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Abstract:A nonnodal extended finite-element method (NXFEM) was developed to predict two-dimensional dynamic failure with four-node
quadrilateral elements. A new nonnodal enrichment scheme is presented such that the enriched quadrilateral finite elements satisfy the linear
completeness and represent a strong discontinuity, i.e., crack. The enrichment bases for both solutions and the gradient fields are included in the
finite-element approximation through the nonnodal enrichment scheme. The partition of unity is also naturally satisfied without adopting addi-
tional neighbor blending elements. To facilitate an implementation of the NXFEM into pre-existing finite-element analysis software, a gen-
eralized notation is proposed which is universally applicable to both quadrilateral and triangular finite elements. The developed method was
initially verified with a convergence study on benchmark near-crack-tip field problems. The effectiveness of the method was further demonstrated
with mixed-mode dynamic failure problems. DOI: 10.1061/(ASCE)EM.1943-7889.0001662. © 2019 American Society of Civil Engineers.
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Introduction

Since the extended finite-element method (XFEM) was first devel-
oped by Belytschko and colleagues (Belytschko and Black 1999;
Moës et al. 1999), a plethora of computational methods has been
developed to model arbitrary weak and strong discontinuities within
a finite element without cumbersome remeshing (Song et al. 2006;
Song and Belytschko 2009a, b; Chau-Dinh et al. 2012; Lua et al.
2016). This is mainly accomplished by adopting the partition of
unity method (Babuška and Melenk 1997; Melenk and Babuška
1996) whereby the nonpolynomial enrichment bases, which are
often called enrichment functions, are associated with enrichment
parameters and added to a local finite-element approximation. These
enrichment functions are selected to reflect the nature of disconti-
nuities; for instance, a step function for the representation of strong
discontinuity (Moës et al. 1999), crack-tip functions for modeling
asymptotic crack-tip stress singularity (Belytschko and Black 1999;
Wang andWaisman 2017), and a distance function for weak discon-
tinuities along a material interface (Belytschko et al. 2001; Sukumar
et al. 2001). Moreover, Song et al. (2006) introduced the phantom
node method to model the arbitrary discontinuities with consistent
history variables. As alternative classes of methods, the cracking-
particle method (Rabczuk and Belytschko 2004; Rabczuk et al.
2010) and efficient remeshing algorithms (Areias et al. 2018; Areias
and Rabczuk 2017; Areias et al. 2013, 2016) have been successfully
introduced in crack modeling. The XFEM has also been success-
fully adopted in multiscale failure problems (Tabarraei et al.
2013; Song and Yoon 2014; Sun et al. 2014).

However, several difficulties arise in adopting the conventional
XFEM for practical engineering problems. One of the main diffi-
culties is that the interpretation of enrichment parameters is difficult,
which renders the imposition of nonsmooth boundary constraints
(Dolbow et al. 2000) and interface constraints (Dolbow et al. 2001;
Kim et al. 2007) difficult. These constraints are often enforced in
the weak form using Lagrange multiplier techniques. Another dif-
ficulty is that in the conventional XFEM, some finite-element nodes
may not be enriched due to C0 continuity conditions between the
enriched element and its contiguous elements (Fries and Belytschko
2010); these elements are often called blending elements and
are required to be treated appropriately (Chessa et al. 2003; Fries
2008).

To circumvent these difficulties, the nonnodal extended finite-
element method (NXFEM) (Asareh et al. 2018a, b) was pro-
posed by adopting additional enrichment nodes independent of
the pre-existing finite-element nodes. The ideas for using nonnodal
enrichment within a similar context were initially proposed in
previous studies (Soghrati et al. 2012; Aragón and Simone 2017);
the interface-enriched generalized finite-element method (Soghrati
et al. 2012) introduced the concept of associating enriched degrees
of freedom with element edges, and the subsequent discontinuity-
enriched finite-element method (Aragón and Simone 2017)
adopted both strong and weak discontinuous enrichment functions
within the same framework. However, the motivation and the for-
malism for constructing enrichment functions are distinct between
these methods. Although the NXFEM can be still considered as
yet another variation of the standard XFEM, the major difference
is that the enrichment bases are associated with physically based
enrichment parameters and assigned to a set of nonnodal points
on the crack interface. Because the enrichment parameters are
physically based quantities, the Dirichlet boundary conditions on
the interface can be simply incorporated in the strong form. How-
ever, in the NXFEM, because a local partition of unity is not generi-
cally constructed, the enrichment functions must be enforced to
satisfy C0 continuity conditions, which can be viewed as one of the
major challenges arisen in developing enrichment schemes for the
NXFEM.

The main objective of this study was to develop nonnodal
enrichment functions for two-dimensional quadrilateral elements
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for both strong and weak discontinuities, i.e., a linear complete
element. In this study, the new enrichment functions for quadrilat-
eral element were chosen to include the predeveloped NXFEM’s
enrichment functions for three-node triangular elements (Asareh
et al. 2018a). This implies that a crack can be naturally modeled
with a unified scheme for both quadrilateral and triangular ele-
ments, which significantly simplifies the implementation of the
NXFEM into a general finite-element library.

The remainder of this paper is organized as follows. First, the
nonnodal enrichment functions are presented for two-dimensional
four-node quadrilateral elements. Then the weak form and discre-
tized equations are provided for dynamic failure analysis. After
briefly summarizing the time-stepping algorithm used in this study,
the performance of the method is verified with numerical examples
including convergence studies of the NXFEM with crack-tip fields
and mixed-mode dynamic failure problems. Finally, future direc-
tions and conclusions are presented.

Representation of Crack for Four-Node Quadrilateral
Elements with Nonnodal Enrichment Scheme

Consider a two-dimensional domain Ω in configuration shown in
Fig. 1(a). The body is allowed to contain arbitrary strong disconti-
nuity, i.e., crack denoted by Γc. To describe the crack geometry,
level set functions (Adalsteinsson and Sethian 1995; Sethian 1996)
are adopted. In this approach, the sides of the crack are signed by a
continuous level set function fðXÞ so that f ¼ 0 describes the top-
ology of crack surface. The level-set function f can be described by
a signed distance function as

fðXÞ ¼ min
X̄∈Γc

kX − X̄ksignðnþðX̄ −XÞÞ ð1Þ

where X̄ = closest point on the interface toX; k · k is the Euclidean
norm; and nþ = normal to the crack surface where the sign function
is positive. In conjunction with the function f, another level set
function gðX; tÞ is also defined so that the crack is contained within
the subdomain g > 0; details were given by Ventura et al. (2003).

In the NXFEM (Asareh et al. 2018b), a scalar component of the
discontinuous displacement fields is described by

uðXÞ ¼ ucontðXÞ þ udiscðXÞ
¼

X
I∈δ

NIðXÞuI þ
X
K∈ε

X
J∈δKNP

ΨK
J ðXÞaKJ ð2Þ

where δ = entire set of finite-element nodes within the computa-
tional domain; and ε = set of types of enrichment functions, which
is defined at the set of additional nonnodal degree of freedoms δKNP;
for the enrichment function K at the nonnodal point J, the enrich-
ment function and its associated physically based enrichment
parameter are denoted by ΨK

J and aKJ , respectively.
In the NXFEM, to represent a strong discontinuity across the

crack interface, first a physically based enrichment parameter
which can best reflect the characteristics of the discontinuity is
selected. Then the enrichment functions ΨJ are constructed for the
discontinuous function ΦK within finite elements so that they sat-
isfy the following equations (Asareh et al. 2018b):

X
I∈δ−n

NI⟦ΦK⟧X¼XI
¼

X
J∈δKNP

ΨKþ
J aKJ

X
I∈δþn

− NI⟦ΦK⟧X¼XI
¼

X
J∈δKNP

ΨK−
J aKJ ð3Þ

where ⟦Φ⟧X¼XI
= magnitude of jump in discontinuous function at

element node I across the strong discontinuity, i.e., ⟦Φ⟧X¼XI
¼

ΦþðXIÞ − Φ−ðXIÞ; and δþn and δ−n = sets of finite-element nodes
on subdomains where f > 0 and f < 0, respectively. These sets
are defined locally for two different elements in Fig. 1(b). Eq. (3)
was developed for a multidimensional multinode finite element
when the parts of the discontinuous function on each side of the
crack, i.e., Φþ and Φ−, are smooth enough to be interpolated by
standard shape functions on the entire element domain (Asareh
et al. 2018b). For complex crack patterns such as branching and
joining cracks (Bordas et al. 2008), additional nonnodal points
must be associated with the intersection points. In addition, to con-
struct enrichment functions using Eq. (3), the C0 continuity con-
dition between the enriched element and its contiguous elements
must be satisfied.

In this study, for enrichment functions ΨK , i.e., K ∈ ϵ ¼ f1; 2g,
to properly reproduce linear complete fields within the enriched

Fig. 1. (a) Two-dimensional body in the current configuration; and (b) schematic of finite-element mesh.
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finite elements (Asareh et al. 2018a). Two types of discontinuous
functions were considered: (1) a strong discontinuityΦK¼1 which is
associated with the jumps in the interpolated solution fields, and
(2) a weak discontinuity ΦK¼2 related to the jumps in the derivative
of the interpolated solution fields. Henceforth, the set ϵ ¼ f1; 2g is
substituted by ϵ ¼ fu;∇ug to denote that Φu and Φ∇u are discon-
tinuities in the displacement and strain fields, respectively; Φu is
defined as

Φu ¼ HðfðXÞÞ ¼
�
0 if f < 0

1 if f > 0
ð4Þ

and Φ∇u is defined as

Φ∇u ¼ HðfðXÞÞ × fðXÞ ¼
�
0 if f < 0

fðXÞ if f > 0
ð5Þ

where HðXÞ = step function which is adopted to define the discon-
tinuous functions with a unit magnitude on f > 0 and zero on
f < 0; these functions are shown in Fig. 2 in one dimension across
the crack at X ¼ Xc.

In addition, the specific formalism for the enrichment function
that satisfies C0 continuity within a finite element, i.e., Eq. (3), de-
pends on the relative location of the crack inside the finite element.
For example, when the crack passes through nonadjacent edges,
i.e., the element e1 in Fig. 1(b), the original quadrilateral element
is partitioned into two quadrilateral subdomains. However, when
the crack passes through nonadjacent edges, i.e., the element e2
in Fig. 1(b), the element is partitioned into a triangular and a pen-
tagonal subdomain. Therefore, the enrichment functions for each
case, i.e., for the cases of e1 and e2 in Fig. 1(b), must be separately
developed according to these two representative locations of crack
within a finite element. In the next section, these two cases are
distinguished and subsequently the enrichment functions are con-
structed for (1) the case in which a crack passes through the non-
adjacent edges, i.e., e1, and (2) the case in which the crack passes
through adjacent edges, i.e., e2 in Fig. 1(b).

Enrichment Functions for a Crack Passing through
Nonadjacent Edges

Consider a finite element with local node numbers as shown in
Fig. 3(a). A straight crack is considered within a finite element
which has propagated from the finite-element Edge S4 to S2 with-
out changing its propagation angle within the finite element. In
this case, the original finite element is partitioned into two rectan-
gular subdomains. The nonnodal points Xc

1 and Xc
2 denote the

intersection points between the crack and element edges S4 and
S2, respectively.

For the construction of the enrichment functions for discontinu-
ity in the interpolated solution fields, i.e., Φu, the displacement
jumps ⟦u⟧1 and ⟦u⟧2 at nonnodal points Xc

1 and Xc
2, respectively,

are selected as enrichment parameters [Fig. 3(b)]. For this case,
Eq. (3) gives

N3 þ N4 ¼ Ψuþ
1 þΨuþ

2 ð6aÞ

−N1 − N2 ¼ Ψu−
1 þΨu−

2 ð6bÞ

The enrichment functions are defined so that they satisfy the C0

continuity condition among an enriched element and its contiguous
elements (Asareh et al. 2018b). In Eq. (6a),Ψuþ

1 (respectively,Ψuþ
2 )

must vanish along surfaces S1 and Sþ2 (respectively, S1 and Sþ4 ).
Similarly, in Eq. (6b), Ψu−

1 (respectively, Ψu−
2 ) also has to vanish

along surfaces S3 and S−2 (respectively, S3 and S−4 ). Thus, for the
representation of discontinuity in the solution fields in Fig. 3(b), the
enrichment functions Ψu can be described as

Fig. 2. Representation of the discontinuity in (a) a function, denoted Φu; and (b) a derivative of a function, denoted Φ∇u. (Modified from Asareh et al.
2018a.)

c
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Fig. 3. Representation of a crack for the case when the crack passes
through nonadjacent edges: (a) two-dimensional quadrilateral
element with a crack; (b) Φu; and (c) Φ∇u. (Modified from Asareh
et al. 2018a.)
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Ψu
1 ¼

�−N1 f < 0

N4 f > 0
and Ψu

2 ¼
�−N2 f < 0

N3 f > 0
ð7Þ

These enrichment functions are shown in Figs. 4(a and b).
For the representation of discontinuity in the derivative of sol-

ution fields across the crack interface, i.e., Fig. 3(c), the jumps
in directional derivatives of the displacement at the intersection
points are chosen as enrichment parameters (Asareh et al. 2018a).
To this end, the enrichment functions Φ∇u are constructed from
⟦Lc

J∇u · ecJ⟧J , where L
c
J is the length of the element edge that con-

tains the nonnodal point Xc
J , and ecJ is a unit vector parallel to the

element edge which contains the nonnodal point Xc
J (Fig. 5); its

direction is defined so that ecJ · n
þ ≥ 0. Therefore, Eq. (3) gives

−N3jf3j−N4jf4j¼Ψ∇uþ
1 ⟦Lc

1∇Φ∇u ·ec1⟧1þΨ∇uþ
2 ⟦Lc

2∇Φ∇u ·ec2⟧2

−N1jf1j−N2jf2j¼Ψ∇u−
1 ⟦Lc

1∇Φ∇u ·ec1⟧1þΨ∇u−
2 ⟦Lc

2∇Φ∇u ·ec2⟧2

ð8Þ

where fI ¼ fðXIÞ. The dot products in Eq. (8) can be replaced with
the geometric properties by (Fig. 5)

⟦∇Φ∇u · ec1⟧1 ¼
jf4j
Lc−
1

and ⟦∇Φ∇u · ec2⟧2 ¼
jf3j
Lc−
2

ð9Þ

where Φ∇u is substituted in terms of its projected components
nþ and t [Fig. 3(c)].

The weak enrichment functions are similarly constructed to
satisfy the C0 continuity condition as

Ψ∇u
1 ¼

�−sþ1 N1 f < 0

−s−1N4 f > 0
ð10aÞ

Ψ∇u
2 ¼

�−sþ2 N2 f < 0

−s−2N3 f > 0
ð10bÞ

These enrichment functions are shown in Figs. 4(c and d).
The side-splitter theorem was used in Eq. (10b) to further simplify
the following terms:

jf1j
jf4j

¼ Lcþ
1

Lc−
1

and
jf2j
jf3j

¼ Lcþ
2

Lc−
2

ð11Þ

In addition, we used the normalized parameters s−I ¼ Lc−
I =Lc

I
and sþI ¼ Lcþ

I =Lc
I .

Enrichment Functions for Crack Passing through
Adjacent Edges

Consider a finite element with local node numbers as shown in
Fig. 6(a), where a crack has advanced straight from the element
edges S4 to S1, which are two adjacent edges. In this case, the finite
element is partitioned into triangular and pentagonal subdomains.
Following the same steps as in the previous section to construct the
enrichment functions for the discontinuity Φu which is shown in
Fig. 6(b), Eq. (3) gives

N2 þ N3 þ N4 ¼ Ψuþ
1 þΨuþ

2 ð12aÞ

Fig. 4. Enrichment functions for the case when the crack passes through nonadjacent edges: (a) Ψu
1 ; (b) Ψ

u
2 ; (c) Ψ

∇u
1 ; and (d) Ψ∇u

2 . (Modified from
Asareh et al. 2018a.)

1
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n

c
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c
1X

Fig. 5. Nomenclature for a quadrilateral element with a crack passing
through nonadjacent sides.
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−N1 ¼ Ψu−
1 þΨu−

2 ð12bÞ

The enrichment functions are constructed so that the C0 continu-
ity condition is satisfied. In doing so, for the triangular subdomain
in Eq. (12a), Ψuþ

1 and Ψuþ
2 must vanish along edges Sþ1 and Sþ4 ,

respectively. For the pentagonal subdomain in Eq. (12b), the en-
richment functions Ψu−

1 and Ψu−
2 also must vanish along three

edges each, i.e., Ψu−
1 along edges S−1 , S2, and S3 and Ψu−

2 along
edges S−4 , S3, and S2.

Therefore, to satisfy all these conditions, the enrichment func-
tions are defined as follows

Ψu
1 ¼

8>><
>>:

− N1N4

N2 þ N4

f < 0

N4 þ
N3

2
f > 0

and

Ψu
2 ¼

8>><
>>:

− N1N2

N2 þ N4

f < 0

N2 þ
N3

2
f > 0

ð13Þ

These enrichment functions are plotted in Figs. 7(a and b).
For the triangular subdomain in which f > 0, because the shape
function N3 vanishes along all the required edges, half of the term
N3 was assigned to each enrichment function. In addition, for the
pentagonal subdomain in which f < 0, the enrichment functions
were obtained identical to those of triangular elements proposed
by Asareh et al. (2018b).

Finally, for the representation of discontinuity in the derivative
of solution fields across the crack interface, i.e., Φ∇u in Fig. 6(c),
Eq. (3) gives

− N2jf2j − N3jf3j − N4jf4j
¼ Ψ∇uþ

1 ⟦Lc
1∇Φ∇u · ec1⟧1 þΨ∇uþ

2 ⟦Lc
2∇Φ∇u · ec2⟧2

− N1jf1j ¼ Ψ∇u−
1 ⟦Lc

1∇Φ∇u · ec1⟧1 þΨ∇u−
2 ⟦Lc

2∇Φ∇u · ec2⟧2 ð14Þ

The dot products in Eq. (14) can be also further replaced with
the geometric properties by (Fig. 8)

⟦∇Φ∇u · ec1⟧1 ¼
jf4j
Lc−
1

and ⟦∇Φ∇u · ec2⟧2 ¼
jf2j
Lc−
2

ð15Þ

Similarly, the weak enrichment functions are constructed so
that the C0 continuity conditions are satisfied for a crack passing
through nonadjacent edges as

(a)

(b) (c)

Fig. 6. Representation of a crack for the case when the crack passes
through adjacent edges: (a) a two-dimensional quadrilateral element
with a crack; (b) Φu; and (c) Φ∇u.

Fig. 7. Enrichment functions for the case when the crack passes through adjacent edges: (a) Ψu
1 ; (b) Ψ

u
2 ; (c) Ψ

∇u
1 ; and (d) Ψ∇u

2 .
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Ψ∇u
1 ¼

8>>><
>>>:

−sþ1 N1N4

N2 þ N4

f < 0

−s−1
�
N4 þ

jf3j
2jf4j

�
f > 0

and

Ψ∇u
2 ¼

8>>><
>>>:

−sþ2 N1N2

N2 þ N4

f < 0

−s−2
�
N2 þ

jf3j
2jf2j

�
f > 0

ð16Þ

These enrichment functions are shown in Figs. 7(c and d).
The enrichment functions described in this section were obtained
for a particular crack location inside the element. In the next sec-
tion, the enrichment functions are described for the generalized
node numbering permutations.

Generalized Notation for Enrichment Functions

To facilitate implementation of the NXFEM into a general-purpose
finite-element library, a generalized notation is further described.
To express enrichment functions for an arbitrary finite element
which is cut by a crack at two arbitrary finite-element edges, the
local node numbers in Fig. 9 can be mapped into actual local node
numbers with a proper permutation. The finite-element edges con-
taining the nonnodal points Xc

I are denoted ScI and the element
nodes connected to this edge are denoted by Ic�I (Fig. 9). Using
these notations, Eqs. (7) and (13) can be generalized as

Ψu�
J ¼

8>>>>>><
>>>>>>:

�NIc∓J for a quadrilateal subdomain

�
�
NIc∓J þ NInc

2

�
for a triangular subdomain

�
NIcþJ

NIc−J
NIc�

1
þ NIc�

2

for a pentagonal subdomain

ð17Þ

The sign � in the left-hand side may be reversed to ∓ in the
right-hand side. For the nonadjacent edge crack, the node at the
intersection of the edges which are not cut by the crack is denoted
by Inc. To compute the enrichment function Ψu at a point based on
Eq. (17), first, the type of the subdomain where the point resides on
is determined, then the sign is selected to be equal to the sign of
level set function for the subdomain. Similarly, Eqs. (10) and (16)
can also be generalized as

Ψ∇u�
J ¼

8>>>>>>><
>>>>>>>:

−s∓J NIc∓J for a quadrilateal subdomain

−s∓J
�
NIc∓J þNInc jfInc j

2jfIc∓J j
�

for a triangular subdomain

−s∓J
NIcþJ

NIc−J
NIc�

1
þNIc�

2

for a pentagonal subdomain

ð18Þ

Such a unified notation can be also used for three-node triangu-
lar elements (Appendix).

Weak Form and Discretized Equations

The linear momentum equation in a total Lagrangian description is
given by

∂Pji

∂Xj
þ ρbi − ρüi ¼ 0 in Ω ð19Þ

where P = nominal stress tensor; ρ = initial density; and b is the
body force vector per unit mass. The boundary conditions can be
written

ui ¼ ūi on Γu

⟦u⟧i ¼ ⟦ū⟧i on Γuc

⟦∇u⟧i ¼ ⟦∇ū⟧i on Γ∇uc

njPji ¼ t̄i on Γt

n�j P
�
ji ¼ τ ci ð⟦u⟧iÞ on Γc ð20Þ

where ū = prescribed displacement on the Dirichlet boundary Γu;
⟦ū⟧ and ⟦∇ū⟧ = prescribed jumps in the displacement and its gra-
dient on sets of nonnodal points located on Γuc and Γ∇uc, respec-
tively; τ c = pseudotraction distributed on the crack surface; and
t̄ = prescribed traction on the Neumann boundary Γt. In this study,
we adopt an elementwise crack propagation scheme. Thus, the
crack tip modeling requires imposing homogeneous prescribed
displacement jumps as

⟦u⟧i ¼ ⟦∇u⟧i ¼ 0 ð21Þ

at the crack tip which is located at the finite-element edge.
We define the spaces for the admissible displacement field u and

the test field δu as

1

2
3

4

1f

2f

3f

4f

c
2L

c-
2L

c-
1L

c
1L

nc
1e

c
2e

c
2X

c
1X

n

Fig. 8. Nomenclature for a rectangular element with a crack passing
through adjacent sides.

(a) (b)

Fig. 9. Generalized node numbering notation for the case in which the
crack passes through (a) nonadjacent edges; and (b) adjacent edges.
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U ¼ fu ∈ C0ju ¼ ū on Γu;

⟦u⟧ ¼ ⟦ū⟧ on Γuc;u discontiniuous on Γcg
U0 ¼ fδu ∈ Cjδu ¼ 0 on Γu;

⟦δu⟧ ¼ 0 on Γuc; δu discontiniuous on Γcg

The weak form of Eq. (19) can be stated as find u ∈ U, for
δu ∈ U0

Z
Ω
δu · ρüdΩ ¼

Z
Ω
δu · ρbdΩþ

Z
Γt

δu · t̄dΓt

−
Z
Ω
δFT ∶PdΩ −

Z
Γc

⟦δu⟧ · τcdΓc ð22Þ

where F = deformation gradient. The weak form, i.e., Eq. (22) is
discretized by

Z
Ωe

ρNTNdΩed̈e ¼
Z
Ωe

ρNTbdΩe þ
Z
Γe
t

NT t̄dΓe
t

−
Z
Ωe

BTSdΩe −
Z
Γe
c

⟦Ψ⟧Te τ
cndΓe

c ð23Þ

where S = second Piola-Kirchhoff stress in Voigt form; and
de = generalized nodal coefficient matrix including the nodal dis-
placements and the enrichment parameters. It can be expanded for a
four-node quadrilateral element as

de ¼ ½u1;u2;u3;u4; ⟦u⟧1;Lc
1⟦∇u · ec1⟧1; ⟦u⟧2;L

c
2⟦∇u · ec2⟧2�T

ð24Þ

The generalized shape function vector N is defined as

N ¼ ½N1;N2;N3;N4;Ψu
1;Ψ∇u

1 ;Ψu
2;Ψ∇u

2 � ð25Þ

The shape function derivative matrix associated to the node I is
denoted by BI and constructed as

BI ¼ ½B0
I ;B

u
I ;B

∇u
I � ð26Þ

where

B0
I ¼

2
64

NI;Xx;X NI;Xy;X

NI;Yx;Y NI;Yy;Y

NI;Xx;Y þ NI;Yx;X NI;Xy;Y þ NI;Yy;X

3
75

Bu
I ¼

2
64

Ψu
I;Xx;X Ψu

I;Xy;X

Ψu
I;Yx;Y Ψu

I;Yy;Y

Ψu
I;Xx;Y þΨu

I;Yx;X Ψu
I;Xy;Y þΨu

I;Yy;X

3
75

B∇u
I ¼

2
664

Ψ∇u
I;Xx;X Ψ∇u

I;Xy;X

Ψ∇u
I;Yx;Y Ψ∇u

I;Yy;Y

Ψ∇u
I;Xx;Y þΨ∇u

I;Yx;X Ψ∇u
I;Xy;Y þΨ∇u

I;Yy;X

3
775

where ð·Þ;i represents the spatial derivative of ð·Þ along the ith
coordinate direction.

Time-Stepping Algorithm

The explicit central difference time-stepping algorithm is condi-
tionally stable, i.e., it is stable if

Δt ≤ Δtc ¼
2

ωmax
ð27Þ

where Δt and Δtc = simulation and critical time integration step
sizes, respectively; and ωmax = highest frequency of the discrete
system. For the assessment of Δtc, the frequencies ωi of the one-
dimensional discrete system ω2

iMdi ¼ Kdi can be investigated
with the normalized location of the predetermined crack (Song
et al. 2006). However, as was reported by Song et al. (2006), for
a consistent mass matrix the critical time size drops linearly to zero
as the crack location approaches to the element nodes.

To circumvent such a difficulty, a specific lumped mass matrix
with an explicit-implicit time-step algorithm (Belytschko and
Mullen 1976, 1978) was adopted with the conventional Newmark-
beta method. In previous studies, the explicit-implicit methods
were successfully used in XFEM (Belytschko et al. 2003) and
meshfree methods (Rabczuk and Belytschko 2007). In the method,
the nodal displacements d and velocities v are updated at time
increment nþ 1 as

dnþ1 ¼ ~dnþ1 þ βΔt2anþ1 ð28aÞ

vnþ1 ¼ ~vnþ1 þ γΔtanþ1 ð28bÞ

where a = nodal accelerations; and ~dnþ1 and ~vnþ1 pertain to the
time step n as

~dnþ1 ¼ dn þΔtvn þ
Δt2

2
ð1 − 2βÞan ð29aÞ

~vnþ1 ¼ vn þ ð1 − γÞΔtan ð29bÞ

In the proposed time-stepping algorithm, the total degrees of
freedom are partitioned into explicit fEg and implicit fIg sets; the
regular degrees of freedom are treated explicitly with Newmark-
beta parameters β ¼ 0 and γ ¼ 1=2, whereas the enriched degrees
of freedom are treated implicitly with Newmark-beta parameters
β ¼ 1=4 and γ ¼ 1=2. The mathematical analysis of the stability
of the adopted explicit-implicit time integration scheme will be
described in the authors’ future work.

Cohesive Law

A linear cohesive model is used for the damage evolution created
by the crack. The cohesive traction is computed using a radial-
return algorithm by Asareh et al. (2018b). Mode 1 is considered the
dominant failure mode of the subsequently described failure prob-
lems. Therefore, only the normal component of the cohesive trac-
tion is defined in terms of the normal displacement jump δN as

δN ¼ n · ⟦u⟧ ¼ n ·
X
J∈δKNP

ð⟦Ψu
J⟧⟦u⟧J þ ⟦Ψ∇u

J ⟧⟦Lc
J∇u · ecJ⟧JÞ

ð30Þ

The proposed weak enrichment functionsΨ∇u are not in general
continuous across the interface. Therefore they contribute to cohe-
sive force computations.

© ASCE 04019081-7 J. Eng. Mech.
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Numerical Examples

In this section, the performance of the NXFEM with four-node
quadrilateral elements is demonstrated with three numerical exam-
ples. In the first example, the convergence study of the proposed
method is performed with static near-tip field problems. The rela-
tive errors in the energy- and L2-norms are denoted REen and REd,
respectively, and defined as

ðREenÞ2 ¼
R
Ω ðε − εhÞTCðε − εhÞdΩR

Ω εTCεdΩ
;

ðREdÞ2 ¼
R
Ω ðu − uhÞ2dΩR

Ω u2dΩ
ð31Þ

In this analysis, linear elastic fracture mechanics is adopted, and
the results are compared with the convergence rates of the conven-
tional XFEM and the NXFEM with three-node triangular elements
which are previously reported by Asareh et al. (2018a); in the sub-
sequent figures for the convergence study, log denotes log10.

In addition, the last two numerical examples demonstrate the
performance of the NXFEM for dynamic failure. In these exam-
ples, an explicit-implicit time integration scheme with Courant
number of 0.8 is used. Because the enriched degrees of freedom are
treated implicitly, the crack can be placed close to the finite-element
nodes. Plane strain condition with the unit thicknesses is consid-
ered. A crack is initiated in a finite element when the maximum
principle stress reaches to the tensile strength of τmax. After the
crack initiation, linear cohesive forces dissipate the fracture energy
of GF until the crack opening reaches the critical crack opening
displacement δmax. The fracture criterion used in this study is the

maximum tensile stress computed at the crack edge. The direction
of the crack is selected to be normal to the maximum tensile stress
direction. Details about the adopted cohesive crack model and frac-
ture criterion were given by Asareh et al. (2018b).

Convergence Study of NXFEM with Near-Tip Fields

To verify the linear completeness of the proposed enrichment
functions for quadrilateral elements, a convergence study was per-
formed on near-tip crack field problem. A biunit square patch with
side length L ¼ 2 and an initial crack length a ¼ 1 was consid-
ered (Fig. 10). The Young’s modulus was E ¼ 1.0 × 105 and the
Poisson’s ratio was ν ¼ 0.3. The stress intensity factor was pre-
scribed as KI ¼ 1.0.

Convergence studies for energy- and L2-norms were performed
using uniform four-node quadrilateral Lh × Lh meshes, where
Lh ¼ 10, 20, 40, and 80. The elements were structured so that
the initial crack passed through the middle points of nonadjacent
edges. The convergence study was performed for three different
approaches (Fig. 11): (1) the standard XFEM, (2) the NXFEM
adopting only strong enrichment functions Ψu as in Asareh et al.
(2018b), and (3) the linear complete NXFEM as in Asareh et al.
(2018a). In Fig. 11, the standard XFEM and the linear complete
NXFEM had identical results when the crack propagates aligned
the center of the four-node quadrilateral elements through the non-
adjacent edges, and thus only one curve is shown. The convergence
study suggests that the rates of convergence in the energy norm for
the standard XFEM and linear complete NXFEM are close to the
optimal convergence rate, i.e., 0.5 (Babuška and Melenk 1997;
Asareh et al. 2018a). The results also show that the NXFEM with
only Ψu enrichment underperforms the other methods, but its con-
vergence rate improves with mesh refinement [Fig. 11(b)].

The convergence rates of the linear complete NXFEM for
four-node quadrilateral elements were compared with the conver-
gence rates of triangular elements reported by Asareh et al. (2018a).
Relatively lower errors were observed for quadrilateral elements
(Fig. 12). In addition, the convergence rates were slightly higher
than those obtained with triangular elements.

To improve the accuracy of the NXFEM, a closed-form solution
for the displacement jumps can be imposed at the nonnodal Point A
in Fig. 10(a); in the NXFEM, the kinematic constrains on the crack
interface can be treated as Dirichlet boundary conditions. The con-
vergence results in L2-norm are shown in Fig. 13. For the case of
the NXFEM only with a strong discontinuity enrichment function,
the error made a constant shift toward lower error with small im-
provement in the convergence rate. However, for the linear complete
NXFEM case, both relative errors and convergence rates improved.

1

2 A

B

C

11

22

12

12

11

12

12

22

(a) (b)

a
r

xu
yu

yu

xu

Fig. 10. Square patch for the near-tip crack problem: (a) geometry; and
(b) boundary conditions.

Fig. 11. Convergence study for the near-tip crack problem: (a) energy-norm errors; and (b) L2-norm errors.
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Edge-Cracked Plate under Impulsive Loading

Kalthoff and Winkler (1988) conducted a series of experiments
on an edge-cracked plate impacted by a projectile [Fig. 14(a)]. At
lower impact velocities, a brittle fracture with a crack propagation

at angle of about 70° with respect to initial notch was observed. This
example was selected to further examine the capabilities of the non-
nodal quadrilateral elements for modeling dynamic crack propaga-
tion, compared with triangular elements in Asareh et al. (2018a).

Due to twofold symmetry, the upper half of the plate was mod-
eled with the symmetry condition uy ¼ 0 imposed at its bottom
edge [Fig. 14(b)]. Considering identical elastic impedance
for the plate and the projectile, half of the applied velocity,
i.e., 16.5 m=s was imposed as a step function on the left edge
on 0 ≤ y ≤ 25 mm.

The material parameters were ρ ¼ 8,000 kg=m3, E ¼ 190 GPa,
and ν ¼ 0.3; for such material properties, the Rayleigh wave speed
was about CR ¼ 2,800 m=s. Tensile strength of τmax ¼ 844 MPa
and fracture energy of GF ¼ 2.213 × 104 N=m were used. To ex-
amine the mesh sensitivity of the NXFEM, the model was discre-
tized with two different uniform meshes: 40 × 40 and 80 × 80

meshes. In Fig. 15, the crack paths are shown for the 80 × 80mesh.
Similar results were observed for the 40 × 40 mesh; the trajec-

tories of crack growth for both meshes are compared in Fig. 16.
Both simulations yielded similar crack paths. The crack propaga-
tion angles and timing data are listed in Table 1. The data show that
the crack began to propagate at earlier times with mesh refinement
which agrees well with those obtained by Asareh et al. (2018a).

Fig. 13. Rates of convergence in L2-norm errors of the near-tip crack
problem for the NXFEM with and without Dirichlet boundary condi-
tions on the interface.

Fig. 12. Comparison of the convergence rates of the linear complete NXFEM between four-node quadrilateral elements and three-node triangular
elements (Asareh et al. 2018a): (a) energy-norm errors; and (b) L2-norm errors.

100mm

100mm

100mm

75mm

25mm

50mm

116.5ms

33ms

(a)

(b)

-1

Fig. 14. (a) Kalthoff experimental setup; and (b) upper half of the plate analyzed due to twofold symmetry. (Modified from Asareh et al. 2018a.)
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The crack first propagated nearly straight along an initial angle until
around t ¼ 55 μs; then, after a minor spurt upward, it continued to
grow primarily along the initial angle. For both meshes, the initial
and overall crack propagation angles were around 60°, which com-
pares well with the observed value of 70°. However, these crack
propagation angles were slightly lower than the angles reported by
Asareh et al. (2018b). This discrepancy may be attributed to the
explicit-implicit time integration used in the present study with
Courant number of 0.8.

Comparisons of the crack tip propagation speeds between tri-
angular elements and quadrilateral elements with the NXFEM
are shown in Fig. 17; the results for the NXFEM with triangular
element were taken from Asareh et al. (2018a). It is clear that the

crack speeds of quadrilateral elements had less mesh sensitivity
compared with the crack propagation speeds of triangular elements
with the NXFEM. In addition, for quadrilateral elements, the crack
propagation speed rarely exceeded 2,000 m=s, which is about 70%
of the Raleigh wave speed. For both methods, from the beginning
until 60 μs, the crack propagation speed was lower for the coarse
mesh than for the fine mesh. However, near the termination of the
simulation, the computed crack speed decelerated more rapidly for
the fine mesh than for the coarse mesh. Nevertheless, the crack
speed for the NXFEM had less mesh dependency than those ob-
tained using the conventional XFEM (Belytschko et al. 2003;
Asareh et al. 2018a).

Compact Compression Specimen Test

In the numerical example, a mixed-mode dynamic crack propaga-
tion in a brittle material, i.e., polymethylmethacrylate (PMMA),
was investigated with the compact compression specimen (CCS)
experiments (Rittel and Maigre 1996; Rittel et al. 1996). Various
numerical methods have been applied to predict this mixed-mode
failure problem (Paulino et al. 2010; Leon et al. 2014; Menouillard
et al. 2006). The geometry of the specimen and the prescribed
boundary conditions are shown in Fig. 18(a).

The applied impact load by a projectile was modeled with a
ramp velocity function as

VðtÞ ¼
�V0t=tramp t < tramp

V0 t ≥ tramp

ð32Þ

where V0 ¼ 20 m=s and tramp ¼ 40 μs. The material properties
of PMMA are density ρ ¼ 1,180 kg=m3, Young’s modulus E ¼
5.76 GPa, and Poisson’s ratio ν ¼ 0.42. Across the discontinuity,
i.e., crack, a linear cohesive model was imposed; the cohesive input

MAXPS
(GPa)

(a) (b)

(c) (d)

Fig. 15. Computed crack paths using nonnodal quadrilateral elements
on the 80 × 80 deformed mesh with a maximum principle stress at dif-
ferent time steps: (a) t ¼ 26.7 μs; (b) t ¼ 39.66 μs; (c) t ¼ 58.45 μs;
and (d) t ¼ 89.0 μs. (Modified from Asareh et al. 2018a.)

Fig. 16. Crack propagation trajectories at final simulation step using nonnodal quadrilateral elements: (a) 40 × 40 mesh; and (b) 80 × 80 mesh.
(Modified from Asareh et al. 2018a.)

Table 1. Crack propagation angles and timing data using nonnodal
quadrilateral elements for Kalthoff’s experiment

Mesh

Angles (degrees) Time (μs)

Initial Overall Propagation Simulation

40 × 40 57.93 58.44 26.72 88.25
80 × 80 59.47 59.93 24.28 81.96

© ASCE 04019081-10 J. Eng. Mech.
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parameters were fracture energy GF ¼ 352.3 Jm−2 and cohesive
strength σmax ¼ 129.6 MPa.

To test the mesh sensitivity of the NXFEM, numerical sim-
ulations were carried out with three different irregular meshes
[Figs. 18(b–d)]. For comparisons, the simulations were per-
formed with both the conventional XFEM and the linear complete
NXFEM; i.e., six simulations in total. The crack paths obtained

with the NXFEM are shown in Fig. 19. Similar crack paths were
found for the standard XFEM. However, the experimentally ob-
served crack path was only captured by the fine mesh, whereby the
initial crack angle of 54.11° with the horizontal axis was obtained,
which is similar to the experimental observation of about 45°. This
mesh dependency may be due to the fact that the coarse mesh can-
not properly capture the complicated stress status as the crack tip

Fig. 17. Computed crack propagation speeds for Kolthoff’s experiment: a linear complete NXFEM with (a) three-node triangular elements; and
(b) four-node quadrilateral elements. (Modified from Asareh et al. 2018a.)

Fig. 19. Crack propagation trajectories at time around t ¼ 130 μs:
(a) coarse mesh; (b) medium mesh; and (c) fine mesh.

(a) (b)

(c) (d)

Fig. 18. Geometry and boundary conditions of compact compression
specimen test and finite-element meshes with approximate average
element size havg in the middle part of the model: (a) experimental
setup; (b) coarse mesh (havg ¼ 1 mm); (c) medium mesh (havg ¼
0.65 mm); and (d) fine mesh (havg ¼ 0.25 mm). All dimensions are in
millimeters.
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propagates near the curved boundary; the evolution of von Mises
stress and the trajectory of crack path are shown in Fig. 20 for the
fine mesh, i.e., havg ¼ 0.25 mm. The crack began to propagate at
around 62 μs along the initial angle until t ¼ 76 μs. Then the crack
changed direction toward the center of the specimen.

Fig. 21 shows the time history of crack length for the fine mesh;
the NXFEM result is compared with the conventional XFEM. The
two methods gave similar results, which compare well with the
computation by Menouillard et al. (2006).

Conclusions

A linear complete nonnodal extended finite-element method
(NXFEM) was further developed for modeling crack with four-
node quadrilateral elements. In this approach, the enrichment func-
tions are defined so that they satisfy the linear completeness of the
enriched finite element, which is the key idea of the NXFEM
(Asareh et al. 2018b). Formalism for the enrichment functions was
developed for two generic cases: (1) when the crack passes through

nonadjacent finite-element edges of a quadrilateral element, and
(2) when the crack intersects the adjacent edges. In the NXFEM
approach, the discontinuities in a function and its derivative are
captured by enriching a set of nonnodal points on the discontinuity
interface, in contrast to enriching element nodes in the standard
XFEM. In this approach, the physically based enrichment param-
eters associated with each discontinuity are assigned to nonnodal
points; this distinct feature of the NXFEM also facilitates the im-
plementation of this method to pre-existing finite-element analysis
programs. The enrichment functions, in turn, are constructed so that
they not only vanish outside the element domain but they also re-
produce can two independent linear functions on each side of the
crack.

The validity of the proposed method was examined through a set
of convergence studies of the near-tip field problem in linear elastic
fracture mechanics. In these simulations, because the mesh was
constructed so that the crack passed through the middle of nonad-
jacent finite-element edges, the NXFEM had an identical conver-
gence rate as the standard XFEM. However, by imposing Dirichlet
constraints on the crack interface, which is one of the advantages of
the NXFEM, the convergence rates can be further improved.

The effectiveness of the method for dynamic failure was dem-
onstrated with two numerical examples for which experimental re-
sults are available. For Kalthoff’s experiment, the proposed method
had less mesh dependency than the standard XFEM. However, for
the compact compression test, only the fine mesh reproduced the
crack pattern observed in the experiment. Moreover, the numerical
results suggested that finer mesh is required to match the crack
initial propagation angle with those of experiments. This is mainly
due to the complicated stress status emanating from mixed-model
failure.

Using the NXFEM to capture the discontinuities in both a func-
tion and its derivative can facilitate predicting failure in many
engineering fracture problems, including dynamic failure along a
bimaterial interface. This effort is currently being undertaken by the
authors.

Appendix: General Formulation for Three-Node
Triangular Elements

The nonnodal enrichment functions for the NXFEM with
three-node triangular elements were introduced by Asareh et al.
(2018a, b) and can be defined by the same generalized notations
used in the present study. In doing so, the strong enrichment
functions for three-node triangular element in Fig. 22 can be con-
structed by

Ψu�
J ¼

8><
>:

�NIc∓J for a triangular subdomain

�
NIcþJ

NIc−J
NIc�

1
þ NIc�

2

for a quadrilateal subdomain
ð33Þ

(a) (b)

(c) (d)

Fig. 20. Computed crack paths of the fine mesh on deformed config-
uration with a von Mises stress at different time steps: (a) t ¼ 76.8 μs;
(b) t ¼ 93.77 μs; (c) t ¼ 102.79 μs; and (d) t ¼ 130.92 μs.

Fig. 21. Time history of crack length for the fine mesh.

c
2S

c
1S

c+ c+
1 2,I I

c-
2I

c-
1I

Fig. 22. Illustration of the generalized notation for three-node triangu-
lar element.
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whereas the weak enrichment functions for triangular element are
described by

Ψ∇u�
J ¼

8>><
>>:

−s∓J NIc∓J for a triangular subdomain

−s∓J
NIcþJ

NIc−J
NIc�

1
þ NIc�

2

for a rectangular subdomain
ð34Þ

A straight crack subdivides a triangular element into triangular
and quadrilateal subdomains.
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