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Abstract
This study presents a strong form-based meshfree point collocation method for thermomechanical contact between two 
deformable bodies. The proposed method, based on Taylor approximation and the method of moving least squares, is imple-
mented in a staggered Newton–Raphson framework to directly discretize and solve the governing nonlinear system of partial 
differential equations. Following the formulation of the proposed method and the discretization of the governing equations, 
four numerical examples are presented to verify the computational framework described. The first two examples, involving 
frictional contact along an inclined surface and Hertzian contact between two half-cylinders, verify the method’s ability to 
simulate two-body mechanical contact. The next two examples, involving coupled mechanical and thermal contact between 
rectangular blocks for two loading conditions, verify the ability of the method to simulate thermomechanical contact.

Keywords Multibody contact · Thermo-mechanical interaction · Strong form · Meshfree · Collocation

1 Introduction

The mechanics of contact, particularly thermomechanical 
contact, has wide-ranging applications in engineering, from 
modeling automobile crash safety to hip joint replacements 
to pellet-cladding interactions in a nuclear fuel rod [1–3]. 
Due to the nonlinear dependence of the contact traction 
and heat flux on the displacement and temperature fields, 
the governing equations for thermomechanical contact are 
nonlinear. In many of the applications of thermomechani-
cal contact, coupling between the mechanical and thermal 
fields is an important concern. For example, temperature 
changes may cause significant thermal expansion, mechani-
cal friction may generate significant heat, and degree of heat 
transfer across contact surfaces may depend significantly on 
the contact pressure [1, 4]. These applications and concerns 
have motivated the development of computational methods 
for solving contact problems numerically.

In the majority of computational studies of contact prob-
lems, the finite-element method (FEM) has been used. In 

particular, these studies have involved special techniques 
to model contact interfaces and handle associated con-
straints. For example, Papadopoulos and Taylor [5] devel-
oped a mixed finite-element method for contact problems. 
Wriggers and Miehe [6] developed a finite-element method 
for large deformation thermomechanical contact. Another 
popular approach to solving contact problems is the mortar 
finite-element method, inspired by techniques for domain 
decomposition in the context of parallel computing. This 
method was developed and used, for example, in [7] and 
used in [8–13] for various contact problems. Despite consid-
erable success, FEM approaches have been known to suffer 
from high computational cost due to mesh dependency and 
numerical integration [14]. FEM approaches also have dif-
ficulty with adaptive mesh refinement, which is frequently 
required to resolve the contact interface. Such refinement is 
required because of sharp gradients observed near transi-
tions between stick and slip conditions and near the edges of 
contact interfaces. Another challenge for FEM approaches is 
that special techniques must be developed to overcome the 
possibility of element node-to-segment contact [1].

To combat these issues, a strong form-based meshfree 
point collocation method is proposed in this study as an 
alternative or supplement to the FEM for contact problems. 
The proposed method, based on Taylor approximation and 
moving least squares (MLS), was first developed in [15–20]. 
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By directly discretizing the strong form of governing PDEs 
using a set of approximate derivative operators, the proposed 
method avoids mesh dependency, domain integration, and 
exact computation of derivatives [14]. In addition, the pro-
posed method easily treats boundary conditions and adaptive 
refinement. Motivated by these advantages, the method has 
been successfully applied to various problems, including 
incompressible fluid flows [19], elastic crack problems [21], 
and the asymptotic crack tip singularity in a linear elastic 
fracture [22, 23]. Later, the method was applied to weak and 
strong discontinuities [14, 24–26], diffusive interface mod-
eling and stress analysis [27–29], inelastic material problems 
[30], frictional contact [31], and wind-driven ocean circula-
tion [32].

It should be noted that the proposed method is only one 
of many recently developed collocation methods. Other 
examples include the reproducing kernel collocation method 
[33, 34] and the isogeometric analysis collocation (IGA-C) 
method [35, 36]. Only the IGA-C method has been for con-
tact problems [35], as well as large deformation elasticity 
[36] and rod-to-rod contact [37]. However, as explained in 
[35], the IGA-C method employs tensor product or locally 
refined meshes, and therefore, is not meshfree. In contrast to 
these previous studies, this study verifies the proposed mesh-
free, strong form-based collocation framework for multibody 
and thermomechanical contact problems through a set of 
benchmark problems.

Irrespective of the numerical method used to solve the 
governing PDEs, one of two general approaches is used 
to simulate thermomechanical contact in a computational 
context. These are the staggered (loose coupling) and mon-
olithic (tight coupling) iterative approaches. In each step 
of a staggered scheme, the displacement and temperature 
fields are assumed to be fixed with respect to each other, and 
both fields are adjusted individually in a fixed-point itera-
tion until both converge. In contrast, a monolithic scheme 
considers all interactions between thermal and mechanical 
fields within one iteration and solves one system of equa-
tions that includes all solution variables [38]. In general, a 
staggered approach is more likely to be successful if dis-
placement due to thermal expansion is expected to be small 
compared to displacement due to mechanical loading. In 
contrast, a monolithic scheme would be more appropriate 
when thermal expansion is significant. Other researchers 
have explored both monolithic and staggered approaches 
for thermoelasticity and thermomechanical contact prob-
lems. For example, a monolithic approach was used in [39] 
to model thermo-structure interaction and applied to exam-
ples related to behavior of rocket nozzles. In [40], an uncon-
ditionally stable staggered scheme was developed for use 
in time-dependent thermoelasticity problems. In this study, 
a staggered Newton–Raphson scheme is used because the 

mechanical and thermal fields are loosely coupled for the 
problems considered here.

In summary, this study introduces a computational frame-
work for solving problems in multibody thermomechanical 
contact using a strong-form meshfree collocation method. 
The outline of this paper is as follows. First, Sect. 2 describes 
the equations that govern multibody thermomechanical con-
tact, including the contact constraints that introduce nonlin-
earity into the problem. Section 3 reviews the formulation 
of the proposed method. Section 4 explains how the strong 
forms of the governing equations are discretized using the 
proposed method and how these discretized equations are 
solved using a staggered Newton–Raphson scheme. Sec-
tion 5 provides four verification examples for the proposed 
computational framework. The first two examples involve 
frictional contact along an inclined interface and Hertzian 
contact between two half-cylinders, which verify the method 
for multibody contact problems. The final two examples 
involve contact between two rectangular blocks under dif-
ferent loading conditions, which verify the proposed method 
for thermomechanical contact. Finally, conclusions are given 
in Sect. 6.

2  Equations for thermomechanical contact

In this section, the governing equations for thermomechani-
cal contact are developed. First, an overview of the geom-
etry, interior domain equations, and boundary conditions 
are given. Next, the mechanical contact constraints are 
described and regularized using a penalty approach. Finally, 
the thermal contact model is introduced.

2.1  Geometry, governing equations, and boundary 
conditions

This study concerns loosely coupled thermomechanical con-
tact between two deformable bodies in two dimensions, the 
interiors of which are denoted by Ω1 and Ω2 , as shown in 
Fig. 1. For � ∈ {1, 2} , the closure of the domain Ω� is denoted 
by Ω̄𝛼 , i.e., Ω̄𝛼 = Ω𝛼 ∪ Γ𝛼 , where Γ� is the entire boundary of 
the domain Ω� . Each total boundary Γ� is partitioned such that 
Γ� = Γ�

u
∪ Γ�

t
∪ Γ�

c
 with Γ�

u
∩ Γ�

t
= Γ�

u
∩ Γ�

c
= Γ�

c
∩ Γ�

t
= � . 

Here, Γ�
u
 denotes the subset of the boundary of Ω� on which 

displacement � is prescribed, Γ�
t
 the subset on which traction 

is prescribed, and Γ�
c
 the subset on which contact between the 

two bodies is expected to occur. Each total boundary Γ� is 
simultaneously partitioned in terms of temperature-related 
boundary conditions such that Γ� = Γ�

�
∪ Γ�

q
∪ Γ�

c
 with 

Γ�
�
∩ Γ�

q
= Γ�

�
∩ Γ�

c
= Γ�

c
∩ Γ�

q
= � . Here, Γ�

�
 denotes the sub-

set of the boundary of Ω� on which temperature � is prescribed 
and Γ�

q
 the subset on which normal heat flux is prescribed. 

Finally, Ω̄ = Ω̄1 ∪ Ω̄2 is used to denote the entire domain of 
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interest, namely the set of all points in either of the two bodies 
or their boundaries; Ω = Ω1 ∪ Ω2 denotes the interior thereof.

The objective in this study is to find the displacement � 
and change in temperature � (from some reference temperature 
�0 ) over Ω that satisfy mechanical equilibrium and thermal 
equilibrium subject to boundary conditions. The equations for 
mechanical equilibrium are given by

Here, � is the Cauchy stress tensor and � is a body force. 
Although the two bodies are permitted to have different 
material properties, they are assumed to be homogeneous, 
linear thermoelastic and isotropic. Thus, the appropriate 
constitutive equation is

In (2.2), � and � are Lamé constants, � is the second-order 
identity tensor, and � is the mechanical strain tensor, and �� 
is the thermal strain tensor. Small displacement and strain 
are assumed, so the mechanical strain is defined by

The thermal strain is related to the temperature change by

The constant �v in (2.4) is the coefficient of thermal 
expansion.

The equations for thermal equilibrium are given by

Here, � is heat flux and s is a heat source. The heat flux 
is assumed to be proportional to the temperature gradient 
according to Fourier’s Law:

(2.1)∇ ⋅ � + � = 0 in Ω.

(2.2)� = 2�
(
� − �

�
)
+ �tr

(
� − �

�
)
�.

(2.3)� =
1

2
(∇� + (∇�)⊤).

(2.4)�
� = �v��.

(2.5)∇ ⋅ � + s = 0.

The constant � in (2.6) is the thermal conductivity.
Which fields � and � satisfy the equations above depend 

on the boundary conditions. The field � at each point on 
the boundary Γ is subject to one (or a mix) of the following 
conditions:

for each � ∈ {1, 2} . In (2.7), � is the unit outward normal 
vector to Ω , �̄ is the prescribed displacement on Γ�

u
 , �̄ is the 

prescribed traction on Γ�
t
 , and �c is the contact traction on Γ�

c
 

which is determined based on the formulation in subsequent 
sections. The field � at each point on the boundary is subject 
to one of the following conditions:

In (2.8), �̄� is the prescribed temperature change on Γ�
�
 , q̄ is 

the prescribed normal heat flux on Γ�
t
 , and qc is the normal 

heat flux across the contact surface Γ�
c
.

The following sections describe the contact constraints 
that govern the interaction between Ω̄1 and Ω̄2 . Some basic 
assumptions motivate the formulation presented here. First, 
at this length scale, it is assumed that there is no interpen-
etration between the two bodies during contact (although this 
assumption is relaxed during the penalty regularization of the 
normal contact constraint). Second, it is assumed that any 
force exerted on one body by the other is compressive, i.e., 
no cohesion exists between the bodies. Coulomb friction is 
assumed between the bodies, controlled by a coefficient of 
friction �f  . Finally, it is assumed that the heat flux across the 
contact interface is strictly conductive and depends on the con-
tact pressure at the interface.

2.2  Normal and frictional contact constraints

First, we must define quantities associated with two points 
potentially in contact. Since both bodies subject to contact are 
deformable, the contact traction at a point �� ∈ Γ�

c
 will depend 

on the relative displacement between �� and the correspond-
ing point ��(��) ∈ Γ�

c
 with which �� is potentially in contact. 

For each pair of corresponding contact points, a vector �(��) 
is used to denote the outward unit normal to Γ�

c
 at �� , while 

�(��) = �(��) is used to denote the outward unit normal to 
Γ�
c
 at �� . The vector �(��) denotes the unit tangent to Γ�

c
 at �� . 

Specifically, this unit tangent is defined by

(2.6)� = −�∇�.

(2.7)

� = �̄ on Γ𝛼

u
,

�� = �̄ on Γ𝛼

t
,

�� = �c on Γ𝛼

c
,

(2.8)

𝜃 = �̄� on Γ𝛼

𝜃
,

� ⋅ � = q̄ on Γ𝛼

q
,

� ⋅ � = qc on Γ𝛼

c
.

Ω1

Ω2

Γ1 Γ2

Γ1

Γ1

Γ2

Γ2

Γ1

Γ2

Γ1

Γ2

Fig. 1  Notation for two-body contact
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where �3 is the unit basis vector pointing out of the paper. It 
is convenient to decompose the contact traction �c at a point 
� into components along � and � , as follows:

For a more detailed discussion of these definitions, the 
reader is referred to Laursen’s book [41].

Next, given a displacement field � ∶ Γ1
c
∪ Γ2

c
→ ℝ

2 , we 
define a so-called gap function g ∶ Γ1

c
∪ Γ2

c
→ ℝ in terms 

of the relative displacement between a point on Γ� and the 
corresponding contact point on Γ� . Roughly speaking, the 
gap function represents the component of the vector between 
corresponding contact points in the deformed configuration 
normal to one of the contact surfaces. For all �� ∈ Γ�

c
 and 

��(��) ∈ Γ�
c
,

where g0(��) = −
[
�� − ��(��)

]
⋅ �(��) denotes the initial 

gap between the two bodies.
Based on the assumptions outlined at the beginning of this 

section, the gap function g and contact pressure tN are related 
through the Kuhn–Tucker complementary conditions:

Equation (2.12)1 reflects the impenetrability of the bodies. 
Equation (2.12)2 reflects the solely compressive nature of 
the contact pressure. Equation (2.12)3 reflects that contact 
pressure is nonzero only if the gap between two points is 
closed and the two points are separated only if the contact 
pressure is zero.

The tangential component of the contact traction is gov-
erned by Coulomb friction. In other words, the tangential 
traction may not exceed �f tN in magnitude. If tT reaches �f tN 
between two contact points, then the points will begin to 
displace relative to each other along the tangential direc-
tion (slip condition). Short of this, however, there will be 
no relative tangential displacement between the points (stick 
condition). Introducing the following definitions will help 
express these frictional constraints symbolically. Let the 
relative tangential displacement between two contact points 
be denoted by

Let the difference between the tangential traction magnitude 
and its upper limit, called the trial function, be denoted by

(2.9)� = � × �3,

(2.10)�c = �N − �T = tN� − tT� .

(2.11)g(��) = g0(�
�) −

[
�(��) − �(��(��))

]
⋅ �(��),

(2.12)g ≤ 0, tN ≥ 0, tNg = 0.

(2.13)�(��) ∶=
[
�(��) − �(��(��))

]
⋅ �(��(��)).

(2.14)Φ ∶= |tT | − �f tN .

With these definitions, the friction constraints may be 
expressed as follows:

Equation (2.15)1 reflects the friction limit on the magnitude 
of the tangential traction. Equation (2.15)2 reflects that the 
direction of the tangential traction vector is opposite the rel-
ative displacement after taking into account the convention 
used for � . Equation (2.15)3 reflects that relative tangential 
displacement between two corresponding contact points can 
be nonzero only if the magnitude of the tangential traction 
has reached its Coulomb friction limit as a function of the 
normal traction; conversely, the tangential traction has not 
reached its friction limit unless the relative tangential dis-
placement is nonzero.

2.3  Penalty regularization of mechanical contact 
constraints

To simplify the numerical solution of such contact prob-
lems, the Kuhn–Tucker conditions (2.12) and (2.15) are 
relaxed by introducing a penalty regularization of the nor-
mal and frictional contact constraints. To regularize the 
normal contact constraint, the normal contact pressure is 
assumed to vary sharply linearly with the normal compo-
nent of the interpenetration between the two bodies:

Here, �N is the normal penalty parameter (chosen to be a few 
orders of magnitude higher than the stiffness of the bodies), 
g is the familiar gap function, and ⟨⋅⟩ is the Macaulay bracket 
defined by

To regularize the frictional contact constraint, the tangential 
traction under the stick condition is assumed to vary sharply 
linearly with the relative tangential displacement:

Here, �T is the tangential penalty parameter (also chosen 
to be a few orders of magnitude higher than the stiffness of 
the bodies).

Whether two corresponding contact points are under the 
stick or slip condition is determined from the trial state/
return mapping algorithm, outlined as follows. First, the 
stick condition is assumed as the trial state, and the trial 

(2.15)Φ ≤ 0, sign(�) = sign(tT ), Φ� = 0.

(2.16)tN = �N⟨g⟩.

(2.17)⟨g⟩ =
�

g if g ≥ 0,

0 otherwise.

(2.18)tstick
T

= �T� .
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function (2.14) is computed based on the normal traction 
from (2.16) and the trial state tangential traction from 
(2.18). If the trial function is positive, the stick assump-
tion is determined to be incorrect. Thus, in the return map-
ping, the tangential traction is equated to its friction limit. 
In summary, the trial state/return algorithm based on the 
regularized contact constraints proceeds as follows: 

1. Compute the trial state, assuming the stick condition: 

2. Check the slip condition: 

The regularizations of the normal and frictional contact con-
straints are represented graphically in Fig. 2.

2.4  Thermal contact constraint

The heat flux across the contact interface is assumed to be 
conductive and to depend on both the contact pressure and 
the temperature jump between the two bodies at the inter-
face. Based on these assumptions, the following empirical 
law suggested by Ref. [4] is introduced for the normal heat 
flux due to contact between �� ∈ Γ�

c
 and �� ∈ Γ�

c
:

Here, h(tN) is the pressure-dependent conductivity across the 
interface. This conductivity is determined using the empiri-
cal power law:

(2.19)

tN = �N⟨g⟩,
ttrial
T

= �T� ,

Φtrial = �ttrial
T

� − �f tN .

(2.20)tT =

{
ttrial
T

if Φtrial ≤ 0 (stick),

�f tNsign(�) otherwise (slip).

(2.21)qc(��) = h(tN)
[
�(��) − �(��(��))

]
.

(2.22)h(tN) = h0

(
tN

He

)P

.

In (2.22), h0 is a reference conductivity determined experi-
mentally, P is an exponent determined experimentally, and 
He is the Vickers hardness. The contact pressure tN is deter-
mined from (2.16).

3  Strong‑form meshfree collocation method

This section summarizes the formulation of the proposed 
strong-form meshfree collocation method and explains its 
implementation in a staggered Newton–Raphson framework 
in the context of thermomechanical contact.

3.1  Formulation of the proposed method

The proposed method is based on Taylor approximation and 
the method of moving least squares. A function u(�) in ndim 
spatial dimensions with � = {x1, x2, ...xndim} may be approxi-
mated by an mth order Taylor series:

Here, �̄ is a local center and � is an array of ndim nonnegative 
integers. Some notation involving � is defined as follows:

Finally, D�u(�̄) denotes the �th partial derivative of u evalu-
ated at �̄ , e.g., D{1,2}u(�̄) =

𝜕3u(�̄)

𝜕x1𝜕x
2
2

 . The series approximation 
(3.1) may be written as

Here, the sum of terms over |�| ≤ m is written as the dot 
product of a polynomial basis vector � and a derivative coef-
ficient vector �:

(3.1)u(�) =
∑
|�|≤m

D�u(�̄)

�!
(� − �̄)� + H.O.T .

(3.2)|�| ∶=
ndim∑
k=1

�k �! ∶=

ndim∏
k=1

�k! �� ∶=

ndim∏
k=1

x
�k
k
.

(3.3)
∑
|�|≤m

D�u(�̄)

�!
(� − �̄)� = �T (�;�̄)�(�̄).

slope =

Δ

=

= −

slope =

Fig. 2  Penalty regularization of normal (left) and frictional (right) contact constraints. Solid lines represent the strict Kuhn–Tucker constraints, 
while dotted lines represent the regularized constraints
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The length of � and � is Lp =
(ndim+m)!

ndim!m!
 . The integer arrays 

�1, ...,�Lp
 are in lexicographical order by convention.

Now, consider a set of N collocation points on a domain 
Ω . If the value of u is known only at each of these N points, 
the vector � of derivative coefficients must be found approxi-
mately. The best vector � in the weighted least squares sense 
is found by minimizing the functional

Here, w is a weight function with a compact support, i.e., 
positive inside and zero outside of a closed disk of radius 
𝜌(�̄) surrounding �̄ . The radius � , called the dilation param-
eter, may vary with the location of the local center over the 
domain Ω to adjust for spatial variation in the density and 
pattern of collocation points. Differentiating F  with respect 
to � and setting the result equal to zero yields the optimal 
approximate derivative coefficient vector �∗ , given by

Here, the matrix � is given by

The matrix � is given by

Note that the weight function w is not differentiated in this 
formulation, so non-smooth weight functions may be used.

For a single local center �̄ , the approximate derivative 
vector �∗ minimizes the weighted least square residual glob-
ally. However, a best local approximation at each colloca-
tion point may be found by moving the local center to each 
collocation point �I , hence the term “moving least squares.” 
Thus, taking �̄ → �I , the best � in the moving least squares 
sense at each collocation point �I is given by

Since the �th entry of �(�I) is an approximation for the �th 
derivative of u evaluated at �I , the corresponding row of 
�(�I)

−1�(�I) represents an approximate derivative operator. 

(3.4)
�(�;�̄) ∶=

{
(� − �̄)�1

�1!
,
(� − �̄)�2

�2!
, ...,

(� − �̄)
�Lp

�Lp
!

}T

�(�̄) ∶=
{
D�1u(�̄),D�2u(�̄), ...,D

�Lp u(�̄)
}T

.

(3.5)F[�] =

N∑
J=1

w

(
�J − �̄

𝜌(�̄)

)[
�(�J;�̄)

T�(�̄) − u(�J)
]2
.

(3.6)�∗(�̄) = �−1(�̄)�(�̄).

(3.7)�(�̄) =

N∑
J=1

w

(
�J − �̄

𝜌(�̄)

)
�(�J;�̄)�(�J;�̄)

T .

(3.8)
�(�̄) =

[
w

(
�1 − �̄

𝜌(�̄)

)
�(�1;�̄),w

(
�2 − �̄

𝜌(�̄)

)
�(�2;�̄),

...,w

(
�N − �̄

𝜌(�̄)

)
�(�N ;�̄)

]
.

(3.9)�(�I) = �(�I)
−1�(�I).

Let uh(�J) denote the Jth discrete solution ordinate and define 
Φ�

IJ
 to be the Jth entry of the �th row of �(�I)

−1�(�I) . Then, 
an approximation for the �th derivative of u evaluated at �I 
is given by

Thus, the strong form of a PDE may be directly discretized 
by replacing exact derivative expressions with expressions 
of the form (3.10).

3.2  Staggered Newton–Raphson scheme

Any nonlinear system of equations may be written as

Here, � , called the residual, is a nonlinear mapping of the 
solution vector � . The terms � and � are the non-constant 
and constant parts of � , respectively. The traditional New-
ton–Raphson (NR) technique for finding the root � of this 
equation is defined by the iterative scheme

Of course, an initial guess �0 is required to begin the itera-
tion. In (3.12), k denotes the iteration step and � , called the 
tangent stiffness matrix, is defined on the kth step by

It is convenient to denote the update term in (3.12) by

The iteration in (3.12) is repeated until a desired stopping 
criterion is reached. A commonly used stopping criterion 
based on the magnitude of the solution vector update is

Another commonly used stopping criterion based on the 
magnitude of the residual is

In the context of the present study, the nonlinear system of 
interest consists of the strong forms of both the mechani-
cal and thermal governing equations, boundary conditions, 
and contact constraints discretized directly at the collocation 
points. There are two separate solution vectors in this system. 
The first is the nodal displacement solution vector given by

(3.10)D�u(�I) ≈

N∑
J=1

Φ�

IJ
uh(�J).

(3.11)�(�) = �(�) − � = �.

(3.12)�k+1 = �k −�−1
k
�(�k).

(3.13)� ∶=
��(�k)

��
.

(3.14)��k ∶= −�−1�(�k).

(3.15)IF
||𝛿�k||

||�k − �0|| < TOL, THEN Stop NR loop.

(3.16)IF
||�k||
||�0|| < TOL, THEN Stop NR loop.
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The second solution vector is the nodal temperature change 
vector, given by

Here, �I is the Ith collocation point, N is the total number 
of collocation points, uh

i
 corresponds to the ith displace-

ment degree of freedom, and Th corresponds to the tem-
perature change. In the present study, there are a total of 
three degrees of freedom, namely the x- and y-components 
of displacement and temperature change. For convenience, 
�� ∶= {uh

i
(�1), ..., u

h
i
(�N)}

T will be used to denote the sepa-
rated solution vectors for the two degrees of freedom.

Unlike conventional meshfree method [42], the numerical 
difficulty associated with lacking Kronecker-delta property 
has been circumvented in this method. Thus, the direct nodal 
solutions � and � may have quite good accuracy without a 
reinterpolation procedure. However, to further ensure accu-
racy of the method, nodal solution � is reinterpolated with 
the (0, 0) differential operator:

Similarly, temperature change at the nodes is also reinter-
polated according to

Note that more rigorous numerical studies investigating the 
effects of the direct use of nodal solution to the accuracy 
remain a future work.

With this iterative solution framework, the proposed 
strong-form collocation method may be used to determine 
the appropriate tangent stiffness matrices �� and �� and 
residual vectors �� and �� for the two-body thermomechan-
ical contact problem. Using these matrices and vectors, the 
staggered Newton–Raphson scheme outlined below may be 
used to determine the solution vectors � and �:

Staggered Newton–Raphson scheme for thermome-
chanical contact

1. Compute residual vector �� and tangent stiffness matrix 
�� using � and � from previous iteration.

(3.17)� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

uh
1
(�1)

uh
2
(�1)

uh
1
(�2)

uh
2
(�2)

⋮

uh
1
(�N)

uh
2
(�N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.18)� =

⎡⎢⎢⎢⎣

�h(�1)

�h(�2)

⋮

�h(�N)

⎤⎥⎥⎥⎦
.

(3.19)ui(�I) ≈ Φ
(0,0)

I
��.

(3.20)�(�I) ≈ Φ
(0,0)

I
�.

2. Compute update �� from (3.14) using �� and �� . 
Update � according to (3.12).

3. Compute residual vector �� and tangent stiffness matrix 
�� using updated �.

4. Compute update �� from (3.14) using �� and �� . 
Update � according to (3.12).

5. Check convergence criteria [e.g., (3.15) or (3.16)] sepa-
rately for � and �.

6. Repeat steps 1–5 until both convergence criteria are sat-
isfied.

4  Discretization of governing equations

The strong-form collocation method may be employed in 
a staggered Newton–Raphson framework to solve the non-
linear problem represented by the governing equations pre-
sented in Sect. 2 with the regularized contact constraints 
from Sect. 2. In this section, the governing equations are 
discretized and placed in the Newton–Raphson framework. 
The discussion begins with the equations of mechanical 
equilibrium and non-contact boundary conditions, followed 
by the mechanical contract constraints, and ending with the 
thermal equations.

4.1  Discretization of mechanical equilibrium 
and boundary conditions

To determine the discrete form of the equilibrium Eqs. (2.1), 
the constitutive Eq. (2.2), and the strain-displacement Eqs. 
(2.3) and (2.4) are substituted in (2.1) to yield

Here, plane strain is assumed, so that the Lamé constants 
are given by

where E is Young’s modulus, and � is Poisson’s ratio (not 
to be confused with � , the contact normal vector). Note that 
a modified plane strain coefficient of thermal expansion 
��
v
= (1 + �)�v is used in (4.1). In index notation for Carte-

sian components, (4.1) is written equivalently as

where i, j = 1, 2 in two dimensions and repeated indices 
obey the summation convention. When these equations are 
expanded explicitly, they become the pair of equations

(4.1)
�Δ� + (� + �)∇(∇ ⋅ �) − 2��

v
(� + �)∇� + � = 0 in Ω.

(4.2)
� =

�E

(1 − 2�)(1 + �)

� =
E

2(1 + �)
,

(4.3)�ui,jj + (� + �)uj,ji − 2��
v
(� + �)�,i + bi = 0 in Ω,
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The strong form of the PDEs in (4.4) are discretized by 
replacing the various derivative terms with approximate 
derivatives constructed using the differential operators from 
Chapter 3. This discretization is used to construct the equa-
tions for each interior collocation point. Suppose �I ∈ Ω is 
an interior collocation point and let Φ�

IJ
 represent the Jth 

entry of the �th differential operator at collocation point �I . 
Then, the equations in (4.4) for node �I ∈ Ω are discretized 
as

Thus, for node �I ∈ Ω , the 2 × 2 IJ block of �� is given by 
the partial derivative of (4.5) with respect to {uh

1
(�J), u

h
2
(�J)} , 

i.e.,

Note that the derivatives of the residual with respect to the 
nodal temperatures are not included due to the staggered 
coupling scheme.

Substituting (2.2) and (2.3) in (2.7), the traction condition 
can be expressed in index notation as

This is expanded as

(4.4)

(� + 2�)u1,11 + �u1,22 + (� + �)u2,21

− 2��
v
(� + �)�,1 + b1 = 0

(� + �)u1,12 + (� + 2�)u2,22 + �u2,11

− 2��
v
(� + �)�,2 + b2 = 0.

(4.5)

RintU
I1

∶=

N∑
J=1

[(
(� + 2�)Φ

(2,0)

IJ
+ �Φ

(0,2)

IJ

)
uh
1
(�J)

+
(
(� + �)Φ

(1,1)

IJ

)
uh
2
(�J)

]

−

N∑
J=1

(
2��

v
(� + �)Φ

(1,0)

IJ

)
�h(�J) + b1(�I)

RintU
I2

∶=

N∑
J=1

[(
(� + �)Φ

(1,1)

IJ

)
uh
1
(�J) +

(
(� + 2�)Φ

(0,2)

IJ

+�Φ
(2,0)

IJ

)
uh
2
(�J)

]

−

N∑
J=1

(
2��

v
(� + �)Φ

(0,1)

IJ

)
�h(�J) + b2(�I).

(4.6)

�intU
IJ

=

[
(� + 2�)Φ

(2,0)

IJ
+ �Φ

(0,2)

IJ
(� + �)Φ

(1,1)

IJ

(� + �)Φ
(1,1)

IJ
(� + 2�)Φ

(0,2)

IJ
+ �Φ

(2,0)

IJ

]
.

(4.7)
𝜎ijnj − t̄i = 𝜆uj,jni + 𝜇(ui,j + uj,i)nj − 2𝛼�

v
(𝜆 + 𝜇)𝜃ni − t̄i = 0.

(4.8)

(𝜆 + 2𝜇)n1u1,1 + 𝜇n2u1,2 + 𝜆n1u2,2 + 𝜇n2u2,1

− 2𝛼�
v
(𝜆 + 𝜇)𝜃n1 − t̄1 = 0

𝜆n2u1,1 + 𝜇n1u1,2 + (𝜆 + 2𝜇)n2u2,2 + 𝜇n1u2,1

− 2𝛼�
v
(𝜆 + 𝜇)𝜃n2 − t̄2 = 0.

Then, following the example of the interior nodes, if �I ∈ Γ�
t
 

is a prescribed traction boundary node, the discretized equa-
tion at node �I is expressed as

For convenience in discretizing the contact constraints in 
Sect. 4.2, the non-constant part of (4.9) will be denoted

Each corresponding IJ block of the tangent stiffness �� for 
�I ∈ Γ�

t
 is then given by

Finally, if �I ∈ Γ�
u
 is a prescribed displacement boundary 

node, the discretized equation at node �I is simply expressed 
as

Each corresponding IJ block of the tangent stiffness �� for 
�I ∈ Γ�

u
 is then given by

In the event that there is a mixed boundary condition at a 
node, e.g., a roller boundary condition, the appropriate dis-
cretized equations can be formulated as a suitable hybrid of 
(4.9) and (4.12). Given these discretized boundary condi-
tions and governing PDE for the interior nodes (4.5), the full 
tangent stiffness matrix and residual vector are almost ready 
to be assembled. Notice that the equations developed so far 
are linear due to the linear elastic constitutive law and small 

(4.9)

Rtrac
I1

∶=

N∑
J=1

[(
(𝜆 + 2𝜇)n1Φ

(1,0)

IJ
+ 𝜇n2Φ

(0,1)

IJ

)
uh
1
(�J)

+
(
𝜆n1Φ

(0,1)

IJ
+ 𝜇n2Φ

(1,0)

IJ

)
uh
2
(�J)

]

−

N∑
J=1

(
2𝛼�

v
(𝜆 + 𝜇)n1Φ

(0,0)

IJ

)
𝜃h(�J) − t̄1(�I)

Rtrac
I2

∶=

N∑
J=1

[(
𝜆n2Φ

(1,0)

IJ
+ 𝜇n1Φ

(0,1)

IJ

)
uh
1
(�J)

+
(
(𝜆 + 2𝜇)n2Φ

(0,1)

IJ
+ 𝜇n1Φ

(1,0)

IJ

)
uh
2
(�J)

]

−

N∑
J=1

(
2𝛼�

v
(𝜆 + 𝜇)n2Φ

(0,0)

IJ

)
𝜃h(�J) − t̄2(�I).

(4.10)�trac
I

∶= �trac
I

+ �̄(�I).

(4.11)

�trac
IJ

=

[
(� + 2�)n1Φ

(1,0)

IJ
+ �n2Φ

(0,1)

IJ
�n1Φ

(0,1)

IJ
+ �n2Φ

(1,0)

IJ

�n2Φ
(1,0)

IJ
+ �n1Φ

(0,1)

IJ
(� + 2�)n2Φ

(0,1)

IJ
+ �n1Φ

(1,0)

IJ

]
.

(4.12)

R
disp

I1
∶=

N∑
J=1

Φ
(0,0)

IJ
uh
1
(�J) − ū1

R
disp

I2
∶=

N∑
J=1

Φ
(0,0)

IJ
uh
2
(�J) − ū2.

(4.13)�
disp

IJ
=

[
Φ

(0,0)

IJ
0

0 Φ
(0,0)

IJ

]
.
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displacement and strain assumption. The nonlinearity for the 
contact problem in this study comes solely from the contact 
constraints, discretized in the following section.

4.2  Discretization of regularized mechanical 
contact constraints

Like the traction boundary condition (2.7)2 , the contact con-
dition (2.7)3 contains the �� term. Unlike prescribed traction 
�̄ , however, the contact traction �c depends on the displace-
ment field. To discretize the contact constraints, we begin 
by substituting (2.10) in (2.7)3 and writing this equation in 
index notation:

The values of contact pressure tN and tangential traction tT 
depend on the gap function and the slip/stick state of the sys-
tem, as explained in Sect. 2. The gap function is discretized 
in terms of both the primary contact node ��

I
∈ Γ�

c
 and the 

corresponding contact node ��
I
∈ Γ�

c
 as follows:

Here, Φ(0,0)

IJ
 is the reinterpolation operator for ��

I
 , while Φ(0,0)

I�J
 

is the reinterpolation operator for ��
I
 . The initial gap g0 is 

known a priori based on the undeformed geometry of the 
problem. Similarly, the relative tangential displacement is 
discretized as follows:

In the event that the bodies are not in contact (i.e., g < 0 ) at 
two corresponding contact points, there is neither contact 
pressure nor tangential traction between the bodies at those 
points. Thus, for a node �I ∈ Γ�

c
 for which g < 0,

Here, �trac
I

 is given by (4.10). Each corresponding IJ block 
of �� is given by

Notice that this case is equivalent to a traction-free bound-
ary condition.

If the gap between two corresponding contact points 
��
I
∈ Γ�

c
 and ��

I
∈ Γ�

c
 is closed and the points are under the 

(4.14)�ijnj − tc
i
= �uj,jni + �(ui,j + uj,i)nj − tN�i + tT�i = 0.

(4.15)

g(��
I
) ≈ GI ∶= g0(�

�

I
) −

N∑
J=1

(
Φ

(0,0)

IJ
− Φ

(0,0)

I�J

)[
�1u

h
1
(�J)

+�2u
h
2
(�J)

]
.

(4.16)

�(��
I
) ≈ ΨI ∶=

N∑
J=1

(
Φ

(0,0)

IJ
− Φ

(0,0)

I�J

)[
�1u

h
1
(�J) + �2u

h
2
(�J)

]
.

(4.17)
R
g<0

I1
∶= ytrac

I1

R
g<0

I2
∶= ytrac

I2
.

(4.18)�
g<0

IJ
= �trac

IJ
.

stick condition, then substituting (2.16) and (2.18) in (4.14), 
expanding, and applying the differential operators yields

Note that the terms involving the gap function have 
been discretized using (4.15). Differentiating the nor-
mal and tangential traction terms with respect to uh

1
 and 

uh
2
 leads to the expression for the IJ blocks of �� for each 

��
I
∈ Γ�

c
, � ∈ {1, 2}:

Finally, if the gap between ��
I
 and ��

I
 is closed and the two 

points are under the slip condition, then substituting (2.16) 
and (2.20) in (4.14), expanding, and applying the differential 
operators yields

Each corresponding block IJ of �� in the case of stick is 
then given by

In summary, each portion of the residual vector and block 
of the tangent stiffness matrix corresponding to a contact 
collocation point ��

I
∈ Γ�

c
, � ∈ {1, 2} is given by

Each IJ block of the contact condition part of �� is given by

These expressions (4.23) and (4.24) may be used in conjunc-
tion with the discretized equations in Sect. 4.1 to assemble 
the total residual vector and tangent stiffness matrix for the 
problem. No special method of assembly is required, unlike 
in the context of finite elements; the expressions developed 

(4.19)
Rstick
I1

∶= ytrac
I1

− �NGI�1 + �TΨI�1

Rstick
I2

∶= ytrac
I2

− �NGI�2 + �TΨI�2

(4.20)
�stick

IJ
= �trac

IJ
− �N

(
Φ

(0,0)

IJ
− Φ

(0,0)

I�J

)[
�1�1 �1�2
�2�1 �2�2

]

+ �T

(
Φ

(0,0)

IJ
− Φ

(0,0)

I�J

)[
�1�1 �1�2
�2�1 �2�2.

]

(4.21)
R
slip

I1
∶= ytrac

I1
− �NGI�1 + �f �NGIsign(ΨI)�1

R
slip

I2
∶= ytrac

I2
− �NGI�2 + �f �NGIsign(ΨI)�2.

(4.22)

�
slip

IJ
=�trac

IJ
− �N

(
Φ

(0,0)

IJ
− Φ

(0,0)

I�J

)[
�1�1 �1�2
�2�1 �2�2

]

+ �f �Nsign(ΨI)
(
Φ

(0,0)

IJ
− Φ

(0,0)

I�J

)[
�1�1 �1�2
�2�1 �2�2

]
.

(4.23)�contU
I

=

⎧⎪⎨⎪⎩

�
g<0

I
, if g < 0

�stick
I

, if stick

�
slip

I
, if slip

.

(4.24)�contU
IJ

=

⎧⎪⎨⎪⎩

�
g<0

IJ
, if g < 0

�stick
IJ

, if stick

�
slip

IJ
, if slip

.
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above are simply concatenated I = 1 ∶ N according to the 
type (interior, boundary, contact, etc.) of node I. Thus, the 
Ith block of �� , i.e., entries 2I − 1 and 2I of �� , is given by

Similarly, the IJ block of �� is given by

Note that the tangent stiffness matrix �� is discontinuous 
at the transitions between non-contact and contact, and 
between stick and slip. For this reason, the Newton–Raph-
son iteration using �� and �� is not guaranteed to converge 
mathematically. However, in practice, this process does con-
verge for the problems considered in this study, so smoother 
regularizations of the contact pressure and tangential trac-
tion are not considered. It would be straightforward to mod-
ify these expressions to have continuous first and second 
derivatives using, for example, Hermite interpolation of 
contact pressure and tangential traction in a user-defined 
radius around g = 0 , � = 0 , and Φtrial = 0.

4.3  Discretization of thermal equations

The thermal governing equation, boundary conditions, and 
contact constraints are discretized in a similar fashion. When 
(2.6) is substituted in (2.5) and expanded, the result is Pois-
son’s equation:

Thus, for an interior collocation point �I ∈ Ω , this is dis-
cretized as

The IJ entry of �� corresponding to �I ∈ Ω is then given by

The prescribed heat flux boundary condition is expanded 
to yield

(4.25)(��)I =

⎧
⎪⎨⎪⎩

�intU
I

, if �I ∈ Ω

�trac
I

, if �I ∈ Γt

�
disp

I
, if �I ∈ Γu

�contU
I

, if �I ∈ Γc

.

(4.26)(��)IJ =

⎧
⎪⎪⎨⎪⎪⎩

�intU
IJ

, if �I ∈ Ω

�trac
IJ

, if �I ∈ Γt

�
disp

IJ
, if �I ∈ Γu

�contU
IJ

, if �I ∈ Γc

.

(4.27)−�
(
�,11 + �,22

)
+ s = 0.

(4.28)RintT
I

∶=

N∑
J=1

[
−�

(
Φ

(2,0)

IJ
+ Φ

(0,2)

IJ

)
�h(�J)

]
+ s(�I).

(4.29)KintT
IJ

= −�
(
Φ

(2,0)

IJ
+ Φ

(0,2)

IJ

)
.

(4.30)−𝜅
(
𝜃,1n1 + 𝜃,2n2

)
− q̄ = 0.

Thus, for a prescribed heat flux boundary point �I ∈ Γq , this 
is discretized as

For convenience in discretizing the contact condition, let 
yflux
I

= Rflux
I

+ q̄(�I) . The IJ entry of �� corresponding to 
�I ∈ Γq is then given by

The discretized equation for a prescribed temperature bound-
ary collocation point �I ∈ Γ� is simply given by

The IJ entry of �� corresponding to �I ∈ Γ� is then given by

Finally, if ��
I
∈ Γ�

c
 is a contact node and ��

I
∈ Γ�

c
 is its cor-

responding contact node on the other body, the discretized 
form of the thermal contact condition is given by

Here, as in the discretized mechanical contact constraints, 
GI is the discretized gap function (4.15) and Φ(0,0)

IJ
 and Φ(0,0)

I�J
 

are the reinterpolation operators for ��
I
 and ��

I
 , respectively. 

Again recalling that the derivative terms with respect to the 
nodal displacement solution vector are neglected because 
this study is considering a staggered Newton–Raphson 
scheme, the IJ entry of the tangent stiffness �� is given by

The full residual vector �� and tangent stiffness matrix �� 
are assembled in similar fashion as (4.25) and (4.26).

5  Numerical study

In this section, the proposed nonlinear strong-form collo-
cation method is verified through two numerical examples 
related to two-body mechanical contact alone and one related 
to thermomechanical contact. The first, involving frictional 
contact between two blocks along an inclined surface, is used 
to assess the ability of the proposed method to distinguish 

(4.31)

Rflux
I

∶=

N∑
J=1

[
−𝜅

(
Φ

(1,0)

IJ
n1 + Φ

(0,1)

IJ
n2

)
𝜃h(�J)

]
− q̄(�I).

(4.32)Kflux
IJ

= −�
(
Φ

(1,0)

IJ
n1 + Φ

(0,1)

IJ
n2

)
.

(4.33)R
temp

I
∶=

N∑
J=1

[
Φ

(0,0)

IJ
𝜃h(�J)

]
− �̄�(�I).

(4.34)K
temp

IJ
= Φ

(0,0)

IJ
.

(4.35)

RcontT
I

∶= yflux
I

−

N�
J=1

�
h0

�
�N⟨GI⟩
He

�P�
Φ

(0,0)

IJ
− Φ

(0,0)

I�J

�
�h(�J)

�
.

(4.36)KcontT
IJ

∶= Kflux
IJ

− h0

�
�N⟨GI⟩
He

�P�
Φ

(0,0)

IJ
− Φ

(0,0)

I�J

�
.



Engineering with Computers 

1 3

between slip and stick conditions. The second, involving Hert-
zian contact between two half-cylinders, verifies the method 
against a nontrivial analytical solution. The third, involving 
thermomechanical contact between two rectangular blocks, 
verifies the pressure-dependent thermal contact model and 
that the mechanical and thermal problems may be accurately 
solved together using the staggered Newton–Raphson scheme.

5.1  Mechanical contact along an inclined surface

The first numerical example considered in this study con-
cerns mechanical contact between two blocks along an 
inclined surface. A version of this example was used in [10] 
to verify a mortared finite-element method for multibody 
frictional contact. The geometry for this problem is shown 
in Fig. 3. In their reference configuration, the two blocks 
together form a square of side length 2.0. They are sepa-
rated by a contact surface of frictional coefficient �f  along 
a line of slope m = 0.2 through the centroid of the square. 
The block below the contact surface is pinned at the bottom 
right corner and resting on rollers along the remainder of 
its bottom surface. The top block has a prescribed displace-
ment of uy = −0.01 at its top surface. It is restrained in the 
x-direction at the top right corner but free in the x-direction 
along the rest of the top surface. The left and right sides 
of the block are traction-free. For both blocks, the Young’s 
modulus and Poisson’s ratio are E = 1.0 and � = 0.3 . The 
normal and tangential penalty parameters are chosen to be 
�N = �T = 1.0 × 106E (as for the rest of the numerical exam-
ples in this section unless otherwise stated).

The purpose of this numerical example is to determine 
with what sensitivity the proposed method can distinguish 
between the slip and stick conditions. Theoretically, if the 

coefficient of friction �f  is chosen to be greater than the 
slope of the interface m, then the entire contact surface will 
be under the stick condition. Conversely, if �f  is chosen to 
be less than the slope of the contact interface, then the entire 
contact surface will be under the slip condition. However, in 
practice, there will be some threshold coefficient of friction 
�thresh ≠ m above which the contact surface sticks and below 
which it slips. Thus, how small a difference exists between 
�thresh and m is a measure of the sensitivity with which the 
method can distinguish between stick and slip.

Figure 4 shows an example arrangement of collocation 
points used for this problem. This arrangement is a uniform 
Cartesian-product grid perturbed so that the number of con-
tact points along the inclined surface is equal to the number 
of points along the bottom edge of the domain. Using the 
nodal arrangement shown in Fig. 4, the displacement field is 
computed using the proposed method for various values of 
the friction coefficient �f  near 0.2. The results of these trials 
indicate that the threshold friction coefficient for the pro-
posed method is �thresh = 0.1999997 = m − (3 × 10−7) . Con-
tour plots of the displacement field are shown for �f = 0.19 
in Fig. 5 and for �f = 0.21 in Fig. 6. Slip is clearly visible in 
the discontinuity in the u1 field for �f = 0.19 in Fig. 5.

To verify the results of the proposed method for the 
inclined contact surface example, the contact pressure and 
tangential traction computed from the method are compared 
with results from FEM. In addition to the sum of normal 
contact tractions from each side of the interface (which 
should be zero in equilibrium), Figs. 7 and 8 show the con-
tact pressure profile along the contact surface according to 
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Fig. 3  Free-body diagram for the problem of mechanical contact 
along an inclined surface
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the stress field, the contact algorithm, and an ABAQUS FEM 
model. The FEM model was chosen to have roughly the 
same level of discretization as the collocation point arrange-
ment in Fig. 4.

A similar comparison is shown in Figs. 9 and 10. For both 
contact pressure and tangential traction, the results from dif-
ferent parts of the proposed method algorithm agree with 
each other and with the FEM model.

5.2  Hertzian contact between two half‑cylinders

The second numerical example considered in this study 
concerns Hertzian contact between two half-cylinders. A 
version of this example was used in [8] for verification pur-
poses. The geometry for this problem is shown in Fig. 11. 

As shown, two half-cylinders of radius R = 8 are in contact 
at the origin. They are separated by a flat contact surface of 
frictional coefficient �f = 0.2 . The bottom edge of the bot-
tom half-cylinder is fixed in both directions. The top block 
has a prescribed displacement of �̄(x) = {ūx(x), ūy(x)} along 
its top surface. All other boundaries (other than the contact 
interface) are traction-free. For both bodies, the Young’s 
modulus and Poisson’s ratio are E = 200 and � = 0.3 . The 
normal and tangential penalty parameters are again chosen 
to be �N = �T = 1.0 × 104E.

The arrangement of collocation points used for this prob-
lem is shown in Fig. 12. It is a random arrangement of points 
generated using the open-source meshing software gmsh 
[43]. The spacing of collocation points around the contact 
point is much smaller than that in the rest of the domain to 
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ensure a sufficient number of contact nodes and local preci-
sion of the solution.

Before applying both horizontal and vertical loads to the 
top edge of the top cylinder, a simplified case is considered 
in which �f = 0 and only vertical loading is applied. Under 
these conditions, x = 0 is a line of symmetry, allowing half 
the problem to be considered. When only half the problem 
is considered, the numerical algorithm proposed here is suf-
ficiently stable that a vertical traction may be considered at 

the top surface (When the full problem is considered, the 
algorithm becomes unstable because the top cylinder is not 
sufficiently constrained and undergoes uncontrolled rigid 
body motion). For the Hertzian contact problem with only 
vertical traction loading, an analytical solution is available. 
Thus, we can use this example to compare the results from 
the proposed method with an analytical solution for a prob-
lem in which the contact traction distribution is nontrivial. 
The analytical solution for contact pressure along the con-
tact surface was provided by Ref. [44] and is given by the 
elliptical profile

Here, ptop is the prescribed normal traction at the top edge. 
The value of a is found from

In (5.2), R is the radius of the cylinder and E is the Young’s 
modulus of the cylinders. Contour plots of the x- and 
y-components of displacement computed using the pro-
posed method are given in Fig. 13. A comparison between 
the contact pressure computed from the proposed method 
and that from the exact solution is shown in Fig. 14. Fig-
ure 14 shows agreement between the proposed method and 
the exact solution, particularly with respect to the peak con-
tact pressure. There is higher error in the contact pressure 

(5.1)tN(x) =
2ptop

�a2

(
a2 − x2

)1∕2
.

(5.2)a =

√
4ptopR

�E
.
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,

Fig. 11  Free-body diagram for Hertzian contact problem
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near the edge of the contact boundary. However, as the col-
location point arrangement is further refined, the discrep-
ancy between the computed and analytical solution near the 
edge of the contact boundary is reduced. It should also be 
noted that finite-element methods such as [9] experience 
similar difficulties.

Next, the full Hertzian contact problem is solved 
using the proposed method. The numerical solution to 
the full problem with �̄ = {0.0002,−0.0014} is shown in 
Fig. 15.
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Fig. 13  a x-component and b y-component of displacement for the half-Hertzian contact problem according to the proposed method
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5.3  Thermomechanical contact 
between rectangular blocks

In this section, thermomechanical contact between rec-
tangular blocks is examined. A version of this exam-
ple was used in [4] to verify an enriched finite-element 
method for thermomechanical contact. The geometry and 
uniform nodal arrangement for this problem are shown 
in Fig. 16. Each block is a square of side length 1.0 m. 
They are separated by a contact surface of frictional coef-
ficient �f = 0.2 , resistivity coefficient h0 = 1.0 , resistivity 
exponent P = 1.5 , and Vickers hardness He = 3.0 along a 
horizontal line through the origin. The block below the 
contact surface is fixed in both directions along its bot-
tom surface and is fixed at a temperature change of 0 K. 
The top block has a prescribed displacement of � = {0, ūy} 
and prescribed temperature of 100 K along its top surface. 
The left and right sides of the blocks are traction-free and 
perfectly insulated. For both blocks, the Young’s modulus 
and Poisson’s ratio are E = 0.07MPa and � = 0.3 , while 
the thermal conductivity and expansion coefficient are 

� = 150J∕m ⋅ s ⋅ K and �v = 1.0 × 10−7K−1 . The normal and 
tangential penalty parameters are �N = �T = 1.0 × 104E.

Using this numerical example, the implementation of the 
pressure-dependent thermal contact model can be verified 
using an analytical solution for the temperature on either 
side of the contact interface. Specifically, for the pressure-
dependent model, the contact boundary temperatures are 
given in [4] and originally in [6] by

Here, �+ and �− are the temperatures on the edge above and 
below the contact surface, respectively, �top and �bottom are 
the prescribed temperatures at the top and bottom edges of 
the entire domain, respectively, and h(tN) is given by (2.22). 
To find the temperature profiles along the contact interface 
numerically, the proposed method is used with the uniform 
nodal arrangement shown in Fig. 16 to solve the contact 

(5.3)
�+ =

(� + h(tN))�top + h(tN)�bottom

� + 2h(tN)

�− =
(� + h(tN))�bottom + h(tN)�top

� + 2h(tN)
.

Fig. 16  a Free-body diagram 
and b arrangement of colloca-
tion points for the problem 
of thermomechanical contact 
between rectangular blocks
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problem for various values of prescribed displacement. Fig-
ure 17 shows contour plots of the components of displace-
ment and temperature for ūy = −1.0 × 10−3 . The computed 
displacement and temperature fields in Fig. 17 are reason-
able. As expected in the x-displacement field, the top and 
bottom edges are held fixed in the x-direction while the left 
and right sides experience a Poisson’s effect. The y-compo-
nent of displacement has an approximately constant slope 
in the y-direction, as expected since the two blocks have the 
same material properties. Any discrepancy from constant 
strain �yy can be explained by the thermal expansion of the 
top block. Finally, the temperature field has a jump at the 
contact interface but there is a temperature gradient across 
each block, reflecting the imperfect, i.e., flux-resistant heat 
conduction across the interface modeled by Eq. (2.22).

Beyond these initial assurances, the numerical solution is 
verified by its agreement with the analytical solution for the 
temperature jump across the contact interface. The analytical 
temperatures along the contact interface are computed based 
on the computed contact pressure because an analytical solu-
tion based directly on prescribed displacement is unavail-
able. Figure 18 shows that the temperature jump across the 
contact interface becomes smaller as the contact pressure 
increases because the increased contact pressure makes the 
surface more conductive, as expected.

It also shows that the analytical temperature vs. contact 
pressure is visually indistinguishable from the computed 
solution. The maximum relative error between the analyti-
cal temperature and the computed temperature is

The numerical results from this section verify the imple-
mentation of the proposed method for thermomechanical 
contact. From the first example, it is clear that the method 

(5.4)
max|�exact − �numer|

max|�exact| = 2.3 × 10−4.
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Fig. 17  a x-component of displacement, b y-component of displacement, and c temperature for the problem of thermomechanical contact 
between rectangular blocks
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can accurately distinguish between stick and slip in the case 
of frictional contact. The second example (Hertzian con-
tact) demonstrates that the proposed method can success-
fully match the analytical solution for a nontrivial contact 
pressure profile in the frictionless case and predict a reliable 
numerical solution of the governing equations in the fric-
tional case. Based on the third example, the method can han-
dle the additional nonlinearity of the thermal field, since the 
method accurately predicts the temperature jump across the 
contact interface for various levels of contact pressure. The 
results from this study are promising for future developments 

to the strong-form meshfree collocation framework for ther-
momechanical contact.

5.4  Thermomechanical contact 
between rectangular blocks with sliding

Thermomechanical contact between rectangular blocks is 
again considered in this section. In contrast to the previ-
ous section, however, nonuniform vertical displacement 
and nonzero horizontal displacement are prescribed at the 
top of the block. The geometry for this problem is shown 
in Fig. 19. Together, the blocks form a 1.0 × 1.0 m 2 . They 
are separated by a contact surface of frictional coefficient 
�f = 0.4 , resistivity coefficient h0 = 6.5 × 10−5 , resistiv-
ity exponent P = 1.0 , and Vickers hardness He = 100 
along a horizontal line through the origin. The block 
below the contact surface is fixed in both directions along 
its bottom surface and is fixed at a temperature change 
of 0 K. The top block has a prescribed displacement of 
� = {0.01,−0.005 + 0.0045x} meters and a prescribed tem-
perature of 100 K along its top surface. The left and right 
sides of the blocks are traction-free and perfectly insulated. 
For both blocks, the Young’s modulus and Poisson’s ratio 
are E = 1.0 × 104MPa and � = 0.3 , while the thermal con-
ductivity and expansion coefficient are � = 150J∕m ⋅ s ⋅ K 
and �v = 1.0 × 10−8K−1 . The normal and tangential penalty 
parameters are �N = �T = 1.0 × 104E.

The loading conditions in this example give rise to 
nonuniform traction and heat flux profiles along the con-
tact surface. Figure 20 shows contour plots of the compo-
nents of displacement and temperature for this example. 
The computed displacement and temperature fields in 
Fig. 20 are reasonable. The nonzero x-displacement pre-
scribed at the top surface leads to slip between the top 
and bottom blocks, as evidenced by the discontinuity in 
the x-displacement at the contact surface. Note that the 
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larger y-displacement prescribed at the top left edge of the 
domain than at the top right causes a stress concentration 
as shown in Fig. 20b.

6  Conclusion

To solve the nonlinear equations of multibody thermome-
chanical contact, the proposed strong-form meshfree col-
location method was adapted to a staggered Newton–Raph-
son framework. In each verification and numerical example 
presented, the solution by the proposed method agreed with 
analytical or finite-element solutions or was physically 
reasonable. In the inclined interface verification example, 
the method demonstrated a marked ability to distinguish 
between the stick and slip conditions and the contact trac-
tion profile agreed with results from commercial FEM soft-
ware. The proposed method solution was shown to agree 
with the analytical solution for frictionless Hertzian contact, 
for which the contact pressure profile at the contact interface 
is nontrivial. Moreover, the method yielded a reasonable 
numerical solution for the Hertzian contact with friction. 
Finally, the method was shown to be accurate even with the 
additional nonlinearity introduced by the thermomechanical 
coupling, as evidenced by the example involving thermo-
mechanical contact between rectangular blocks. Now that 
the proposed method has been verified for mechanical and 
thermomechanical contact, it can be used for more realistic 
applications, such as modeling of thermomechanical interac-
tions in a nuclear fuel rod.

Future work will further explore the capability of the pro-
posed method for more realistic contact problems. Expand-
ing the capabilities of the contact framework presents 
numerous challenges, including the additional material and 
geometric nonlinearities introduced, the need to implement 
a contact search algorithm and built-in adaptive refinement 
scheme, and the need to consider frictional heat sources and 
dynamic effects.
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