝐼 : (a) 𝜎𝑥𝑥 (COL), (b) 𝜎𝑥𝑥 (analytical), (c) 𝜎𝑦𝑦 (COL), (d) 𝜎𝑦𝑦 (analytical), (e) 𝜎𝑥𝑦 (COL), and (f) 𝜎𝑥𝑦 (analytical).
[ ]

a

Using Eqs. (4.8) and (4.10), we compute 𝐾𝐼 and 𝐾𝐼𝐼 . If 𝐮(2) and 𝝈(2)

are computed from pure mode 𝐼 , 𝐾 (2)
𝐼 = 1 and 𝐾 (2)

𝐼𝐼 = 0. From Eq. (4.8),
we have

𝐾 (1)
𝐼 = 𝐼 (1,2)

2𝛼
. (4.11)

Similarly, if 𝐮(2) and 𝝈(2) are computed from pure mode 𝐼𝐼 , 𝐾 (2)
𝐼 = 0

and 𝐾 (2)
𝐼𝐼 = 1. From Eq. (4.8), we have

(1)
𝐼𝐼 = 𝐼 (1,2)

2𝛼
. (4.12)

Eventually, the interaction integral can be computed as

𝐼 (1,2) = ∫

(

𝜎(2)11 𝜖
(1)
11 + 2𝜎(2)12 𝜖

(1)
12 + 𝜎(2)22 𝜖

(1)
22

)

𝑛1

−

[

(

𝜎(1)11 𝑛1 + 𝜎(1)12 𝑛2
) 𝜕𝑢(2)1

𝜕𝑥1
+
(

𝜎(1)21 𝑛1 + 𝜎(1)22 𝑛2
) 𝜕𝑢(2)2

𝜕𝑥1

]

m

10
−
(

𝜎(2)11 𝑛1 + 𝜎(2)12 𝑛2
) 𝜕𝑢(1)1

𝜕𝑥1
+
(

𝜎(2)21 𝑛1 + 𝜎(2)22 𝑛2
) 𝜕𝑢(1)2

𝜕𝑥1
𝑑𝛤

≃
𝑁
∑

𝐼 (1,2)𝑑𝛤 .

(4.13)

4.2.2. A square patch with near-tip field
To verify the performance of the strong-form meshfree collocation

formulation for crack problems, we consider the problem of a square
patch with boundary conditions from the closed form solutions for
mode 𝐼 and mode 𝐼𝐼 which was used in [31,35].

As illustrated in Fig. 8, the square patch has height 𝐻 and width 𝐿
including a crack of length 𝐿∕2. The crack tip is located at the center
of the patch (0, 0). The material properties are taken to be 𝐸 = 104

and 𝜈 = 0.3, and the height and width of the block are taken to be
𝐻∕𝐿 = 1.0. Along the boundaries of the patch, the known near-tip
displacement fields, i.e., Eq. (4.2) for mode 𝐼 and Eq. (4.4) for mode 𝐼𝐼 ,
re prescribed as shown in Fig. 8. The stress intensity factor for mixed
ode fracture is recalculated by the interaction integral (Eqs. (4.11)
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Fig. 13. Stress fields of a square patch with near-tip field for mode 𝐼𝐼 : (a) 𝜎𝑥𝑥 (COL), (b) 𝜎𝑥𝑥 (analytical), (c) 𝜎𝑦𝑦 (COL), (d) 𝜎𝑦𝑦 (analytical), (e) 𝜎𝑥𝑦 (COL), and (f) 𝜎𝑥𝑦 (analytical).
v
o
r
p

4

and (4.12)) which is developed from the domain form of the interaction
integral [36]. Table 1 presents the calculated stress intensity factors
and 𝐿2-norm errors of the displacement fields for mode 𝐼 and mode 𝐼𝐼
using the prescribed values of 𝐾𝐼 = 1.0 and 𝐾𝐼𝐼 = 0.0 for mode 𝐼 and
𝐾𝐼 = 0.0 and 𝐾𝐼𝐼 = 1.0 for mode 𝐼𝐼 . The calculated stress intensity
factors agree well with the prescribed ones, i.e., the absolute error of
𝐾𝐼 is less than 1%.

In Fig. 9, we display a model of non-uniformly distributed 1293
collocation points adaptively refined in the vicinity of the crack tip. The
contour plots of the displacement fields by the proposed collocation
method and their corresponding analytical solutions are shown in
Figs. 10 and 11 for mode 𝐼 and 𝐼𝐼 , respectively. The displacement
fields from the proposed method are almost indistinguishable with
their analytical solutions. The contour plots of the stress fields are
shown in Figs. 12 and 13 for mode 𝐼 and 𝐼𝐼 , respectively. All the
results in these figures are qualitatively indistinguishable with their
analytical solutions. Here, we calculated analytical solution for non-
uniform distribution (see Fig. 9) and compared it with the proposed
method. Fig. 14 shows that the crack-tip opening displacement 𝑢
𝑦 f

11
Table 1
Stress intensity factors for mode 𝐼 and 𝐼𝐼 for a square patch with near-tip field.

Mode type 𝐾𝐼 𝐾𝐼𝐼
|

|

|

𝑒𝐾𝐼

|

|

|

|

|

|

𝑒𝐾𝐼𝐼

|

|

|

‖

‖

𝑒𝐮‖‖2

Mode 𝐼 1.0095 0.0079 0.0095 0.0079 0.0066
Mode 𝐼𝐼 0.0044 1.013 0.0044 0.013 0.045

of the proposed collocation method agrees well with the closed-form
solution. These results indicate that the proposed strong-form meshfree
collocation method can model a crack with high accuracy. The relative
errors in stress intensity factors for a mode 𝐼 crack were studied for
arious polynomial bases and three uniform discretizations in Table 1
f Lee and Yoon [31]. For all the polynomial bases considered, the
elative errors were less than 1% indicating acceptable accuracy of the
roposed collocation method.

.2.3. Frictional contact on a crack surface
In this section, the performance of the strong-form based contact

ormulation is verified for frictional contact on a crack surface. To do
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Fig. 14. The crack-tip opening displacement 𝑢𝑦 for a square patch with near-tip field.

so, contact constrains in Eq. (3.3)3 are imposed as a traction boundary
condition on the crack surfaces. As a benchmark test, we examine
frictional sliding across an internal crack surface as shown in Fig. 15.
This problem was initially investigated by Dolbow et al. [36] and then
used by other researchers including Liu and Borja [37], Annavarapu
et al. [38], and Fei and Choo [39]. Here, we consider the problem
of a square domain of height 𝐻 and width 𝐿 with a crack extending
from the coordinates (0.3, 0.3) and (0.7, 0.7). The material properties are
taken to be 𝐸 = 104 and 𝜈 = 0.3, and the height and width of the block
are both taken to be 𝐻∕𝐿 = 1.0. The normal and tangential penalty
parameters are chosen to be 𝜖𝑁 = 𝜖𝑇 = 107, and the friction coefficient
of the crack as 𝜇 = 0.1. The uniform vertical displacement 𝑢𝑦 = −0.1 is
applied at the top surface as shown in the figure. The bottom surface
is fixed.

In Fig. 16, we display non-uniformly distributed 1488 collocation
points with refinement near crack tips used for this study. The compar-
ison of horizontal and vertical displacement contours obtained using
the collocation method and FEM using Abaqus are plotted in Figs. 17
and 18, respectively. The contour plots are in excellent agreement
with those obtained by FEM, and confirm that the proposed method
gives consistent solutions for the fictional crack problem. In the au-
thors’ previous work, the behaviors of the 𝐿2 and 𝐿∞ norm errors
in the displacement and contact normal traction for uniformly [25]
and randomly [40] distributed collocation points were investigated
for Hertzian contact problem. The optimal convergence rates were
observed with increasing the number of collocation points.

For further verification of the collocation method, the displacement
fields of the proposed collocation method are compared with those
of FEM at two different cross sections of the computational domain,
subsequently referred to as Sections 1 and 2 in Fig. 15. Fig. 19(a)
shows the comparison of the displacement fields along a horizontal
line passing through crack surface, i.e., Section 1. Similarly, Fig. 19(b)
compares the displacement fields for the collocation method and FEM
along a vertical line passing through crack surface, i.e., Section 2.
Despite minor discrepancies, both results agree well and are practi-
cally close. Moreover, the computational efficiency of the method
was tested by measuring CPU wall-clock time for uniformly [25] and
non-uniformly [40] distributed collocation points. The measured CPU
wall-clock times for collocation points considered were comparable
with the conventional finite element methods.

5. Conclusion

In this study, we introduced a two-body contact formulation for a
strong-form meshfree collocation method to model frictional contact
12
Fig. 15. Problem description of frictional crack.

Fig. 16. Non-uniformly distributed 1488 collocation points for the inclined crack
problem.

and frictional crack problems. It achieves truly meshfree features by
only using nodes for discretization of the strong form. A line segment
used for the recognition of the contact surface or crack is not as-
sociated with the node structure. Nonlinear contact constraints were
directly imposed to the strong form as part of the traction bound-
ary conditions. The strong form of the governing equation was then
discretized with the strong-form based meshfree collocation method
recently introduced. The performance of the strong-form based contact
formulation was verified for frictional contact and crack problems via
several numerical examples.

For two-body frictional contact, our simulation results showed that
the method could capture well the stick–slip response on a block with
an inclined contact surface. Unlike the previous study about frictional
contact with a rigid obstacle [25], the frictional contact between two
deformable bodies was considered. The displacement and traction were
accurately computed even near boundary region; the tangential type
jump in the 𝑥-directional displacement was successfully calculated and
very stable traction responses were obtained in the vicinity of traction
boundary without any surge in their values. In particular, the normal
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Fig. 17. Displacement 𝑢𝑥 for frictional crack: (a) collocation method and (b) FEM.
Fig. 18. Displacement 𝑢𝑦 for frictional crack: (a) collocation method and (b) FEM.
Fig. 19. Comparison of the collocation (COL) with FEM for frictional crack: (a) 𝑢𝑦 along Section 1 and (b) 𝑢𝑦 along Section 2.
and tangential tractions computed from the collocation method showed
better profiles along the contact surface than those obtained from the
FEM.

For a frictional crack, the penalty method for frictional contact and
the visibility criterion for strong discontinuity modeling were success-
fully combined into the strong-form meshfree collocation method. The
method examined frictional sliding across an internal crack surface.
The computed 𝑦-directional displacements along the horizontal and
vertical cross sections agree well with those from the FEM analysis
and they sharply capture jump across the contact surface even with
smaller smearing than the FEM. Also, the stress intensity factor was
accurately reproduced with respect to the prescribed mode 𝐼 and 𝐼𝐼
near-tip fields.

These results show that the proposed strong-form based meshfree
collocation method can be applied to model two-body frictional contact
13
and crack problems. Future work will be focus on further verifica-
tion of our algorithm to various contact problems and non-stationary
cracks for elastic and inelastic materials in two or three dimensions.
Such extension and application of the proposed algorithm to three-
dimensions will not be significant challenges based on authors’ previous
work [12,41,42]. Moreover, we will develop a robust mathematical
adaptive algorithm that can automatically refine collocation points in
frictional contact or crack regions.
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