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Abstract:Materials engineering problems related to polycrystalline solids often require the prediction of grain growth and the stress analysis
of polycrystalline materials. This study presents the particle difference method (PDM) as a reliable computational method applicable to this
class of engineering problems. The PDM is a meshfree collocation method that directly discretizes the strong form of the governing partial
differential equations based on Taylor series approximation and the moving least-squares approach. The PDM was applied to polycrystalline
solids in the context of two-dimensional grain growth solidification and stress analysis of the resulting polycrystalline morphology. First, the
PDM was used to predict grain growth during the solidification process of polycrystalline materials using a multiphase field model. Then
the resulting morphology of the polycrystalline solids was adopted for successive stress analysis of the polycrystalline solids. Results from
these analyses were compared with the results from the conventional finite-element method to verify the accuracy and efficacy of the PDM.
DOI: 10.1061/(ASCE)EM.1943-7889.0001665. © 2019 American Society of Civil Engineers.

Introduction

The conventional finite-element methods (FEMs) have difficulties
handling moving boundary or interface problems such as phase
changes or problems with complex internal boundaries. The meth-
ods often employ remeshing or h-adaptive techniques to ensure the
requisite accuracy near the interface. However, such approaches
often entail cumbersome computations as well as the projection of
field variables between existing and newly generated meshes,
leading to a degradation of accuracy.

To circumvent these difficulties, various types of meshfree
methods, including weak form–based meshfree and strong form–
based collocation methods have been developed. Examples of these
methods include the smoothed particle hydrodynamics (Gingold
and Monaghan 1977), the diffuse-element method (Nayroles et al.
1992), the element-free Galerkin method (Belytschko et al. 1994),
the reproducing kernel particle methods (Liu et al. 1995), h-p clouds
(Duarte and Oden 1996), the finite-point method (Onate et al.
1996), the meshless local boundary integration method (Zhu et al.
1998), themeshless local Petrov–Galerkinmethod (Atluri et al. 1999),
and the meshless point collocation methods (Aluru 2000). Although
these methods do not require a mesh for the discretization of the

governing partial differential equations, they often suffer from re-
quired additional computational cost for the computations of the
shape functions and their derivatives. For example, strong form–
based collocation methods require the computation of higher-order
derivatives compared with Galerkin methods due to the direct
discretization of the strong form. Thus, the strong form–based
collocation methods require additional high computational cost to
obtain shape functions and all their higher-order derivatives up to
the order of the governing equations of the problem; the computa-
tional cost of these meshfree methods is often at least an order of
magnitude higher than that of the conventional mesh-based method.

To address this issue, the particle difference method (PDM) was
developed based on the key concept of approximating higher-order
derivatives without separately computing them as in the conventional
meshfree method. The key idea of the proposed method is based
on computing discretized higher-order derivative operators with a
Taylor expansion through the moving least-squares approach. Such
ideas also were initially explored for meshfree methods by other re-
searchers (Li and Liu 1999a, b; Kim and Kim 2003; Hillman and
Chen 2016) with a different name. However, the approachwas further
developed byYoon andSong (2014a, b, c) with the names of the PDM
for continuum (Yoon and Song 2014b, c) and the extended particle
difference method (EPDM) for moving interface problems (Yoon and
Song 2014a). Another interesting alternative approach, a supercon-
vergent meshfree collocation method (Wang et al. 2018), was pro-
posed to reduce the cost of higher-order derivative computations
and resolve the basis degree discrepancy in meshfree collocation for-
mulations. In contrast to other existing meshfree and collocation
methods, the PDM is capable of computing higher-order derivatives
of the shape functions in the process of calculating the shape functions
without further cost. Moreover, the method does not require the regu-
larity of theweight function to ensure the regularity of the shape func-
tions. Although the PDM shares the principal attractive features of
other meshfree methods for modeling complex problems, the PDM
is also particularly easy to implement compared with other meshfree
methods. In particular, adaptive discretization refinement can be ef-
fectively treated in a simple manner. As a consequence, the PDM can
simplify modeling of the evolution ofmoving boundary (or interface)
and discontinuity problems such as crack propagations and phase
changes. It also does not require numerical integration due to the

1Graduate Research Assistant, Dept. of Civil, Environmental, and
Architectural Engineering, Univ. of Colorado, Boulder, CO 80309.

2Graduate Research Assistant, Dept. of Civil, Environmental, and
Architectural Engineering, Univ. of Colorado, Boulder, CO 80309.

3Assistant Professor, Dept. of Civil Infrastructure and Environmental
Engineering, Khalifa Univ. of Science and Technology, Abu Dhabi 127788,
United Arab Emirates.

4Senior Research Scientist and Mechanical Engineer, Computational
Multiphysics Systems Laboratory, Naval Research Laboratory,
Washington, DC 20375.

5Assistant Professor, Dept. of Civil, Environmental, and Architectural
Engineering, Univ. of Colorado Boulder, Boulder, CO 80309 (correspond-
ing author). ORCID: https://orcid.org/0000-0002-2932-440X. Email:
jh.song@colorado.edu

Note. This manuscript was submitted on October 5, 2018; approved on
March 18, 2019; published online on August 9, 2019. Discussion period
open until January 9, 2020; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Engineering
Mechanics, © ASCE, ISSN 0733-9399.

© ASCE 04019082-1 J. Eng. Mech.

 J. Eng. Mech., 2019, 145(10): 04019082 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ol

or
ad

o 
U

ni
ve

rs
ity

 a
t B

ou
ld

er
 o

n 
08

/0
9/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)EM.1943-7889.0001665
https://orcid.org/0000-0002-2932-440X
mailto:jh.song@colorado.edu


direct discretization of the governing equations. The PDM has been
successfully applied to various problems such as Poisson and Stokes
problems (Kim and Kim 2003), elastic crack growth and interface
problems (Yoon et al. 2007; Liu et al. 2007; Yoon et al. 2006), dy-
namic crack propagation (Lee et al. 2016), and polycrystalline
growth problems (Song et al. 2018; Fu et al. 2017).

The main objective of this paper was to further demonstrate the
capabilities of the PDM in solving mechanics problems. The nov-
elty and intellectual contribution of the paper originates from ap-
plying recently developed strong form–based collocation method to
polycrystalline materials to assess the feasibility of the method in
(1) polycrystalline solidification analysis with a diffusive interface
approach; and (2) subsequent stress analysis with the material inter-
faces, i.e., grain boundaries. Specifically, the PDMwas used to tackle
problems related to grain growth and solidification in a polycrystal-
line solid, aswell as stress analysis of the resulting solid. This paper is
organized as follows. First, the Taylor expansion and moving least-
squares method used to develop the PDM are presented. The strong
forms of the governingmultiphase field equations for polycrystalline
solidification and the equations of elastostatics for the stress analysis
are discretized based on the particle difference scheme. Computa-
tional details and the simulation results for two-dimensional solidi-
fication problems are presented, followed by the accompanying
stress analyses. The results from the PDM stress analyses are com-
pared with results from the FEM on different grid sizes and nodal
arrangements. Finally, a summary and concluding remarks are given.

Particle Difference Approximation

We provide a detailed derivation of the particle difference approxi-
mation in this section. One of the key ideas of the PDM is to use a
standard Taylor series expansion with the moving least-squares ap-
proach to approximate field variables and their derivatives at the
same time. For convenience, we start by defining mathematical
notations. Let x ¼ ðx1; : : : ; xnÞ be an n-dimensional real vector
and α ¼ ðα1; : : : ;αnÞ be an n-tuple of nonnegative integers. The
αth power of x is defined by

xα ¼ xα1

1 xα2

2 · · · xαn
n ð1Þ

We define the αth derivative of a smooth function fðxÞ with
respect to x as

Dα
xfðxÞ ¼

∂ jαjfðxÞ
∂xα1

1 ∂xα2

2 · · · ∂xαn
n

ð2Þ

where jαj = sum of all components of α, i.e., jαj≡Pn
i¼1 αi.

Upon neglecting higher-order terms in a Taylor series, the mth
order polynomial for approximating a continuous function uðxÞ at
the local center x̄ can be expressed as

uðx; x̄Þ ¼
X
jαj≤m

ðx − x̄Þα
α!

Dα
xuðx̄Þ ¼ p⊤

mðx; x̄Þaðx̄Þ ð3Þ

where α! = factorial of α, i.e., α! ¼ α1! · · · αn!. The Taylor poly-
nomial can be decomposed into the polynomial vector p⊤

mðx; x̄Þ
and the derivative coefficient vector aðx̄Þ computed at the local
center. The polynomial vector takes the form

p⊤
mðx; x̄Þ ¼

�
ρjα1j1

α1!

�
x − x̄
ρ1

�
α1
; : : : ;

ρjαLj
L

αL!

�
x − x̄
ρL

�
αL
�

ð4Þ

where α ¼ n-tuple of nonnegative integers; L ¼ ðnþmÞ!=
n!m! = number of the components of polynomial vector p⊤

m;
and ðx − x̄Þαi ¼ αith power of ðx − x̄Þ defined by ðx− x̄Þαi ¼
ðx1− x̄1Þα1iðx2− x̄2Þα2i · · · ðxn− x̄nÞαni . The derivative coefficient
vector can be defined as

a⊤ðx̄Þ ¼ ½Dα1
x uðx̄Þ; : : : ;DαL

x uðx̄Þ� ð5Þ
which includes all of the derivatives for uðx̄Þ at the local center up
to the αL th-order derivative.

The PDM uses the weight function w½ðx − xIÞ=ρI� to define
compact support which is nonzero over a neighborhood of xI in
order to generate set of sparse discrete equations for the discretized
system of equations. In contrast to most meshfree methods, the
PDM can use any function with a conical shape as the weight func-
tion. This is because no differentiability for the weight function is
required in the PDM formulation. As long as the function is non-
negative and continuous, smoothness is not required. Most other
meshfree methods, on the other hand, demand the differentiability
of the weight function because the derivative of the approximation
includes the derivative of the weight function. Nonsmooth weight
functions were used previously (Kim and Kim 2003; Lee and Yoon
2004) in the framework of the meshfree point collocation method.
It was also recognized that nonsmooth functions are preferable to
smooth ones due to their resemblance to the Dirac delta function in
the strongly formulated particle method through numerical experi-
ments (Yoon and Song 2014b, c). Thus, in this study, we use the
nondifferentiable functions

w1

�
x − x̄
ρx̄

�
¼
�
1−
����x − x̄

ρx̄

����
�

4

ð6Þ

and

w2

�
x − x̄
ρx̄

�
¼
�
1 −

����x − x̄
ρx̄

����1=2
�

2

ð7Þ

with a sharp peak and discontinuous derivatives. Fig. 1 illustrates
an example of one-dimensional nonsmooth weight functions. The
upper and lower bounds of the compact support sizes ρx̄ determine
the computational efficiency and the invertibility of the moment
matrix M which is subsequently described in Eq. (9), respectively.
In this study, spatially varying continuous compact support func-
tion is constructed to evaluate the compact support size at each
collocation point. To this end, a pseudocounting function is con-
structed based on the collocation density; details of the adopted
computational algorithm were presented by Kim (2004).

Henceforth, we focus on the derivation of the PDM in two
dimensions, but the derivation in one or three dimensions is much
the same. In two dimensions, the Taylor polynomial for approxi-
mating a real function uðxÞ at the local center x̄ can be expressed
as in Eq. (3). The variables x and x̄ become vectors x ¼ ½x1; x2�T
and x̄ ¼ ½x̄1; x̄2�T .

-1 -0.5 0 0.5 1
0

0.5

1

1.5

w1

w2

Fig. 1. Nonsmooth weight functions in one dimension.
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Minimizing with respect to aðx̄Þ the discrete form of the
weighted, discrete L2-norm given by

J ¼
XN
I¼1

w

�
xI − x̄
ρI

�
½p⊤ðxIÞaðx̄Þ − uI �2 ð8Þ

yields

aðx̄Þ ¼

0
BBBBB@

Dα1
x uðxÞ

Dα2
x uðxÞ
..
.

DαL
x uðxÞ

1
CCCCCA ¼ M−1ðx̄ÞBðx̄Þu⊤ ð9Þ

where matrices M and B are defined by

Mðx̄Þ ¼
XN
I¼1

w

�
xI − x̄
ρI

�
pmðxI ; x̄Þp⊤

mðxI ; x̄Þ ð10Þ

Bðx̄Þ ¼
�
w

�
x1 − x̄
ρ1

�
pmðx1; x̄Þ; : : : ;w

�
xN − x̄
ρN

�
pmðxN ; x̄Þ

�
ð11Þ

Finally, substituting x for x̄ in Eq. (9) yields a general form of
the particle derivative approximation as

DαK
x uðxÞ ¼

XN
I¼1

ΦαK
I ðxÞuI ð12Þ

where αK ¼ ðα1;α2Þ ¼ 2-tuple of nonnegative integers such as
α1 ¼ ð0; 0Þ;α2 ¼ ð1; 0Þ;α3 ¼ ð0;1Þ; : : : ;αL ¼ ð0;mÞ for the m th-
order polynomial vector pm; and ΦαK

I ðxÞ ¼ αKth derivative of the
shape function at collocation point I which is further defined as

ΦαK
I ðxÞ ¼ e⊤αK

M−1ðxÞBðxÞ ð13Þ

where e⊤αK
= Boolean vector in which 1 is placed at the αth slot in

lexicographic order. The approximation of the solution and its
derivative fields does not require the derivative of the weight func-
tion w. Thus, the continuity of the solution and its derivative fields
do not rely on the continuity of the weight function.

Fig. 2 shows the shape functions and their first and second
derivatives. Eq. (12) can be also expressed in matrix form as0
BBBBB@

Dα1
x uðxÞ

Dα2
x uðxÞ
..
.

DαL
x uðxÞ

1
CCCCCA ¼

0
BBBBB@

Φα1
1 ðxÞ Φα1

2 ðxÞ · · · Φα1

N ðxÞ
Φα2

1 ðxÞ Φα2
2 ðxÞ · · · Φα2

N ðxÞ
..
. ..

. . .
. ..

.

ΦαL
1 ðxÞ ΦαL

2 ðxÞ · · · ΦαL
N ðxÞ

1
CCCCCA

0
BBBBB@

u1

u2

..

.

uN

1
CCCCCA
ð14Þ

1

0.5

00

0.5

0.05

0.1

-0.05

0

1
1

0.5

00

0.5

1

0.5

-1.5

-1

-0.5

0

1.5

1

(a) (b)

1

0.5

00

0.5

5

-10

-5

0

10

1
1

0.5

00

0.5

0

-30

-20

-10

10

1

(c) (d)

Fig. 2. Two-dimensional shape functions and their derivatives: (a) Φð0;0ÞðxÞ; (b) Φð1;0ÞðxÞ; (c) Φð1;1ÞðxÞ; and (d) Φð2;0ÞðxÞ.
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We further detail the previously described particle difference
approximation scheme for the specific cases of the linear and quad-
ratic orders of the polynomial vector p. In two dimensions, the
Taylor polynomial, i.e., Eq. (3) approximating a function uðxÞ
at a local center x̄ ¼ ½x̄1; x̄2�, can be written

uðxÞ ¼ uðx̄Þ þDð1;0Þ
x uðx̄Þðx1 − x̄1Þ þDð0;1Þ

x uðx̄Þðx2 − x̄2Þ ð15Þ
for the linear case (m ¼ 1) and

uðxÞ ¼ uðx̄Þ þDð1;0Þ
x uðx̄Þðx1 − x̄1Þ þDð0;1Þ

x uðx̄Þðx2 − x̄2Þ

þDð2;0Þ
x uðx̄Þ ðx1 − x̄1Þ2

2!
þDð1;1Þ

x uðx̄Þðx1 − x̄1Þðx2 − x̄2Þ

þDð0;2Þ
x uðx̄Þ ðx2 − x̄2Þ2

2!
ð16Þ

for the quadratic case (m ¼ 2). The p vectors are given by

p⊤
1 ðx; x̄Þ ¼

�
1

ρ
1!

�
x1 − x̄1

ρ

�
1 ρ

1!

�
x2 − x̄2

ρ

�
1
�

ð17Þ

for the linear case and

p⊤
2 ðx; x̄Þ ¼

�
1

ρ
1!

�
x1 − x̄1

ρ

�
1 ρ

1!

�
x2 − x̄2

ρ

�
1 ρ2

2!

�
x1 − x̄1

ρ

�
2 ρ2

1!1!

�ðx1 − x̄1Þðx2 − x̄2Þ
ρ2

�
ρ2

2!

�
x2 − x̄2

ρ

�
2
�

ð18Þ

for the quadratic case. The matrices M and B can be expanded as

Mðx̄Þ ¼
XN
I¼1

w

�
xI − x̄
ρx̄

�
p1ðxI ; x̄Þp⊤

1 ðxI ; x̄Þ ¼
XN
I¼1

w

�
xI − x̄
ρx̄

�264
1 dI1 dI2

I1 ðdI1Þ2 dI1dI2

dI2 dI1dI2 ðdI2Þ2

3
75 ð19Þ

for the linear case and

Mðx̄Þ ¼
XN
I¼1

w

�
xI − x̄
ρx̄

�
p2ðxI ; x̄Þp⊤

2 ðxI ; x̄Þ

¼
XN
I¼1

w

�
xI − x̄
ρx̄

�
2
66666666664

1 dI1 dI2 d2I1=2 dI1dI2 d2I2=2

dI1 d2I1 dI1dI2 d3I1=2 d2I1dI2 dI1d2I2=2

dI2 dI1dI2 d2I2 d2I1dI2=2 dI1d2I2 d3I2=2

d2I1=2 d3I1=2 d2I1dI2=2 d4I1=2 d3I1dI2=2 d2I1d
2
I2=4

dI1dI2 d2I1dI2 dI1d2I2 d3I1dI2=2 d2I1d
2
I2 dI1d3I2=2

d2I2=2 dI1d2I2=2 d3I2=2 d2I1d
2
I2=4 dI1d3I2=2 d2I1d

2
I2=4

3
77777777775

ð20Þ

for the quadratic case. In Eqs. (19) and (20), dIi ¼ xIi − x̄i for
i ¼ 1; 2 with xI ¼ ½xI1; xI2�. The derivative coefficient vectors
for the linear and quadratic cases can be respectively defined as

Dα
xuðxÞ ¼ ½uðxÞ;Dð1;0Þ

x uðxÞ;Dð0;1Þ
x uðxÞ� ð21Þ

and

Dα
xuðxÞ

¼
h
uðxÞ;Dð1;0Þ

x uðxÞ;Dð0;1Þ
x uðxÞ;Dð2;0Þ

x uðxÞ;Dð1;1Þ
x uðxÞ;Dð0;2Þ

x uðxÞ
i

ð22Þ

Discretization of Governing Equations

Polycrystalline Solidification

Polycrystalline solidification in a material is described with a multi-
phase field model (Fan and Chen 1997). The phases refer to crystal

orientations of grains within the domain, each corresponding to a
multiphase field order parameter φi ∈ ½0; 1� where i ¼ 1; 2; : : : ;p,
where p is the total number of grains considered in the solidifica-
tion analysis. In addition, φ0 is assigned to model the liquid phase
of the material. At each spatial point x in the solidifying body, it is
assumed that the liquid phase and differently-oriented solid phases
are presented so that Σp

i¼0φiðxÞ ¼ 1. For example, if a material
point x in the domain is molten metal, φ0 will be at or near unity,
and the other phase field parameters, i.e., φ1; : : : ;φp will be at or
near zero. Fig. 3 is a schematic of microstructure described with the
multiphase field order parameters.

The multiphase field model is based on the diffuse interface ap-
proach. In other words, at each diffusive interface, i.e., grain boun-
dary, the order parameters corresponding to either grain should
smoothly vary between 0 and 1 within a very narrow region. Based
on thermodynamic considerations (Fan and Chen 1997; Allen and
Cahn 1979), the spatial gradients of these diffusive interfaces drive
the temporal evolution of the grain boundaries. These considera-
tions lead to the following diffusive-type evolution equation to
model the polycrystalline solidification process:

© ASCE 04019082-4 J. Eng. Mech.
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∂φiðx; tÞ
∂t ¼ −Mi

δF
δφiðx; tÞ

ð23Þ

where φi ¼ ith phase field order parameter;Mi = interface mobility
constant; and F is a functional representing the total free energy of
a system defined by

F½φi;∇φi� ¼
Z
V
½f0ðφ1ðxÞ;φ2ðxÞ; : : : ;φpðxÞÞ

þ
Xp
i¼1

κi
2
ð∇φiðxÞÞ2�dV ð24Þ

where κi = gradient energy coefficient of grain i; and f0 = local free
energy density given by

f0ðφ1;φ2; : : : ;φpÞ ¼
Xp
i¼1

�
−α
2
φ2
i þ

β
4
φ4
i

�

þ γ
Xp
i¼1

Xp
j≢i

φ2
iφ

2
j ð25Þ

where α, β, and γ = material parameters required to be determined
experimentally.

By taking the first variational derivative of Eq. (23) with
Eqs. (24) and (25), the governing equation for polycrystalline
solidification is rewritten

∂φi

∂t ¼ −Mi

�
−αφi þ βφ3

i þ 2γφi

Xp
j≠i

φ2
j − κi∇2φi

�

where i ¼ 1; 2; : : : ;p ð26Þ

For the time integration of Eq. (26), we adopted the forward
Euler scheme by

φnþ1
i −φn

i

Δt
¼ −Mi

�
−αφn

i þ βðφn
i Þ3 þ 2γφn

i

Xp
j≠i

ðφn
j Þ2 − κi∇2φn

i

�

where i¼ 1;2; : : : ;p ð27Þ

whereΔt = time integration step size; the superscripts on the phase
field order parameter φ indicate the indices for the time steps;
and operator ∇2 denotes a discrete form of the Laplacian operator.
Further discretization of Eq. (27) with the PDM yields the final
system of equations given by

XN
I¼1

LΩ
I ðXÞφðnþ1Þ

I ¼ FΩ
φðXÞ ð28Þ

where subscript I indicates the nodal index. The discrete differen-
tial operator LΩ

I ðXÞ is written

LΩ
I ðXÞ ¼ Φð0;0Þ

I ðXÞ ð29Þ

The generalized force FΩ
φðXÞ on the right-hand side of Eq. (28)

takes the form

FΩ
φðXÞ ¼

XN
I¼1

Φð0;0Þ
I ðXÞφn

iI

þΔtMi

(
α
XN
I¼1

Φð0;0Þ
I ðXÞφn

iI − β
XN
I¼1

ðΦð0;0Þ
I ðXÞðφn

iIÞÞ3

− 2γ
XN
I¼1

Φð0;0Þ
I ðXÞφn

iI

 Xp
j≠i

XN
I¼1

ðΦð0;0Þ
I ðXÞðφn

jIÞÞ2
!

þ κi

XN
I¼1

ðΦð2;0Þ
I ðXÞ þΦð0;2Þ

I ðXÞÞ
XN
I¼1

Φð0;0Þ
I ðXÞφn

iI

�

ð30Þ

Elastostatics for Polycrystalline Stress Analysis

In addition to polycrystalline solidification, we also sought to de-
termine the effect of mechanical loading on solidified polycrystal-
line materials. To this end, the two-dimensional linear elastostatics
problem was considered upon completion of the grain solidification
prediction. This elastostatics problem for a domainΩ bounded by Γ
(Fig. 4) takes the form

divσ þ b ¼ 0 in Ω ð31Þ
where σ = Cauchy stress tensor; u = displacement field; and b =
body force vector. The Dirichlet and Neumann boundary condi-
tions are given by

u ¼ ū on Γu ð32aÞ

σn ¼ t̄ on Γt ð32bÞ
where n = outward unit normal vector on Γt; Γ ¼ Γu ∪ Γt;
and Γu ∩ Γt ¼ ∅.

The constitutive equation for a linear isotropic elastic material is
given by

σ ¼ λtrðεÞ1þ 2με ð33Þ

Fig. 3. Schematic of a polycrystalline microstructure described with
the multiphase field order parameters φi ∈ ½0; 1�, where i ¼ 1; : : : ; 9.
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where λ and μ = Lamé constants; and 1 = second-order identity
tensor. For the plane stress condition

λ ¼ νE
1 − ν2

μ ¼ G ¼ E
2ð1þ νÞ ð34Þ

where E = Young’s modulus;G = shear modulus; and ν = Poisson’s
ratio. For a linear isotropic elastic material, based on the assump-
tion of small displacement and strain, the Cauchy infinitesimal
strain tensor is defined by ε ¼ ð∇uþ ð∇uÞ⊤Þ=2. Substituting
Eq. (33) into Eq. (31) yields the governing equation

div½λtrðεÞ1þ 2με� þ b ¼ 0 in Ω ð35Þ

We discretize the governing equation with the PDM. For con-
venience, we define Λ ¼ Λi ∪ Λd ∪ Λn, where Λi, Λd, and Λn are
sets of interior nodes, Dirichlet boundary nodes, and Neumann
boundary nodes, respectively. To facilitate further expression for
the discretized governing equation with the PDM, Eq. (35) is
rewritten

λuk;ki þ μðui;jj þ uj;jiÞ þ bi ¼ 0 in Ω ð36Þ

for a homogeneous material, i.e., material properties form constant
fields. However, if the material properties have a spatial variation,
i.e., bimaterial or polycrystalline materials, Eq. (35) should be
further developed to include spatial derivatives of the material prop-
erty fields

λ;iuk;k þ μ;jðui;j þ uj;iÞ þ λuk;ki þ μðui;jj þ uj;ijÞ þ bi ¼ 0 in Ω

ð37Þ

where i, j ¼ 1, 2 in two dimensions and the repeated subscript
follows the summation convention. Another elegant approach for
modeling material interface with a variational formulation and a
double-grid method was proposed by Chen et al. (2004). Substitut-
ing Eq. (12) into Eq. (37) yields the discrete form of equations
which are given by

XN
I¼1

½ðλþ 2μÞΦð2;0Þ
I ðxJÞu1I þ μΦð0;2Þ

I ðxJÞu1I

þ ðλþ μÞΦð1;1Þ
I ðxJÞu2I þΦð1;0Þ

I ðxJÞλðΦð1;0Þ
I ðxJÞu1I

þΦð0;1Þ
I ðxJÞu2IÞ þΦð1;0Þ

I ðxJÞμðΦð0;1Þ
I ðxJÞu1I

þΦð1;0Þ
I ðxJÞu2IÞÞ þΦð1;0Þ

I ðxJÞμð2Φð1;0Þ
I ðxJÞu1I � ¼ −b1ðxJÞXN

I¼1

½ðλþ 2μÞΦð0;2Þ
I ðxJÞu2I þ μΦð2;0Þ

I ðxJÞu2I

þ ðλþ μÞΦð1;1Þ
I ðxJÞu1I þΦð0;1Þ

I ðxJÞλðΦð1;0Þ
I ðxJÞu1I

þΦð0;1Þ
I ðxJÞu2IÞ þΦð1;0Þ

I ðxJÞμðΦð0;1Þ
I ðxJÞu1I

þΦð1;0Þ
I ðxJÞu2IÞÞ þΦð0;1Þ

I ðxJÞμð2Φð0;1Þ
I ðxJÞu2I � ¼ −b2ðxJÞ

ð38Þ

for the interior nodes xJ ∈ Λi. In contrast to Eq. (38), if the body
consists of a homogeneous material, the spatial derivatives of λ and
μ vanish, and Eq. (38) is reduced to

XN
I¼1

½ðλþ 2μÞΦð2;0Þ
I ðxJÞu1I þ μΦð0;2Þ

I ðxJÞu1I

þ ðλþ μÞΦð1;1Þ
I ðxJÞu2I � ¼ −b1ðxJÞXN

I¼1

½ðλþ μÞΦð1;1Þ
I ðxJÞu1I þ μΦð2;0Þ

I ðxJÞu2I

þ ðλþ 2μÞΦð0;2Þ
I ðxJÞu2I � ¼ −b2ðxJÞ ð39Þ

for the interior nodes xJ ∈ Λi. The discrete form of the Dirichlet
boundary condition can be obtained by substituting Eq. (12) into
Eq. (32a) as

XN
I¼1

Φð0;0Þ
I ðxJÞu1I ¼ ū1IðxJÞ

XN
I¼1

Φð0;0Þ
I ðxJÞu2I ¼ ū2IðxJÞ ð40Þ

for the Dirichlet boundary nodes xJ ∈ Λd. Similarly, for the dis-
cretization of the Neumman boundary condition, i.e., Eq. (32b),
substituting Eq. (33) into Eq. (32b) yields

2μn · εþ λn · 1ðdivuÞ ¼ t̄ on Γt ð41Þ

which, in Cartesian components, has the equivalent form

μðui;j þ uj;iÞnj þ λδijnjðuk;kÞ ¼ t̄i on Γt ð42Þ

where δij = Kronecker delta. For the discretization of Eq. (42) with
the PDM, substituting Eq. (12) into Eq. (42) results in

XN
I¼1

f½ðλþ 2μÞΦð1;0Þ
I ðxJÞn1 þ μΦð0;1Þ

I ðxJÞn2�u1I

þ ½λΦð0;1Þ
IJ ðxJÞn1 þ μΦð1;0Þ

IJ ðxJÞn2�u2Ig ¼ t̄1ðxJÞXN
I¼1

f½μΦð0;1Þ
I ðxJÞn1 þ λΦð1;0Þ

I ðxJÞn2�u1I

þ ½ðλþ 2μÞΦð0;1Þ
I ðxJÞn2 þ μΦð1;0Þ

I ðxJÞn1�u2Ig ¼ t̄2ðxJÞ ð43Þ

for the Neumman boundary nodes xJ ∈ Λn.

Fig. 4. Two-dimensional body Ω with the outward unit normal vector,
i.e., n.
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Upon assembling Eqs. (38), (40), and (43), we obtain the
linear algebraic system of equations for elastostatic analysis in the
form of Lu ¼ f, where L is the sparse matrix consisting of as-
sembled derivative coefficient of the PDM based on Eqs. (38), (40),
and (43).

Numerical Study

The performance of the PDM was examined via polycrystalline
structure prediction and stress analysis. We began by obtaining a

steady-state polycrystalline structure from the solidification using
the multiphase field model. Then, upon considering the polycrys-
talline structure as a computational domain, an elastostatic stress
analysis was performed. This section considers polycrystalline grain
growth and stress analysis for the following three cases: (1) 5 grains,
(2) 36 grains, and (3) 30 grains with 6 rigid inclusions.

Polycrystalline Solidification with Phase Field Model

We obtained two-dimensional polycrystalline structures for the
aforementioned three different cases using the multiphase field

(a) (b)

Fig. 5. (a) Discretization of polycrystalline analysis domain with 1,156 collocation points; and (b) steady-state polycrystalline structure with
5 orientation variables.

Fig. 6. Evolution of polycrystalline structure with 36 grains shown at simulation time: (a) t ¼ 0 (initial state); (b) t ¼ 50Δt; (c) t ¼ 100Δt;
(d) t ¼ 150Δt; (e) t ¼ 200Δt; and (f) t ¼ 8000Δt (final state).

© ASCE 04019082-7 J. Eng. Mech.
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model, i.e., Eq. (26) with the PDM. The computational domain was
chosen to be an L ×H rectangle. Unless otherwise specified, peri-
odic boundary conditions were applied in all directions of the com-
putational domain for the polycrystalline solidification analysis with
the multiphase file model. The simulation parameters for the phase

field model were nondimensionalized as in Fan and Chen (1997),
and the kinetic parameters for the solidification analysis were as-
sumed to be α ¼ 1.0, β ¼ 1.0, γ ¼ 1.0, κi ¼ 2.0, and Mi ¼ 1.0
for i ¼ 1–p, where p is the total number of phase field order param-
eters, i.e., the total number of initial grains within the computational

(a) (b)

(c) (d)

Fig. 7. Evolution of area distribution for polycrystalline solidification analysis with 36 grains, showing histograms with log-normal function at time
step: (a) t ¼ 100Δt; (b) t ¼ 150Δt; (c) t ¼ 200Δt; and (d) t ¼ 8000Δt.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

5000

6000

Fig. 8. Evolution of average grain area for polycrystalline structure
with 36 grains.

0 200 400 600 800 1000
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104

Fig. 9. Evolution of the total free energy for polycrystalline structure
with 36 grains.
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domain. An explicit time integration scheme was adopted with time
step size Δt ¼ 0.25, which was sufficiently small for stable time
integration. To help decide when to terminate the phase field model
analysis, the free energy of the phase field model was monitored so
that the phase field simulation stopped when the computed free-
energy of the phase field model reached a steady-state.

Fig. 5 shows the initial discretization of the computational do-
main and the final configuration of the polycrystalline structure for
the phase field model analysis with five grains. This polycrystalline
structure was obtained with the uniformly distributed arrangement
of 1,156 collocation points shown in Fig. 5(a). Although the pre-
dicted morphology of the polycrystalline structure has a certain re-
semblance to actual observed polycrystalline materials, the predicted
polycrystalline structure suffers from a highly irregular distribution
of the grain sizes, and the curved grain boundaries that are uncom-
mon in observed polycrystalline materials.

However, such an irregularity in the distribution of grain sizes
can be alleviated when we consider a large enough number of
grains for the solidification analysis. For example, in contrast to the
previous example, which considered only 5 grains, the polycrystal-
line structure predicted with 36 grains growth had a more uniform
distribution of the grain sizes with more straight grain boundaries.
The 36-grain simulation used a total of 29,241 collocation points.
The polycrystalline structure obtained from the evolution of the

phase field model with 36 orientation variables is shown in Fig. 6.
Fig. 6(a) shows the initial state as an arrangement of circular
seed grains generated from a Poisson random seeding algorithm
(Simmons et al. 2000), and Fig. 6(f) shows the final configuration

Fig. 10. Evolution of polycrystalline structure with 30 grains and 6 inclusions shown at simulation time: (a) t ¼ 0 (initial state); (b) t ¼ 30Δt;
(c) t ¼ 40Δt; (d) t ¼ 50Δt; (e) t ¼ 100Δt; (f) t ¼ 150Δt; (g) t ¼ 200Δt; (h) t ¼ 300Δt; and (i) t ¼ 5000Δt (final state).

0 100 200 300 400 500 600 700 800 900 1000
0
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8

10
104

Fig. 11. Evolution of the total free energy for polycrystalline structure
with 30 grains and 6 inclusions.
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of the steady-state polycrystalline structure. Interestingly, between
Figs. 6(e and f), although the polycrystalline morphology seems to
have reached a steady state, some subtle changes occurred after
t ¼ 200Δt, i.e., Fig. 6(e). For example, in the upper left corner

of the domain, a cluster of four grains with a small grain in the
middle [Fig. 6(e)] became a cluster of three grains when the middle
cluster disappeared [Fig. 6(f)]. Subtle changes such as this help ex-
plain why it is important to monitor the free energy of the system

Fig. 12. Polycrystalline structure with five grains with boundary conditions, including the prescribed displacement at the right side.

Fig. 13. Discretization for elastostatic stress analysis of polycrystalline structure with five grains using (a) 30 × 30 uniformly distributed background
collocation points; (b) 60 × 60 uniformly distributed background collocation points; and (c) 100 × 100 uniformly distributed background collocation
points.

Fig. 14. Contour plots of x-direction displacement fields uxx for the polycrystalline structure with 5 grains using (a) 30 × 30 collocation points;
(b) 60 × 60 collocation points; and (c) 100 × 100 collocation points.

© ASCE 04019082-10 J. Eng. Mech.
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to determine confidently the appropriate termination time of the
simulation.

Histograms of the area distribution during the evolution of 36
grains are shown in Fig. 7. In this data analysis, a log-normal dis-
tribution was used to fit these results, because this distribution is
frequently used to describe the distribution of grain sizes in poly-
crystalline solids (Vaz and Fortes 1988). In order to obtain the area
of each grain, each grain was approximated by a polygon, and the
polygon areas were calculated; the shapes of grains in Fig. 6 show
that this approximation was reasonable. Over the progression of
time in Fig. 7, the shape of the histogram approaches a steady-state
shape characterized by a high frequency of grains near the median
size. This gives further evidence that the simulated solidification
reached a steady state by t ¼ 8000Δt [Fig. 6(f)]. The average
grain area reached a steady state by this time, as shown in Fig. 8,
which plots the evolution of the average grain area as a function of
time. The data in this figure were fitted to the equation fðtÞ ¼
ð−8.841eþ 05Þt−1.303 þ 5843 by a multiparameter nonlinear least-
squares fitting method. The results described here suggest the pro-
gression of the simulated solidification progress to a steady state,

a conclusion that is further corroborated by the subsequently de-
scribed evolution of the free energy.

The evolution of the total free energy over the simulated time up
to 1,000 time steps, i.e., 1000Δt, is shown in Fig. 9. Before time
t ¼ 0 and t ¼ 200Δt, a rapid increase occurred in the free energy
as the liquid phase was consumed by the growing solid grains.
However, after t ¼ 200Δt, a much slower increase in free energy
occurred. After t ¼ 1000Δt, the total free energy was sufficiently
close to constant; i.e., the microstructure evolution was considered
complete. The results from the free energy evolution and that of the
total grain area are consistent and suggest the validity of the PDM-
based phase field model analysis for polycrystalline growth.

As a final application for the polycrystalline solidification prob-
lem, we considered the effect of rigid inclusions on polycrystalline
growth. For this analysis, the computational domain was discre-
tized with 29,241 collocation points. The initial distribution of seed
grains was chosen to be the same as the distribution in the previous
example, which explains the similarity between the final arrange-
ments of grains in the two microstructures. The inclusions were

Fig. 15. Contour plots for polycrystalline structure with 5 grains by 100 × 100 collocation points: (a) strain εxx; (b) stress σxx; and (c) von Mises
stress.

Fig. 16. PDM and the FEM displacement fields along Section 1 in
Fig. 12.

Fig. 17. PDM and the FEM displacement fields along Section 2 in
Fig. 12.
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modeled with the static phase field order parameters. In other words,
the phase field variables φi corresponding to the inclusions were set
to φi ¼ 1 (i.e., fully solidified solids) during the phase field model
analysis without updating them. Fig. 10 illustrates the evolution of
the polycrystalline structure with six rigid inclusions at different
time steps. Fig. 10(i) shows the final steady-state polycrystalline
structure. As in the previous example with 36 grains, the evolution
of the microstructure with inclusions exhibited dramatic grain
growth during the first 200 time steps, corresponding to a sharp
change in total free energy. Also similar to the previous example,

after 200 time steps, the free energy began to approach a steady state
and only more subtle changes occurred in the microstructure. In
contrast to the previous examples, the inclusions near boundaries
of inclusions at some locations had sharper, more angular, and less
regular grain shapes.

The evolution of the total free energy up to 1,000 steps is shown
in Fig. 11; again, after 1,000 steps the total free energy reached a
plateau and the simulation stopped. The time history of the free
energy evolution, which aligned with expectations, further sug-
gests the validity of the PDM and the multiphase field model for
simulating polycrystalline grain growth, even for this complicated
model with rigid inclusions.

Polycrystalline Stress Analysis

In this section, we performed a stress analysis of the three polycrys-
talline structures obtained in the previous section, beginning with
the polycrystalline structure predicted with five grains. The boun-
dary conditions applied to the five grains structure are shown in
Fig. 12; uniform displacement ū ¼ 3.5 × 10−2 was prescribed at
the right end of the computational domain. The Young’s moduli
of the grains were varied randomly so that the Young’s modulus for
each grain was different. The values chosen for the Young’s moduli
for the five grains had a Gaussian distribution with a mean value of
3.0 × 106 and standard deviation of 1.58 × 106.

For the study of discretization sensitivity, three different ar-
rangements of collocation points were considered for the stress
analysis of the five-grain polycrystalline structure with the PDM
(Fig. 13). The discretization consisted of uniformly distributed col-
location points over the entire domain (which served as the back-
ground collocation points) plus a set of concentrated collocation
points superposed along grain boundaries. The resolution of the dis-
cretization was gradually increased, i.e., discretized with 30 × 30,
60 × 60, and finally 100 × 100 background collocation points,
with the added collocation points along the grain boundaries
[Figs. 13(a–c)]. Using these three different collocation point den-
sities, the sensitivity of the PDM stress analysis to the level of dis-
cretization refinement was studied.

Fig. 18. PDM and the FEM displacement fields along Section 3 in
Fig. 12.

Fig. 19. Polycrystalline structure with 36 grains with boundary conditions, including the prescribed displacement at the right side.
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The contour plots of the displacement in the x-direction for three
different levels of refinement are shown in Fig. 14. The contour
plots of strain (εxx), stress (σxx), and von Mises stress are shown
in Fig. 15. All the results in these figures are qualitatively indistin-
guishable, indicating that the PDM had low sensitivity to the num-
ber of collocation points, i.e., discretization. These results verify the
robustness of the proposed PDM for the polycrystalline stress
analysis.

For further verification of the PDM, the computed displacement
fields of the PDM were compared with the result of the finite-
element method. More specifically, the computed displacement
fields were compared between the PDM and the FEM at three dif-
ferent cross sections of the computational domain, subsequently re-
ferred to as Sections 1, 2, and 3. Fig. 16 shows the comparison
of displacement results along a horizontal line passing through
Grains 1 and 2 (i.e.,φ1 andφ2), denoted Section 1. Similarly, Fig. 17

Fig. 21. Contour plots of the x-direction displacement fields uxx for the polycrystalline structure with 36 grains using (a) 60 × 60 collocation points;
(b) 100 × 100 collocation points; and (c) 120 × 120 collocation points.

Fig. 22. Contour plots for polycrystalline structure with 36 grains by 120 × 120 collocation points: (a) strain εxx; (b) stress σxx; and (c) von Mises
stress.

Fig. 20. Discretization for elastostatic stress analysis of polycrystalline structure with 36 grains using (a) 60 × 60 uniformly distributed background
collocation points; (b) 100 × 100 uniformly distributed background collocation points; and (c) 120 × 120 uniformly distributed background colloca-
tion points.
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compares the displacement fields for the PDM and the FEM along a
horizontal line passing through Grains 3 and 5 (i.e., φ3 and φ5),
denoted Section 2. Fig. 18 compares similar results for a line passing
through Grains 4 and 5 (i.e., φ4 and φ5). The kinks in the plots
originated from the discontinuity in material properties from one
grain to another across grain boundaries. These kinks are the loca-
tions of the greatest discrepancy observed between the PDM and
FEM results. However, this discrepancy was relatively small and
was mainly due to the fact that the PDM has higher global continuity
in the solution fields compared with C0 continuity of the FEM.
Despite these minor discrepancies, the PDM and FEM results
agreed very well and were practically identical.

A similar approach was adopted for the stress analysis of the
polycrystalline structure consisting of 36 grains. This structure was
discretized with three different levels of refinement, i.e., 60 × 60,
100 × 100, and 120 × 120 uniformly distributed background col-
location points. Again, extra collocation points were superposed
along grain boundaries. The applied boundary conditions were sim-
ilar to those in the previous example (Fig. 19), and the three differ-
ent discretizations are shown in Fig. 20. The contour plots of the
computed x-direction displacement fields and corresponding strain,
stress, and von Mises stress fields are shown in Figs. 21 and 22,
respectively. Regardless of the resolution of discretization and the
complexity of the morphology of the grain boundaries, the PDM
produced almost identical results and had very little discretization
sensitivity (Fig. 23). Thus, the PDM effectively handled such a com-
plex weak discontinuity emanating from the internal grain bounda-
ries and produced a robust stress analysis. More results for the
discretization sensitivity of the PDMwithin the similar context were
given by Yoon et al. (2019), Song et al. (2018), and Yoon and
Song (2014c).

As a final example, we considered the polycrystalline structure
consisting of 30 grains with 6 inclusions; the boundary conditions
applied to the computation are shown in Fig. 24. In this example,
two different cases, i.e., Case 1 and Case 2, were considered to
further investigate the effect of the relative rigidity of inclusions on
the deformation of the polycrystalline materials. To this end, the
same order of the Young’s modulus for both grains and inclusions

were considered for Case 1. However, for Case 2, the Young’s
modulus of the inclusions was one order higher than that of the
grains in order to study the aforementioned effect of the harder in-
clusions in a polycrystalline structure. Fig. 25 shows the arrange-
ments of collocation points used for the PDM stress analysis of the
polycrystalline structure with six inclusions.

The contour plots of displacement (uxx) and von Mises stress
considering the same order (i.e., Case 1) and one-order difference
(i.e., Case 2) of material properties for grains and inclusions are
shown in Figs. 26 and 27, respectively. The relatively harder inclu-
sions significantly altered the deformation kinematics of the poly-
crystalline structure, including the stress concentration areas where
failure of the polycrystalline material is likely to initiate. Overall,
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0 100 200 300 400 500
0

0.01
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0 100 200 300 400 500
0
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Fig. 23. PDM results at three different levels of discretization for displacement fields in Fig. 19 at (a) Section 1; (b) Section 2; and (c) Section 3.

Fig. 24. Polycrystalline structure with 30 grains and 6 inclusions with
boundary conditions, including the prescribed displacement at the right
side.
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the PDM is sufficiently robust to provide the type of detailed stress
analysis necessary for investigating these phenomena. However,
further investigations of the relationship between failure behaviors
of the polycrystalline materials and the microscale inclusions
remain part of the authors’ future work.

Conclusion

In this paper, the PDM was used to study grain growth in a poly-
crystalline solid and stress analysis of the formed solid. The PDM
results related to the polycrystalline grain growth problems were
shown to be accurate based on the evolution of average grain area
and total free energy. The PDM results from the stress analysis were
compared with and verified by FEM results, which showed the high
accuracy of the PDM in computing both displacements and stresses
in the problems presented. The results of this study also demon-
strate that the PDM has low discretization sensitivity.

As a meshfree point collocation method, the PDM does not
require any kind of mesh, which obviates numerical integration.
In contrast to other meshfree methods, the PDM does not require
direct calculation of derivatives of shape functions, i.e., approximate
derivatives from the moving least-squares approximation provide
all order of derivatives needed. As a consequence, numerical cost
is reduced considerably compared with direct calculation of deriv-
atives. As evidenced by its unique advantages as a numerical
method, as well as the results from this paper, the PDM shows

Fig. 25.Discretization for elastostatic analysis of polycrystalline struc-
ture with 30 grains and 6 inclusions using 60 × 60 uniformly distrib-
uted background collocation points.

Fig. 26. Contour plot for the 30 grains and 6 inclusions which have the same order of Young’s moduli: (a and b) x-direction displacement fields uxx;
and (c and d) are von Mises stress.
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promise to solve complex problems in solid mechanics that require
local refinement and dynamic adaptivity. To use these advantages
of the PDM, our future work will focus on applying the PDM
to various problems involving moving interfaces and intricate
geometry, as well as higher-order derivatives.
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