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Abstract
This work presents a strong form meshfree collocation method for a multi-phase field model with finite dissipation effects 
due to rapid solidification. We use the collocation method to simulate and study solidification of a low concentration (0.2 
at% Sn) Al–Sn binary alloy system under periodic boundary conditions to address non-equilibrium solidification. Numeri-
cal implementation takes place through spatial discretization of the governing equations with the collocation method fol-
lowed by application of the Crank–Nicolson method to integrate through time. Analysis begins with a benchmark, a simple 
two-grain case with symmetry in domain size, grain positioning, and boundary conditions to study the behavior of the field 
equations and key terms embedded within. This occurs by studying field and embedded term values along the axis of sym-
metry. Solidification analysis is then extended for 10 and 20 grains where upon full solidification, the regions with the highest 
overall concentrations exist within grain boundary region consisting for four or more adjacent grains. An analysis of alloy 
solidification over a substrate demonstrates epitaxial nucleation and growth.

Keywords Multi-component alloy · Non-equilibrium · Solidification · Phase field model · Strong form · Meshfree 
collocation

1 Introduction

Solidification is a phase transformation process of a liquid to 
solid that mainly determines crystallographic characteristics 
of polycrystalline materials. A polycrystalline microstructure 
of metallic materials consists of multiple grains with differ-
ent crystallographic orientations which are separated by grain 
boundaries. Such a grain structure evolves during the solidifica-
tion process via grain growth. The importance of polycrystalline 
microstructures in being associated with many of the macro-
scopic mechanical properties has been well known [1–3].

Rapid solidification processes occur at extremely small 
timescales, leaving the material little to no opportunity to adapt 
the extreme thermal gradients imposed upon it. In addition, the 
solidification front travels so quickly leaving insufficient time 

for the material to relax towards equilibrium, and gradients in 
composition ahead of the front cannot fully develop or evolve.

Both sharp interface [4–7] and diffusive interface, i.e. 
phase field [8–10] methods have been used to predict various 
non-equilibrium thermodynamic models capable of address-
ing rapid solidification and related phenomena. The phase 
field model is a versatile tool that can track the evolution of 
complex interface geometry. The models have been origi-
nally developed for solidification of pure materials [11–13], 
and then extended to alloy system. For example, Wheeler 
et al. developed a phase field model for a binary alloy [14], 
and further extended to study solute trapping [15, 16]. Phase 
field models for solidification of eutectic alloys are also 
available in the literature [17–19] including the isothermal 
growth of an ideal solution of a binary alloy with dendritic 
growth patterns [20]. More recently, a multiscale coupled 
finite element and phase field framework for the prediction 
of stressed grain growth has been developed [21].

In this work, we explore the multi-phase field model of 
Steinbach et al. [8] with a recently developed strong form-
based collocation method [22–24] to consider the rapid 
solidification of multi-component alloy system. In this 
multi-phase field model, the energy functional F comprised 
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of interfacial f int and chemical f chem energy densities. The 
alloy concentration field c is split into phase concentrations 
c� for each phase � ; note that c� is related to c through the 
weighted sum c��� by c =

∑N

�=1
c��� where �� is the phase 

field for � . The Gibbs free energy, �� , c� , and the constraint 
c −

∑N

�=1
c��� = 0 are embedded within F through f int and 

f chem . The first variation �F with respect to ��� and �c� pro-
duces field equations describing phase �̇�𝛼 and concentration 
ċ𝛼 kinetics within the region of active phase change where 
the latter is scaled by a kinetic permeability coefficient, P. 
Finally, diffusion terms dependent on the concentration gra-
dient ∇c� through a coefficient D are added to ċ𝛼 . This model, 
initially applicable to binary solutions, has been extended 
to the multi-component and multi-phase case [9] where the 
mixture rule is applied to each solute, i.e. ci =

∑N

�=1
ci
�
��.

A strong form based meshfree collocation [22–24] and 
Crank-Nicholson methods are used to spatially discretize and 
temporally integrate the multi-phase field evolution equa-
tions. The collocation method employs a Taylor expansion 
and generalized moving least-squares approach to compute 
discrete differential operators. Application of the computed 
differential operators to the partial differential equations of 
interest is a straight forward process. The method has been 
applied to various physics and engineering based problems, 
to include a generalized formalism for strong and weak 
discontinuities [23–25] and moving interface problems 
[26], polycrystalline solidification with diffusive interface 
approach [27, 28], inelastic material [29], ocean circulation 
[30], and frictional contact [31] problems.

In Sect. 2, we provide a description of the meshfree col-
location method and its key components. This includes 
using a Taylor polynomial to approximate a smooth field 
and its derivative with subsequent conversion to discrete 
form through the method weighted residuals to yield a set 
of discrete derivative operators. Section 2 continues with a 
description of the governing equations, its spatial discretiza-
tion. Section 3 presents a review of the Crank–Nicolson inte-
gration algorithm and summarizes the overall computational 
procedure used in this study. Section 4 contains numerical 
studies for alloy solidification for two-grain, ten-grain, and 
20-grain cases where the latter considers solidification over 
a substrate. Conclusions are presented in Sect. 5.

2  The strong form based meshfree 
collocation method

2.1  Meshfree collocation approximation

We provide a brief overview of the meshfree collocation 
method adopted in this study; details can be found in the 
literature [22–24]. The method employs a Taylor series 
expansion and moving least-square approximation to develop 

higher-order numerical differential operators. Suppose within 
a real n-dimensional domain, Ω ∈ ℝ

n , there exist a smooth 
field u(�) differentiable up to order m. The mth-order Taylor 
polynomial of the field u(�) at the local point �̄ is given by

where

Note that D�
�
f (�) corresponds to the �th derivative of u(�) , 

� = (�1,… , �n) is restricted to the set of n-tuple of non-
negative integers, |�| is the sum of all components of � i.e. 
��� ≡ ∑n

i=1
�i , and �! is the factorial of � which is given by 

�! = �1!… �n! . The Taylor polynomial in Eq. (1) is further 
decomposed into a vector �⊤

m
(�;�̄) and its associated deriva-

tive coefficient vector �(�̄) computed at the local center �̄ . 
The polynomial vector takes the form:

where L = (n + m)!∕n!m! is the number of com-
ponents for the polynomial vector �m  .  Here, 
(� − �̄)�i  is  the �th

i
-power of � − �̄  def ined by 

(� − �̄)�i = (x1 − x̄1)
𝛼1i(x2 − x̄2)

𝛼2i …(xn − x̄n)
𝛼ni . The deriva-

tive coefficient vector �⊤(�̄) includes all of the derivatives for 
u(�̄) at the local center up to the �th

L
-order and is defined as:

The generalized moving least-square approximation occurs 
by minimizing the weighted functional � with respect to 
�(�̄) . It is a weighted 2-norm, summed over N neighbors, 
which provides a measure of distance between the smooth 
field u(�) and discrete values uI at the point �I . The weight-
ing function w is dependent on the distance between the 
local center �̄ and its neighbor �I , normalized by a dilatation 
parameter � ; note that the weighting function w assumes 
the role determining the neighborhood size and the degree 
of influence each neighbor has on the local center. In other 
words,

minimization of � yields

where

(1)u(�;�̄) =
∑
|�|≤m

(� − �̄)�

�!
D�

�
u(�̄) = �

⊤

m
(�;�̄)�(�̄)

(2)D�
�
f (�) =

�|�|f (�)
�x

�1
1
�x

�2
2
… �x

�n
n

.

(3)�
⊤

m
(�;�̄) =

[
(� − �̄)�1

�1!
,… ,

(� − �̄)�L

�L!

]

(4)�
⊤(�̄) =

[
D

�1

�
u(�̄),… ,D

�L

�
u(�̄)

]
.

(5)� =

N∑
I=1

w

(
�I − �̄

𝜌
�̄

)
[�⊤(�I)�(�̄) − uI]

2

(6)�(�̄) = �
−1(�̄)�(�̄)�⊤
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Recall that �(�̄) is the collection of derivative coefficients of 
�

�
�
u(�) and consider an application of Eq. (6) to every point 

in the domain and its boundary, i.e. � ∈ Ω ∪ �Ω to yield a 
relationship between differential operator and its interpola-
tion function

In matrix form, Eq. (9) can be expressed as

where �i ’s are a n-tuple of non-negative integers; for the two 
dimensional case, �1 = (0, 0) , �2 = (1, 0) , �3 = (0, 1) , … , 
�L = (0,m) for the mth order polynomial vector �m . Here,  
is the �th derivative of the shape function at node I defined as

where �⊤

𝛼
= [e0,… , em] with its component defined as

for k = 0,… ,m.
For an application involving a 2nd-order polynomial in 

ℝ
2 , i.e. m = 2 and n = 2 , the Taylor polynomial (1) approxi-

mating the field u(�) centered at a point �̄ = [x̄1, x̄2] ∈ Ω can 
be written as

where the polynomial vector takes the form

(7)�(�̄) =

N∑
I=1

w

(
�I − �̄

𝜌
�̄

)
�m(�I ;�̄)�

⊤

m
(�I ;�̄),

(8)�(�̄) =
[
w
(

�1−�̄

𝜌
�̄

)
�m(�1;�̄), … , w

(
�N−�̄

𝜌
�̄

)
�m(�N ;�̄)

]
.

(9)

(10)

(11)

(12)ek =

{
1 if k = �

0 otherwise

(13)

u(�) = u(�̄) + D(1,0)
�

u(�̄)(x1 − x̄1) + D(0,1)
�

u(�̄)(x2 − x̄2)

+ D(2,0)
�

u(�̄)
(x1 − x̄1)

2

2!
+ D(1,1)

�
u(�̄)(x1 − x̄1)(x2 − x̄2)

+ D(0,2)
�

u(�̄)
(x2 − x̄2)

2

2!

(14)

�
⊤

2
(�;�̄)

=
[
1 (x1 − x̄1) (x2 − x̄2)

(x1−x̄1)
2

2!
(x1 − x̄1)(x2 − x̄2)

(x2−x̄2)
2

2!

]
.

Note that inserting the polynomial vector � into Eqs. (7) and 
(8) generates � and � matrices, and the derivative coefficient 
vector � can be computed as in Eq. (6). Since the derivative 
coefficient vector � includes all of the derivatives for u(�) as 
described in Eq. (4), the governing partial differential equa-
tions can be directly discretized in terms of the discretized 
differential operators in Eq. (10). Further details about discre-
tizing the partial differential equations within the similar con-
text of phase field analysis can be found in the literature [28].

2.2  Multi‑phase field model for non‑equilibrium 
solidification

For the completeness, we briefly introduce the non-equilibrium 
solidification model derived with the diffusive interface approach; 
note that the non-equilibrium solidification model adopted here 

is based on the multi-phase field model with finite interface dis-
sipation [8, 9]. Since the adopted model does not require an equal 
diffusion potential for chemical fields across solidification inter-
face, it is suitable for predicting rapid solidification phenomena 
subjected to extreme temperature gradients and rates.

For the solidification of multi-component alloy system, 
the simplified free energy description in a computational 
domain � ∈ ℝ

2 is considered with the contributions from 
the interfacial energy f inf and the chemical energy f chem . 
The total free energy functional F of the system is written as

where � = (�1,… ,��) ∗ and � =
{(

c
1

1
,… , ci

1

)
,… ,

(
c
1

�
,… , ci

�

)}
 

denote phase field order parameters for the phase and con-
centration fields, respectively. For the system consisting of 
N phase (i.e. liquid, FCC, BCC, etc.) with n chemical com-
ponents (i.e. C, Cr, Ni, etc.), � ∈ [1,N] and i ∈ [1, n] are 
considered. For the subsequently described multi-phase field 
model, we will use Greek letter to denote phases while lower 
case alphabet for chemical concentrations.

The interfacial and chemical free energy density at the 
material point � is defined by

(15)F(�, c) = ∫Ω

(f inf(�) + f chem(�, c))dΩ

(16)

f inf =

N∑
�=1

N∑
�=�+1

[
4���

�

(
−
�2

�2
∇�� ⋅ ∇�� + ����

)

+�

(
N∑
�=1

�� − 1

)]
,
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where ��� is the interfacial energy between phases � and � , 
� is the interface width which is set to a constant for all 
interfaces in this study, and f� is the bulk free energy of 
phase � . Note that the last terms in Eqs. (16) and (17), i.e. ∑N

�=1
�� = 1 and ci

��
= ��c

i
�
+ ��c

i
�
 implies the constraint 

conditions which are described in terms of Lagrange multi-
pliers, respectively.

Derivation of the rate �� occurs through the first variation 
of the free energy functional F:

The rate change of the phase field �� is then written as [8]:

where

As shown in Eq. (19) the phase field and its rate are deter-
mined by the sum total of interface fields ����

�t
 for all active 

phase pairs �� and �� acting at each point in a region of 
active phase transformation, i.e. 0 > 𝜙𝛼 > 1 called the inter-
phase region. The evolution of each phase pair within this 
interfacial region as described by Eq. (20) is driven by ther-
modynamic or chemical source term Δg�� . Note that the 
driving force Δg�� depends on by differences in temperature 
T and phase composition c that determine Gibbs free energy 

(17)f
chem

��
=

N∑
�=1

�� f� (�� ) +

n−1∑
i=1

�i
��

(
c
i

��
− ��c

i

�
− ��c

i

�

)
.

(18)
���

�t
=

�F(��)

���

=

(
∇

�F

�∇��

−
�F

���

)

(19)

���

�t
= −

1

N

N∑
�=1

[
����

2

4�

(
�F

���

−
�F

���

)]

=
1

N

N∑
�=1

����

�t

(20)

����

�t
= K��

{[
���

(
I� − I�

)

+

N∑
�=1,�≠�,�≠�

(
��� − ���

)
I�

]
+

�2

4�
Δg��

}

(21)I� = ∇2�� +
�2

�2
��

(22)
K�� =

4N�
�
�� + ��

�
���

4N�
�
�� + ��

�
+ ����

2
∑n−1

i=1

�
ci
�
−ci

�

�2

pi
��

(23)Δg𝛼𝛽 = f𝛽 − f𝛼 −

n−1∑
i=1

𝜙𝛼�̃�
i
𝛼
+ 𝜙𝛽�̃�

i
𝛽

𝜙𝛼 + 𝜙𝛽

(
ci
𝛼
− ci

𝛽

)

f�(T , c�) and f�(T , c�) , and their derivatives �̃�i
𝛼

(
=

𝜕f𝛼

𝜕ci
𝛼

)
 and 

�̃�i
𝛽

(
=

𝜕f𝛽

𝜕ci
𝛽

)
 with respect to the corresponding phases � and 

� , respectively; the computation of Gibbs free energy f can 
be found in Appendix A. The set of terms contained within 
the square bracket of Eq. (20) are dependent on the phase 
field surface and its curvature scaled by the interfacial 
energy ��� ; here, Δg�� acts on this set and the associated 
response, a function of phase field geometry, determines the 
direction of phase change, i.e. melting or solidification. 
Additionally, phase evolution is scaled by a kinetic coeffi-
cient K�� as shown in Eq. (22) where ��� is the interfacial 
mobility at the boundary of phases � and � and P�� is the 
interfacial permeability which plays a significant role gov-
erning the magnitude of K�� and therefore, the evolution 
speed of �̇� . Further discussions about the implications of the 
adopted phase filed model, i.e. Eqs. (16)–(23) can be found 
in the literature [8–10].

The diffusion behavior of multi-component alloy [8] dur-
ing the solidification is governed by

In the limit as Pi
��

 approaches infinity, the classical phase-
field model with equal diffusion potentials are naturally 
recovered. The first term within the square brackets accounts 
for the diffusion flux across the domain boundary where the 
diffusion coefficient D�,n

ij
 provides a relationship between the 

components of the flux and the spatial gradient of the chemi-
cal species component �i for phase � . The other two terms 
are only active within the region of phase transformation. 
Differences in phase chemical potential drive the second 
term and the phase field evolution itself influences the last 
term.

2.3  Discretized equations

For the rapid solidification analysis, Eqs. (19) and (24) are 
mainly required to be evaluated to predict the evolution 
of phase changes and the chemical concentrations of the 
alloy system. Discretization of continuous spatial deriva-
tives embedded within these governing equations occurs 
by replacement with their discrete differential counter-
parts, i.e. Eq. (10) at all discrete points in the domain. The 
derivative quantities below are resolved along the standard 
basis triad. Throughout the following section, indicial and 

(24)

𝜕ci
𝛼

𝜕t
=

1

𝜙𝛼

⎡
⎢⎢⎢⎣
∇ ⋅

�
𝜙𝛼

n−1�
j=1

D
𝛼,n

ij
∇ci

𝛼

�
+

N�
𝛽=1

Pi
𝛼𝛽

𝜙𝛼𝜙𝛽

�
�̃�i
𝛽
− �̃�i

𝛼

�

𝜙𝛼 + 𝜙𝛽

+

N�
𝛽=1

Pi
𝛼𝛽

𝜙𝛼

�
ci
𝛽
− ci

𝛼

�

N
�
𝜙𝛼 + 𝜙𝛽

� 𝜕𝜓𝛼𝛽

𝜕t

�
.
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direct notation are used interchangeably where the mth spa-
tial component of an object, say the vector � , is denoted 
by xm . Repeated indices on a term implies summation up 
to the number of spatial dimensions and is set to ℝ2 . As 
described in Sect. 2.1, the continuous scalar field u is discre-
tized into a finite set of N points uI where I corresponds to 
the node number; i.e. I ∈ [1,N] . For simplicity, the discre-
tized forms of the divergence of the gradient, or Laplacian 
∇2(⋅) = �2(⋅)∕�xmxm operator on the field on c at the point 
� defined as

A two-field derivative product is discretized as:

For particular components i, j and phase, � , the diffusion 
term for a species in Eq.  (24) can be expanded as:

where Eqs. (25) and (26) are used to discretize each of the 
three terms in Eq. (27). Note that all subsequent analyses in 
this study set D�,n

ij
 to a constant thereby reducing Eq. (27) to 

two terms. Note that for those interested, verification of the 
computed discrete differential operators and an analysis of 
the interpolation error using the Method of Manufactured 
solutions for a diffusion term, i.e. similar to Eq. (27) are 
presented in Appendix B.

3  Computational implementation

The generalized Crank–Nicolson time-stepping scheme 
is used for temporal integration of the phase field evolu-
tion equations; the numerical stability of the generalized 
Crank–Nicolson algorithm has been extensively tested 
within the similar contexts [28, 32, 33].

(25)∇2u(�) =
�2u(�)

�x2
m

=

N∑
I=1

[
Φ

(2,0)

I
(�) + Φ

(0,2)

I
(�)

]
uI .

(26)

��

�xm

�c

�xm
=

N∑
I=1

Φ
(1,0)

I
�I

N∑
I=1

Φ
(1,0)

I
cI

+

N∑
I=1

Φ
(0,1)

I
�I

N∑
I=1

Φ
(0,1)

I
cI .

(27)

∇ ⋅ (��D
�,n

ij
∇cj

�
) =

�

�xm

(
��D

�,n

ij

�c
j
�

�xm

)

= D
�,n

ij

���

�xm

�c
j
�

�xm
+ ��

�D
�,n

ij

�xm

�c
j
�

�xm
+ ��D

�,n

ij

�2c
j
�

�xmxm

(28)�n+1 − �n

Δt
= ��n+1 + (1 − �)�n

where � ranges from 0 (forward Euler) to 1 (backward Euler), 
the index n represents the time step, and � ∈ ℝ

[N×1] corre-
sponds to the collection of calculated phase field, �̇� , and 
concentration, ċ𝛼 , rates ∀� ∈ Ω ∪ �Ω as given by Eqs. (19) 
and (24), respectively.

A forward Euler approach is used in this study.
Details to implement spatial discretization and time inte-

gration are as follows: 

1. Spatial discretization: discretize Ω with desired amount 
of collocation points, Ntot , and calculate differential 
operators: 

(a) Define the desired discretization level consisting 
of Ntot within Ω and on its boundary �Ω.

(b) Define the spatial dimension, n, and desired order 
of differentiation, m. Both parameters must meet 
the differentiability and spatial requirements 
embedded within the governing equations. For 
example, m = 2 is the minimum to solve the clas-
sical Poisson’s problem.

(c) At each local center �̄ ∈ Ω ∪ 𝜕Ω where at that 
point � = �̄ , define the desired amount of neigh-
bors directly Nnbr or through the dilation param-
eter, 𝜌

�̄
 , which defines the radius of compact sup-

port, i.e. the neighborhood of �̄ . In practice, it is 
often sufficient to assume a constant Nnbr or 𝜌

�̄
 

∀�̄ ∈ Ω ∪ 𝜕Ω , although further optimization can 
be achieved by varying Nnbr or 𝜌

�̄
 at each �̄.

(d) At each point, � , use Eqs. (7) and (8) to construct 
�(�) and �(�) , and then generate shape functions, 
i.e. �(�) = �

−1(�)�(�) . Apply the calculated 
shape functions �(�) to discretize the diffusion 
term, i.e. Eq. (27) through Eqs. (25) and (26).

2. Temporal integration: Apply Crank–Nicholson time 
stepping scheme to a set of discretized equations by: 

(a) Initialize fields for each solute with respect to the 
solvent and phase fields within each solute.

(b) Apply Eqs.  (19)–(24) to compute rates for the 
phase �̇� and concentration fields ċ.

(c) Update and repeat.

(29)�
n+1 = Δt

[
𝜃�̇n+1 + (1 − 𝜃)�̇n

]
+ �

n

(30)𝜙n+1 = Δt
[
𝜃�̇�n+1 + (1 − 𝜃)�̇�n

]
+ 𝜙n
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4  Numerical examples

4.1  Non‑equilibrium solidification of Al–Sn binary 
alloy

All examples within Sect. 4 consider solidification of Al-0.2 
at% Sn alloy with FCC-A1 and BCT-A5 phases present in 
the system. The eutectic temperature, i.e. the FCC and BCT 
solidification point, occurs at 502 K. Our region of interest 
for this study is located within the encircled region of Fig. 1a 
where at 860 K the FCC phase precipitates out of solution 
above the eutectic temperature. The FCC and liquid Gibbs 
free energy curves associated with this region is shown in 
Fig. 1b. Initial conditions for this system produces a nega-
tive difference in Gibbs energy with a value of ≈ 800 J/mol 
indicating a liquid to solid spontaneous transformation. 

Both phases are initialized to the same concentration of 
cliq = csol = 2.0 × 10−4 for all points in the domain.

Thermochemical parameters and equations used to con-
struct the Gibbs free energy curves, Δg̃(c,T) are taken from 
the COST-507 [34] database. Interested readers may refer 
to Section A for construction and implementation details 
of Δg̃(c,T) developed for this study. All input parameters 
are summarized in Table 1 with several sourced from other 
studies [10]. The solid (FCC) phase within any grain are 
assumed impermeable relative to one another and the dif-
fusivity coefficient for solid phases are set to zero.

Discretization occurs over a 10 × 10 μm2 square domain 
with periodic boundary conditions applied to each of the 
four edges. To gain insight to the evolution equations, 
Eqs. (19)–(24) and terms within, we begin with a simple 
case of two grains symmetrically positioned along the hor-
izontal centerline of the computational domain. A visual 

Fig. 1  An illustration of: a the Al–Sn phase diagram for low Sn concentrations where the encircled region corresponds to the point (0.02 at% Sn, 
860 K), and b the corresponding Gibbs free energy curves at 860 K

Table 1  Simulation parameters 
for Al–Sn alloy

Nomenclature Symbol Value Units Source

Liquid diffusion coefficient D
l 1.3 × 10−7 exp(23.8 kJ/RT) m2/s [10]

Solid diffusion coefficient D
s

0 m2/s [10]
Solid/liquid interface permeability P

ls 1 × 10−5 m3/Js [10]
Solid/solid interface permeability P

ss
0 m

3∕Js –
Solid/liquid interface mobility M

ls 5 × 10−8 m4/Js [10]
Solid/solid interface mobility M

ss
0 m4/Js –

Time step Δt 1 × 10−10 s –
Domain length L 10 μm –
Molar volume �

m
10 cm3/mol –
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rendering of the discretized system with two grains at the 
early stages of growth is shown in Fig. 2.

In this case, there exist three phase fields � ∈ {1, 2, 3} 
where 1 = liquid, 2 = grain1 , and 3 = grain2 and each phase 
field is endowed with its own independent concentration, 
c� , field. The concentration of Sn in Al, i.e. cSn at any point 
[9] is then given by:

along with the constraint condition

To examine each of the terms in Eq. (20), it is helpful to per-
form a visual dissection of the rate equation. This is shown 
in Fig. 3, which consist of a snapshot of the phase field 
profile at the 100th step in the simulation with correspond-
ing section values along the centerline at � = (0, L∕2) . The 
centerline values in Fig. 3b represent the terms embedded 
within Eq. (20). These energy terms, one of geometry and 
the other chemical are generally of opposite sign and in this 
case, the chemical energy clearly dominates in magnitude. 
This results in a positive sum as shown with the dashed line 
in Fig. 3b, thereby driving the material towards solidifica-
tion. The sum is scaled by the kinetic coefficient as described 
by Eq. (22) to produce the phase field rate shown in Fig. 3c, 
which over an increment of time, yields changes to the phase 
field geometry. The changing phase field geometry evolves 
into a shape that tends to temper or resist the chemical driv-
ing force. This is evident by observation of the inflections 
points located near the outer edges of the active interphase 
region, i.e. 0 < 𝜙𝛼 < 1 . The set of phase field values bounded 
within the inflection points are negative in curvature and of 
larger magnitude relative to the other points , the combina-
tion of these values is the capillary term given by Eq. (21). 

(31)cSn =

3∑
�=1

�Sn
�
cSn
�

(32)
3∑

�=1

�Sn
�

= 1.

Fig. 2  A schematic of the computational domain with 2500 colloca-
tion points (black dots) for the Al-0.2 at% Sn alloy from the perspec-
tive of the solid phase field where order parameter values correspond 
to 1 for red and 0 for blue

Fig. 3  A snapshot of the phase 
field in the regions of active 
interphase conditions where: a 
the red arrows correspond to the 
negative gradient of the chemi-
cal potential driving the phase 
field outward, b, c centerline 
values along for the various 
terms within the phase field 
evolution equation
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Temperature is only independent parameter external to the 
system and it along with the phase composition, feed the 
chemical potential and its force gradient.

We now move to the concentration field where per 
Eq. (31), sum of phase weighted components ��c� deter-
mines the overall concentration field cSn . Therefore, it is of 
interest to understand the effect of ��c� on the evolution of 
cSn . Our analysis begins with the concentration fields dis-
played in Fig. 4 at six instances in time detailing the overall 
concentration field and its phase weighted components. For 
reference a phase field surface plot is also embedded within 
each frame. Recall, that the phase weighted concentration 
profiles are initialized to 0.02 at% Sn. Regions of active 
phase transformation are bounded with the dashed lines of 
the cross-sectional plots. Evolution begins with a liquid to 
solid transition about the initial seed locations, Fig. 4a, b, 
eventually leading to small region that is fully solidified 
Fig.  4c, and finally radial growth Fig.  4d–f. Only the 

diffusion term, i.e. the first term in Eq. (24) affects the con-
centration rate for points outside of the interphase region 
where for this set of points cSn

liq
= �liqcliq and cSn

sol
= �solcsol 

are constant. Concentration values for points located close 
to the outer edge but still within the interphase or transition 
region undergo an initial reduction due to the influence of 
cSn
liq

 . After some time, cSn
sol

 eventually dominates and guides 
cSn into its final state.

The computational requirements needed to conduct the 
simulations for this study are categorized into two stages; 
the time required to calculate differential operators, and the 
time required to numerically integrate and update the evo-
lution equations (Eqs. 19–24). Both categories are shown 
in Table 2 for three discretization levels up to the point of 
interphase contact; see Fig. 5. Calculation of differential 
operators need only occur once for a given discretization 
and the relationship to discretization level is linear. The 

Fig. 4  Contour plots of the overall concentration where the line plots below each contour plot represent field values for overall concentration cSn , 
its solid component �solcsol , and liquid component �liqcliq are displayed in blue, red and magenta, respectively
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computational requirements for temporal integration, how-
ever, appear to exhibit quadratic rate. This is attributed to 
the fact that finer discretizations produce more points within 
the interphase region.

Now consider the case of 10 grains with the same mate-
rial properties as given in Table  1. Recognize that each 
grain is assigned a phase where inter-grain permeabilities 
and mobilities between solid/grain phases are set to zero. 
Ten seeds are randomly distributed throughout the domain 
with a uniform initialization of all concentration fields c� at 
a value of 0.02 at% Sn in Al. Fig. 6 is a collection of concen-
tration and phase values observed at six instances of time. 
The liquid phase concentration component �liqcliq initially 
dominates the overall field behavior Fig. 6a. At this stage, 
Sn particles begin to evacuate out of the solidifying mate-
rial resulting in an elevated concentration profile extending 
from the outer rim of the interphase region into the liquid. 
Driven by its gradient, the elevated concentration fields then 
radiate out towards and eventually join one another Fig. 6b, 
c. Solid–solid interphase evolution is suppressed in active 
regions involving two or more grains. This is attributed to 
the impermeability condition which drives the kinetic coeffi-
cient K�� to zero. Grain growth partitions the liquid into dis-
tinct areas, each enclosed by an intergrain boundary, result-
ing in an overall increase in concentration within these areas 
Fig. 6d. and continues until the domain is fully solidified 
Fig. 6e. As shown in Fig. 6o, higher concentrations of Sn 
in the fully solidified material occur at the grain boundaries 

with the highest levels located at intergrain regions consist-
ing of four or more adjacent grains.

4.2  Epitaxial growth

Some manufacturing and joining processes including addi-
tive manufacturing and welding involve solidifying a liquid 
metal over a solid substrate [3]. The solid substrate serves as 
a site for epitaxial nucleation whereby newly formed crys-
tals nucleate at the adjacent substrate grains. Furthermore, 
the crystal’s crystallographic orientation does not change 
throughout the process. The resulting morphologies, a func-
tion of the liquid temperature gradient and solidification rate, 
are categorized by solidification modes to include planar, 
cellular, dendritic, and columnar [35].

A computational domain Ω partitioned into lower Ω1 
and upper Ω2 parts as shown in Fig. 7 is used to simulate 
this process in two stages; substrate synthesis followed by 
epitaxial growth. Substrate synthesis begins with a random 
distribution of seeds in Ω1 from which crystals nucleate and 
grow as described by Eqs. (19)–(24). This process continues 
until �liq = 0 for all points in Ω1 . The substrate concentra-
tion and phase fields in Ω1 then serve as initial/boundary 
values for Ω2.

Thermodynamic inputs for this study data are taken from 
the previous analysis, refer to Fig. 1 and Table 1 for details. 
Ω is set to a size of 10 × 20 μm2 and discretized with 5000 
collocation points. Substrate synthesis begins by initializing 
Ω1 with 20 randomly distributed seed sites. As shown Fig. 8, 
liquid to solid phase transformation continues resulting into 
a fully solidified multi-grain structure during which time, Al 
and Sn distributions tend to concentrate towards grain cent-
ers and grain boundaries respectively. The resulting Ω1 field 
values are then inserted into the lower half Ω and serve as 
seed sites for solidification in Ω2 . The resulting morphology 
exhibits a planar type mode consisting of three large grains 
extending from the substrate surface. However, it should 
be stressed that the formation of smaller sub-grain during 
the solidification process can be either numerical artifact or 
physical behavior (Fig. 9). 

Table 2  A comparison of required times to construct differential 
operators, and simulate evolution of two grains for three discretiza-
tion levels

Computational costs (s)

# points Differential opera-
tors

Grain simulation Total

2500 22.8 41.8 64.6
3600 33.2 87.8 121.0
4900 45.7 221.9 267.6

Fig. 5  Phase field contours cor-
responding the simulation times 
in listed in Table 2 for: a 2500, 
b 3600, and c 4900 collocation 
points
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5  Conclusions

A strong form-based collocation methods has been applied 
to discretize a multi-phase field model developed by [8] and 
study non-equilibrium, i.e. rapid solidification behavior for 
an Al-0.2 at% Sn alloy with the finite dissipation effects. 
Temperatures for the dilute alloy were set between liquid 
and eutectic regions, at a point where the solid Al, i.e. FCC 
phase evolves from the mixture. Gibbs energy curves for the 
system were constructed from experimental parameters and 
methodologies given in the COST-507database [34]; note 
that details are described in Appendix A.

Initial analysis of two symmetrically positioned grains 
under periodic boundary conditions illustrated interface and 
chemical free energy effects on phase and concentration 
field kinetics. Subsequent multi-grain solidification studies 
for the 10-grain and 20-grain case provided insight in the 
concentration profile of the fully solidified material. The 
results show that solid phase Al forming within grain inte-
rior with Sn solute ejected towards the boundary with high-
est concentrations located the intersection of multiple grain 
boundaries. Finally, the field equations were evaluated for 

alloy solidification in the presence of a 20-grain substrate. A 
resulting morphology exhibited a planer type solidification 
mode with three large grains extending from the grains sub-
strate surface. A smaller subgrain can be either a physical or 
numerical artifact, formed during solidification, and current 
research is underway to determine the cause.

Future works following this study include expanding the 
existing framework to evaluate a binary solution in ℝ3 , and 
evaluation of ternary solution in ℝ2 and in ℝ3 . Another inter-
esting future work will be evaluating the influence of initial 
stress on the solidification process by minimizing the total 
elastic strain energy under an applied elastic strain toward 
the orientation-dependent growth of grains [2, 21, 36].

Appendix 1: Implementation of the Gibbs 
free energy

The bulk (Gibbs) free energy f� for phase � evaluated in this 
work are based on the experimental thermo-chemical data 
and methods provided within the COST-507 [34]. Data con-
sists of a collection of coefficients and interaction parameters 

Fig. 6  Contour plots of: a–e the overall concentration field for ten grains at various instances in time, f–j corresponding phase fields, and k–o the 
phase image superimposed on top of the overall concentration field
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used to calculate free energies of pure element and multi-
component systems. The coefficients are temperature T 
dependent and are used with the power series to evaluate 
the molar free energy g for a pure species i in phase � with 
respect to its stable state enthalpy; i.e.

The free energy of multi-component system consists of con-
tributions from each constituent species within the mixture 
and of mixing between species. Contributions from mix-
ing are further classified as either ideal or non-ideal where 
the latter is modeled with a Redlich-Kister polynomial that 
contains temperature dependent interaction parameters L� . 
For a substitutional three-component alloy system, the free 
energy is given by

where the right hand side terms respectively correspond to 
the unmixed, ideal mixing, binary non-ideal, and ternary 

(33)
g
�

i
(T) − h

�

i
(298.1K) = a + bT + cT ln T

+ dT2 + eT3 + fT−1 + gT7 + hT−9.

(34)

G𝛾 (xi, T) =

3∑
i=1

xig
𝛾

i
+ RT

3∑
i=3

3∑
j>i

xixj

3∑
𝜈=0

L𝜈
ij
(xi − xj)

𝜈

+

3∑
i=1

3∑
j>i

3∑
k>j

xixjxk(xiL
0

ijk
+ xjL

1

ijk
+ xkL

2

ijk
)

Fig. 7  Discretized 10 × 20 μm2 computational domain of Al-0.2% Sn 
mixture formed by a union of solid domain, i.e. lower half and liquid 
domain, i.e. upper half

Fig. 8  Concentration and phase fields in Ω1 for: a initial and b final Sn concentration, c, d solid phase, and e, f Al concentration
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non-ideal mixing terms. Invoking the chain rule to differenti-
ate Eq. (34) with respect to composition yields

with

Note that for the constraint, i.e. 
∑

xi = 1 we use the condi-
tional relation to implement Eq. (36) in our computational 
analysis program:

(35)
�G� (xi, T)

�xm
=

�G� (xi, T)

�xi

�xi

�xm
= G

�

,i
xi,m

(36)

𝜕G𝛾 (xi, T)

𝜕xm
=

3∑
i=1

xi,mg
𝛾

i
+ RT

3∑
i=1

(xi,m(ln xi + 1))

+

3∑
i=1

3∑
j>i

(xi,mxj + xj,mxi) +

n∑
𝜈=0

L𝜈
ij
(xi − xj)

𝜈

+

3∑
i=1

3∑
j>i

xixj

n∑
𝜈=0

𝜈L𝜈
ij
(xi − xj)

𝜈−1(xi,m − xj,m)

+

3∑
i=1

3∑
j>i

3∑
k>j

(xi,mxjxk + xixj,mxk + xixjxk,m)(xiL
0

ijk

+ xjL
1

ijk
+ xkL

2

ijk
)

+

3∑
i=1

3∑
j>i

3∑
k>j

xixjxk(xi.mL
0

ijk
+ xj,mL

1

ijk
+ xk,mL

2

ijk
).

Figure 10 represents an output of the Al–Sn–Zn system 
along the Al–Zn, Zn–Sn, and Al–Sn surfaces for the liq-
uid, FCC, BCT and HCP phases at a temperature of 600 K. 
Thermo-Calc plots are also presented for comparison. The 
derivatives used to construct the tangent lines for the Al–Zn 
(lower left plot) at xAl = 0.2 are based on Eq. (36).

Appendix 2: Verification of the discrete 
differential operators

One way to measure the validity of computed discre-
tized differential operators is through its fundamental 
properties, i.e. consistency [37]. Let xi where x1 = x and 
x2 = y , and to ease notation let Φxi

I
= {Φ

(1,0)

I
,Φ

(1,0)

I
} and 

Φ
xixj

I
= {Φ

(2,0)

I
,Φ

(1,1)

I
,Φ

(0,2)

I
} represent the first and second 

order differential operator sets respectively. For any point 
p ∈ Ω̄ such that 0 < p ≤ N  with associated coordinate xp

i
 

following properties have been numerically verified: 

1. 
∑N

I=1
Φ

(0,0)

I
= 1,

2. 
∑N

I=1
Φ(�p)

(0,0)

I
[xi]I = xi,

3. 
∑N

I=1
Φ(�p)

xj

I
[xi]I = �ij,

4. 
∑N

I=1
Φ(�p)

xixj

I
[xixj]I = 1    if i ≠ j,

5. 
∑N

I=1
Φ(�p)

xixj

I
[xixj]I = 2    if i = j.

(37)xi,m =

{
1 i = m

−1 i ≠ m

Fig. 9  Concentration and phase fields in Ω2 for: a Sn concentration (upper half), b solid phase, and c Al concentration with the presence of solid 
substrate in Ω1 (lower half)
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Note that there also exist similar properties for ℝ3 domains 
and higher ordered derivatives (i.e m > 2 ) as well.

Another way to measure the effectiveness of differential 
operators is through its interpolation error. This may be 

achieved by benchmarking solution data for a given par-
tial differential equation against data from another known 
or trusted solution analytical, numerical, or manufactured 
solution. In this work, we take the latter approach by 

Fig. 10  Comparisons of the computed Gibbs energy (a–c) against Thermo-Calc software (d–f) at the same temperature, i.e. T = 600 K; the cal-
culated Gibbs energy at along each edge of the Al–Sn–Zn ternary system, i.e. (Al, Sn, Zn = 0), (Al, Sn = 0, Zn) and (Al = 0, Sn, Zn) are shown
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manufacturing and differentiating two primary fields c(x, y) 
and �(x, y) as shown in Eqs. (38) and (39) respectively to 
produce a term ∇ ⋅ (�(x, y)∇c(x, y)) . The manufactured 
fields are variants of those taken from a helpful report on 
the method of manufactured solutions [38].

Figure 11 presents a comparison between analytical y and 
approximate solution yh fields for the term ∇(�(x, y)D∇c(x, y) 
which test all two-field first order derivative products, sec-
ond order derivatives and combinations thereof; for the com-
putation, an unit square domain is discretized with uniformly 
distributed 4900 collocation points. The computed discrete 
L2 norm error which is given by

was measured at a value less than 0.3%. Those who inter-
ested in the computational resources to construct differential 
operators are referred to Sect. 4 of this study.

(38)c(x, y) = c0

[
1 + sin

2
(
x

R

)
sin

2

(
2y

R

)]

(39)�(x, y) = �0

�√
x2 + 2y2

R

�

(40)errorL2 =

√(
y − yh

y

)2
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