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Abstract This article provides the brief review of the recently developed strong
form meshfree collocation method. The method directly discretizes a strong form
with approximated derivatives from the moving least-squares approximation using
the Taylor polynomial of the unknown variable. The approximations of derivatives of
any order can be generated in the process of computing the shape function without
further cost. The method does not require mesh structure and numerical integra-
tion, and adaptivity can be easily achieved by locally refining collocation points.
The discretization of the strong form using the derivative approximation is briefly
described based on a frictional contact problem. Moreover, recent applications and
developments of the method for various engineering problems are briefly presented.
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1 A Strong Form Meshfree Collocation Method

The strong formmeshfree collocationmethod is based on the idea ofKimandKim [1]
and Yoon and Song [2–4]. The method discretizes directly a strong form with the
derivative approximation generated from the moving least-squares approximation
using a Taylor expansion of the unknown variable. This section provides the brief
procedure of constructing such derivative approximation. Further details can be found
in [1–4].

1.1 Approximation of Derivative Operators

Let x = (x1, . . . , xn) be an n-dimensional real vector and α = (α1, . . . , αn) be an n-
tuple of non-negative integers. The αth-power of x is defined by xα = xα1

1 xα2
2 · · · xαn

n .
The αth-order derivative of a smooth function f (x) with respect to x is defined by

Dα
x f (x) = ∂ |α| f (x)

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

(1)

where |α| = ∑n
i=1 αi .

The mth-order Taylor polynomial for approximating a function u(x) at the local
center x̄ can be expressed as

u(x; x̄) =
∑

|α|≤m

(x − x̄)α

α! Dα
x u(x̄) = pTm(x; x̄)M(x̄) (2)

where α! is the factorial of α and the polynomial vector pTm(x; x̄) and the derivative
coefficient vector M(x̄) are defined by

pTm(x; x̄) =
[
(x − x̄)α1

α1! , . . . ,
(x − x̄)αL

αL !
]

, MT(x̄) = [
Dα1

x u(x̄), . . . , DαL
x u(x̄)

]
,

(3)
in which αi ’s are an n-tuple of non-negative integers and L = (n + m)!/n!m! is the
number of the components of pTm .

Bearing in mind of the idea of the moving least-squares approximation, minimiz-
ing the discrete form of the weighted, discrete L2-norm

J(a) =
N∑

I=1

w

(
xI − x̄

ρ

)

[pT(xI )M(x̄) − uI ]2 (4)

with respect toM(x̄) yields

M(x̄) = M−1(x̄)B(x̄)uT. (5)
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The matrices M and B can be defined by

M(x̄) =
N∑

I=1

w

(
xI − x̄

ρ

)

pm(xI ; x̄)pTm(xI ; x̄), (6)

B(x̄) =
[
w

(
x1−x̄

ρ

)
pm(x1; x̄), · · · , w

(
xN−x̄

ρx̄

)
pm(xN ; x̄)

]
(7)

where w
(
xI−x̄

ρ

)
is the weight function with a compact support (or domain of influ-

ence) in which its size is determined by the dilation parameter ρ, N is the number
of nodes included in the support of the weight function, and uI is the nodal solution
for neighbor node I .

Substituting x for x̄ and replacing M(x) with Dα
xu(x) in (5) give rise to the αth

derivative approximation of u(x)

Dα
xu(x) =

N∑

I=1

Φα
I (x)uI (8)

where α = (α1, α2) be a 2-tuple of non-negative integers andΦα
I (x) is the αth-order

derivative of the shape function at node I defined as

Φα
I (x) = eTαM

−1(x)p(xI ; x)w
(
xI − x

ρ

)

(9)

where eTα = [e0, . . . , em] with its component defined as ek = 1 if k = α and ek = 0
otherwise for k = 0, . . . ,m.

It is worthwhile tomention that (8) does not require actual differentiation as shown
in (9). As a consequence, this method doesn’t require the regularity of the weight
function to ensure the regularity of the shape functions.

1.2 Discretization of a Strong Form for Frictional Contact

The derivate approximation (8) allows for straightforward computation of derivative
operators that can directly discretize a strong form of any order as well as their
boundary conditions. We briefly provide the application of (8) to frictional contact
problems by directly imposing contact constraints as part of Neumann boundary
conditions on the elastostatic equation∇ · σ + b = 0 with σ being the Cauchy stress
and b the body force. Details are referred to as Almansi et al. [5].

Upon substituting the constitutive relation of σ for linear elastic isotropicmaterial,
the elastostatic equation can be written in terms of the displacement u as

μ�u + (λ + μ)∇(∇ · u) + b = 0 in � (10)
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where λ and μ are Lamé constants. Similarly, Dirichlet and Neumann boundary
conditions and contact constraints can be written as

u = ū on �u,

2μn · ε + λn · 1(∇ · u) = t̄ on �t ,

2μn · ε + λn · 1(∇ · u) = tc on �c

(11)

where ε = (∇u + (∇u)T) is the strain tensor, n is the unit outward normal vector to
domain �, ū is the prescribed displacement on �u , t̄ is the prescribed traction on �t ,
and tc is the unknown contact traction on �c.

By substituting (8) into (10), the discrete form of (10) can be obtained as

N∑

I=1

{[(λ + 2μ)Φ(2,0)
I J + μΦ(0,2)

I J ]u1I + (λ + μ)Φ(1,1)
I J u2I } + b1J = 0,

N∑

I=1

{(λ + μ)Φ(1,1)
I J u1I + [μΦ(2,0)

I J + (λ + 2μ)Φ(0,2)
I J ]u2I } + b2J = 0

(12)

where xJ indicates interior nodes within � and (·)J indicates the value at xJ , e.g.,
Φ(2,0)

I J = Φ(2,0)
I (xJ ). Similarly, the discrete forms of Dirichlet and Neumann bound-

ary conditions at boundary nodes can be obtained by substituting (8) into (11)1
and (11)2 as shown in (4.23) and (4.26) in [5].

The contact traction can be decomposed into the normal and tangential compo-
nents, i.e., tc = tN − tT = tNnu − tT τ where tN and tT are subject to the classical
Kuhn-Tucker constraints governing contact interaction as in (3.4) and (3.7) of [5]
and ν and τ are the unit normal and tangential vectors on �c. For the normal contact
constraint, the penalty regularization is achieved by tN = εN < g > where < g >

is the Macaulay bracket of a gap function g and εN is the normal penalty parameter.
With the tangential penalty parameter εT , the penalty regularization for frictional
contact constraint can be constructed by (3.7) and (3.8) in [5] along with a trial
state/return mapping algorithm to determine the Columb frictional traction as in
(3.9) and (3.10) of [5]. Substituting (8) into (11)3 results in the discrete forms of the
contact constraints for both stick and slip as follows. For the stick case,

N∑

I=1

{[(λ + 2μ)Φ(1,0)
I J n1 + μΦ(0,1)

I J n2]u1I + [λΦ(0,1)
I J n1 + μΦ(1,0)

I J n2]u2I }

−εN < g(xJ ) > ν1 + εT H(g(xJ ))(u · τ )τ1 = 0,
N∑

I=1

{[μΦ(0,1)
I J n1 + λΦ(1,0)

I J n2]u1I + [(λ + 2μ)Φ(0,1)
I J n2 + μΦ(1,0)

I J n1]u2I }

−εN < g(xJ ) > ν2 + εT H(g(xJ ))(u · τ )τ2 = 0,

(13)
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and for the slip case,

N∑

I=1

{[(λ + 2μ)Φ(1,0)
I J n1 + μΦ(0,1)

I J n2]u1I + [λΦ(0,1)
I J n1 + μΦ(1,0)

I J n2]u2I }

−εN < g(xJ ) > ν1 + μεN < g(xJ ) > sign(u · τ )τ1 = 0,
N∑

I=1

{[μΦ(0,1)
I J n1 + λΦ(1,0)

I J n2]u1I + [(λ + 2μ)Φ(0,1)
I J n2 + μΦ(1,0)

I J n1]u2I }

−εN < g(xJ ) > ν2 + μεN < g(xJ ) > sign(u · τ )τ2 = 0,

(14)

where xJ belongs to contact nodes on �c and H(g) is the Heaviside function. Notice
that the system of the equation is nonlinear due to the presence of contact constraints
in (13) and (14). To use a full Newton-Raphson iteration scheme as a nonlinear
solver, the residual of the system can be obtained by assembling the discrete forms
of Dirichlet and Neumann boundary conditions, (12), and (13) for stick and (14)
for slip. The tangent stiffness matrix can be computed by linearizing (13) for stick
and (14) for slip. Notice that (13) and (14) can be used for both one- and two-body
frictional contact with the proper definition of the gap function g(x). The detailed
procedure for the nonlinear solver can be found in Sect. 4 of [5].

2 Applications Including Frictional Contact

Themethod described in the previous section has several advantages due to the nature
of the meshfree collocation method. The distinct feature of the method is an easy
treatment of adaptive refinement because it does not require grid or mesh structure
and numerical integration along with mesh connectivity. As a result, the method can
simplify modeling of engineering problems requiring high accuracy locally. Another
advantage of the method is the computation of higher-order derivative approxima-
tions without further cost. Using such derivative approximations, the method can
easily evaluate a strong form of any order at spatially distributed collocation points.
Uponmaking use of such advantages of themethod, it has been further developed and
applied to various engineering problems. The brief overview of the recent progress
is provided in this section.

We first begin by reviewing the accuracy and efficiency of the method which has
been performed by few researchers. Kim andKim [1] provided L2-convergence stud-
ies for Poisson and Stokes problems on both uniformly and non-uniformly distributed
collocation points. The accuracy was tested for three values of the Taylor polynomial
order, i.e.,m = 2, 3, 4, with varying the domain of influence ρ. For the Poisson prob-
lem, while no significant difference with m = 2 and m = 3 was observed, relatively
higher accuracy was obtained form = 4. For the Stokes problem, the same accuracy
was observed in both velocity and pressure with m = 4 as shown in Fig. 1a. Another
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Fig. 1 Convergence studies: a Stokes flow [1] and b Large-scale wind driven ocean circulation [6]

convergence study was performed by Beel et al. [6] for the large-scale wind driven
ocean circulation problems in both the discrete L2- and L∞-norm. They observed
that the order of the convergence rate is approximately close to the order of the
Taylor expansion without the boundary layer for both uniform and non-uniformly
distributed collocation points as shown in Fig. 1b. On the other hand, with the pres-
ence of the boundary layer, low convergence rates and largely unpredictable error
behavior were observed for randomly distributed collocation points (see Figs. 12 and
13 in [6]).

The computational efficiency of the meshfree collocation method was studied by
Song et al. [7]. They used PETSc for parallel computing and performed numerical
study of the polycrystalline solidification process. The computational time of the
method was compared with that of the finite-difference method. They observed that
the meshfree collocation method is more computationally demanding at each time
step when compared with the finite-difference method. This is because the method
requires sufficient amount of nodes within the compact support to ensure the invert-
ibility of the moment matrix M. However, relatively larger time step size with the
method than the finite-differencemethod can be chosen, indicating that the difference
between two methods becomes not significant.

An easy adaptive refinement of the method has been employed to various engi-
neering problems to improve the accuracy of the solution. Almansi et al. [5] took
advantage of the adaptivity to model frictional contact problems. The accuracy of
the contact algorithm was examined for the frictional Hertzian contact by modeling
a half cylinder compressed by both horizontal and vertical uniform displacement as
shown in Fig. 15 of [5]. Collocation points were non-uniformly refined in the vicinity
of the contact area where the stress is highly concentrated as shown in Fig. 2. The
accuracy of the method was verified by comparing the normal and tangential trac-
tions on the contact surface with the results from the finite-element method using
ABAQUS (see Fig. 17 in [5]). Both tractions from the proposed collocation method
are quantitatively close to those of the finite-element method.

Beel et al. [6] applied the advantage of the adaptive refinement to the large-
scale wind driven ocean circulation problem. Both uniformly and non-uniformly
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Fig. 2 Adaptive refinement for frictional contact [5]: a Contour plot of the von misses stress and
b Non-uniformly refined collocation points near contact area

collocation points were refined near the strong western boundary layer as shown in
Fig. 14 of [6].As summarized inTable6 of [6], higher accuracywith uniformandnon-
uniform local refinements of collocation pointswas obtained than uniformly and non-
uniformly distributed collocation points without local refinement. In addition, the
strong form used in this study was the fourth-order partial differential equation with
the strongwestern boundary layer. They showed that a sixth-order Taylor polynomial
instead of fourth- and fifth-order polynomials is necessary to obtain reliable solutions
due to the presence of the western boundary layer.

Another application of the adaptive refinement was done by Lee et al. [8]. They
used the uniformly refined collocation points near the crack tip for dynamic crack
propagation as shown in Figs. 8 and 13 of [8]. Moreover, the topology change due to
crack extension was modeled by simple addition and deletion of collocation points.
Good agreement with the analytical solution in terms of dynamic energy release rate
and the direction of crack growth was observed with a relatively small number of
collocation points.

The meshfree collocation method has been also applied to a phase-field model. Fu
et al. [7] employed the method to the three-dimensional time dependent phase-field
model formodeling the solidification process of a polycrystallinematerial alongwith
the temperature change due to the latent heat. The solidification of polycrystalline
nickel (Ni) from undercooled melt was selected to demonstrate the robustness and
flexibility of the method. In Fig. 3, we display the polycrystalline structure of Ni
obtained using non-uniformly distributed collocation points in three-dimension.

Fig. 3 Polycrystalline solidification in three-dimension using a phase-field model [7]: a Non-
uniformly distributed collocation points b Solidification of polycrystalline Ni
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Furthermore, Almansi et al. [9] performed mechanical analysis of the polycrys-
talline materials using the polycrystalline structures obtained from the solidification
simulation.

Further development and application of the method was done by Yoon and his
colleagues. Yoon and Song [2–4] generalized the method to capture weak and strong
discontinuities. This generalization was achieved by deriving the derivative approxi-
mation including enrichment terms to capture weak and strong discontinuities along
the interface or moving boundary. The original derivative approximation (8) can
be recovered without enrichment terms. Moreover, Yoon et al. [10] modeled sim-
ple material nonlinear problems by directly discretizing the force balance equation
using the double derivative approximation without using the second-order derivative
approximation. Yoon et al. [11] also applied the method for the simulation of a pro-
portionally damped system subjected to dynamic load and the fracture simulation of
cracked concrete beam.
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