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Abstract

A meshfree point collocation method for modeling large scale wind-driven ocean circulation is proposed. A distinct feature
of the method is its ability to represent derivative operators via moving least-square approximation of the Taylor expansion
through point-wise computations at collocation points. The method directly discretizes strong forms using the precomputed
derivative operators at each collocation point. Numerical studies with three benchmark problems are performed to demonstrate
the accuracy and robustness of the method. Along with these studies, an examination is presented regarding the effect of
numerical parameters on the error behavior of the proposed method. Finally, wind-driven ocean circulation in the Mediterranean
Sea is examined to test the method’s ability to model realistic oceanic flow with arbitrary shaped coastal lines.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding large scale wind-driven ocean circulation at mid-latitude is important to predict weather, including
extreme events such as cyclones [1]. Common features of wind-driven ocean flows are strong western boundary
currents, weak interior flows, and weak eastern boundary currents, as in the north Atlantic and Pacific oceans.
Popular mathematical models to capture these phenomena are the quasi-geostrophic equations (QGE), the Stommel
model, and the Stommel–Munk model [2,3]. Whereas the QGE are time-dependent nonlinear partial differential
equations (PDEs), the Stommel model and the Stommel–Munk model are stationary linear PDEs.

Existing numerical methods that can be employed to solve these mathematical models are the finite-difference
method [4] or the finite-volume method [5,6], and the finite-element method [7–9]. For geophysical flows, the
finite-volume method is particularly appealing due to its capability of unstructured grids along with preserving
conservation properties of the underlying equations. On the other hand, advantages of the finite-element method
over the finite-difference approaches are an easy treatment of complex boundaries and grid refinement to achieve
a high accuracy in regions of interest. The finite-element methods to solve the QGE have been developed based
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on a mixed formulation [9] and the streamfunction formulation [10]. The mixed formulation results in a second-
order PDE, thus requiring C0-elements. The streamfunction formulation is a fourth-order PDE, which necessitates
C1-elements. While standard finite-element methods using the mixed formulation result in suboptimal convergence
rates [9], optimal rates of convergence can be obtained using the streamfunction formulation [10]. As a result,
recent developments of numerical techniques have focused on the streamfunction formulation with the goal of
obtaining optimal convergence rates. Examples include a conforming Galerkin formulation using C1-elements [10],
a discontinuous Galerkin formulation using C0-elements [11], and B-spline based finite-element formulations
[12–14]. Further development of the B-spline based finite-element method was achieved by introducing an adaptivity
technique for the Stommel and Stommel–Munk models [15] and modeling arbitrary shaped coastal boundaries on
embedded boundaries [16].

In the context of wind-driven oceanic flow simulation, it is challenging to achieve accurate and efficient
models in light of the complex boundaries of arbitrarily shaped coastlines. Furthermore, capturing a strong
western boundary layer requires an efficient adaptive refinement technique. In doing so, the computational cost
of a conforming Galerkin formulation using C1-elements is relatively expensive. Using B-splines, modeling
arbitrary shape geometries often involves either a mapping (as in isogeometric analysis [17]) or a fictitious-domain
approach [18]. Moreover, B-splines have difficulty in applying boundary conditions, particularly in the case of a
strong boundary layer [19]. In the present study, we propose a meshfree point collocation method for accurate and
efficient simulation of the large scale wind-driven ocean circulation with the Stommel model and the Stommel–Munk
model.

The key idea of the proposed method is based on constructing an approximation of higher-order derivative
operators with a Taylor expansion through the moving least squares approach; such ideas have been initially adapted
for meshfree methods by other researchers [20–24]. It allows for straightforward computation of numerical derivative
operators that can directly discretize strong forms of PDEs of any order, as well as their boundary conditions.
Other interesting weak form-based meshfree methods can be found in [25–27]. Main advantages of the method
include an easy treatment of high-order derivatives and boundary conditions, an easy adaptive refinement, and low
computation cost due to the lack of numerical integration. Upon making use of these advantages, the method has
been successfully applied to various problems such as incompressible fluid flows [23], elastic crack problems [28],
and the asymptotic crack tip singularity in a linear elastic fracture [29,30]. Later, the method has been also applied to
weak and strong discontinuities [31,32], moving boundary [33], diffusive interface modeling [34,35], and inelastic
material problems [36] by the authors.

Despite the advantages originating from the flexibility in discretization, the strong form-based meshfree
collocation method also exhibits drawbacks. For instance, since the proposed method is based on the strong form, it
lacks the corresponding advantages of methods based on variational forms, e.g., accuracy of solutions in the sense
of total energy and some of the well-developed mathematical framework for analyzing error behavior. In depth
discussion about the stability of the meshfree method can be found in [37].

The purpose of this paper is to solve higher-order PDEs using a strong form-based meshfree collocation and
present some results about the error behavior of this method. First, the meshfree point collocation formulations for
the second-order Stommel model and the fourth-order Stommel–Munk model are presented, as well as a strategy
for implementing these formulations to solve both linear models. Second, accuracy and robustness of the proposed
formulations are verified via convergence studies using several benchmark problems for both uniform and random
arrangements of collocation points. In addition, the method is extended to a more realistic simulation by modeling
wind-driven ocean circulation in the Mediterranean sea, a region with complex coastal boundaries.

The remainder of the paper is organized as follows. In Section 2, we present the meshfree point collocation
formulations for the Stommel–Munk model and the Stommel model. In Section 3, these formulations are tested
by solving three simple benchmark problems. Motivated by the numerical results, a closer look at some internal
implementation parameters and their effect on error behavior is given in Section 3.3. In the last part of Section 3,
we solve the Stommel–Munk model on a polygon representing the Mediterranean Sea. Finally, a summary and
concluding remarks are given in Section 4.

2. The strong form based meshfree collocation method

2.1. Pointwise meshfree approximation

The meshfree point collocation method presented here allows the construction of numerical derivative operators
that are used to discretize the Stommel–Munk model (11) and the Stommel model (13). We consider a plane domain
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Table 1
Entries of a(y) and p(x; y) for m = 4, n = 2, and L = 15 (0 ≤ i ≤ m and 0 ≤ k ≤ L).

i k αk Entries of a(y) Entries of p(x; y)

0 1 (0, 0) u(y) 1
1 2 (1, 0) u y1 (y) x1 − y1

3 (0, 1) u y2 (y) x2 − y2
2 4 (2, 0) u y1 y1 (y) (x1 − y1)2/2

5 (1, 1) u y1 y2 (y) (x1 − y1)(x2 − y2)
6 (0, 2) u y2 y2 (y) (x2 − y2)2/2

3 7 (3, 0) u y1 y1 y1 (y) (x1 − y1)3/6
8 (2, 1) u y1 y1 y2 (y) (x1 − y1)2(x2 − y2)/2
9 (1, 2) u y1 y2 y2 (y) (x1 − y1)(x2 − y2)2/2

10 (0, 3) u y2 y2 y2 (y) (x2 − y2)3/6
4 11 (4, 0) u y1 y1 y1 y1 (y) (x1 − y1)4/24

12 (3, 1) u y1 y1 y1 y2 (y) (x1 − y1)3(x2 − y2)/6
13 (2, 2) u y1 y1 y2 y2 (y) (x1 − y1)2(x2 − y2)2/4
14 (1, 3) u y1 y2 y2 y2 (y) (x1 − y1)(x2 − y2)3/6
15 (0, 4) u y2 y2 y2 y2 (y) (x2 − y2)4/24

Ω in n-space. Let α = {α1, α2, . . . , αn} be an n-dimensional array of nonnegative integers and define |α| ∼= Σ n
i=1αi .

Let x = {x1, x2, . . . , xn}
T be an n-dimensional vector. Then, we write

xα =

n∏
i=1

xαi
i and α! =

n∏
i=1

αi !. (1)

For convenience, such an array of nonnegative integers α will be referred to as an exponent array from this point
forward.

Given a function u(x) ∈ Cm(Ω ) for a nonnegative integer m, we write the αth derivative of u(x) as

Dα
x u =

∂ |α|u
∂xα1

1 ∂xα2
2 · · · ∂xαn

n
(2)

for |α| ≤ m. With this notation, the mth-order Taylor expansion Pm of u, centered at y and evaluated at x, is given
by

Pm(x; y) =

∑
|α|≤m

(x − y)α

α!
Dα

x u(y). (3)

Recall that we seek a way to construct numerical derivative operators. The first step is to order all derivatives
of u(y) of up to order m in n variables and arrange them in a vector a(y). Note that there are L = (m + n)!/(m!n!)
such derivatives. This vector is constructed by placing all derivatives of each degree in lexicographical order, and
then ordering these partial lists in order of increasing degree.

Let αk be an exponent array like the one characterized by (1), with the property that the j th entry of αk equals
the number of derivatives of u(y) with respect to y j taken when evaluating the kth element of a(y). In other words,
αk is the exponent array that makes the kth entry of a(y) equal to Dαk

y u. For a given m, this exponent array may
be used to construct a polynomial vector p(x; y) with kth entry given by

pk(x; y) =
(x − y)αk

αk !
(4)

and corresponding to the kth entry of a(y) so that the Taylor polynomial in (3) may be rewritten as

Pm(x; y) = p(x; y)T a(y). (5)

For better understanding, the exponent arrays and entries of p(x; y) and a(y) for m = 4 and n = 2 are given in
Table 1.

Next, the method of moving least squares is used in conjunction with the Taylor expansion above to formulate
discrete derivative operators. For a set of N points xJ (J = 1, 2, . . . , N ) in Ω , we seek to minimize the discrete
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weighted residual functional

F [a(y)] =

N∑
J=1

w

(
xJ − y
ρ(y)

) [
p(xJ ; y)T a(y) − u J

]2
(6)

with respect to a(y). Here, w is a weight function and ρ(y), termed the dilation parameter, is the radius of a ball
around y called the compact support. Outside of this radius, the weight function is set to zero.

For a fixed y, F[a(y)] is minimized for a unique a(y) for which ∂F/∂a = 0 because F is nonnegative and
quadratic in a. If the local center is moved (hence the term moving least squares) to each point x at which a set
of derivative operators is desired, then the local F[a(x)] is minimized by the a(x) for which ∂F/∂a = 0. In other
words, minimizing (6) and taking y → x results in

a(x) = M−1(x)B(x)u (7)

where u = {u1, u2, . . . , uN }
T is the nodal solution vector for the N points in Ω , and M and B are given by

M(x) =

N∑
J=1

(
p(xJ ; x)w

(
xJ − x
ρ(x)

)
pT (xJ ; x)

)
(8)

and

B(x) =

[
w

(
x1 − x
ρ(x)

)
p(x1; x), w

(
x2 − x
ρ(x)

)
p(x2; x), . . . , w

(
xN − x
ρ(x)

)
p(xN ; x)

]
. (9)

Since the method uses a diffuse derivative approximation, computation of these derivative operators does not
require exact differentiation of shape functions or of the weight function, so there is no differentiability requirement
for either. Furthermore, the cost of computing derivatives of shape functions is replaced by that of inverting N M
matrices, each of which is only L × L .

An important consequence of this result is that the kth entry of a(x) = M−1(x)B(x)u gives approximation for
the αk th derivative of u at x. Thus, for each xI ∈ x1, x2, . . . , xN , we can define differential operators Φ

αk
I defined

to be the kth row of M−1(xI )B(xI ), i.e.,

Φ
αk
I u ≈ Dαk

x u(xI ) (10)

Using (10), all differential operators in the Stommel and Stommel–Munk models and their boundary conditions
can be discretized for any set of N collocation points in Ω̄ .

2.2. Strong form and discretized equations

In this section, the Stommel model and the Stommel–Munk model are discretized using the meshfree collocation
described above. While the Stommel model is a second-order PDE with respect to the streamfunction ψ , the
Stommel–Munk model is a fourth-order PDE. Similar to the QGE, the Stommel–Munk model contains the
biharmonic term ∆2ψ , the wind forcing term F , and the rotational term ∂ψ/∂x to include the effect of an asymmetry
in the east–west direction. The Stommel–Munk model involves a Laplacian term ∆ψ instead of the nonlinear
Jacobian term.

We consider a plane domain Ω with boundary Γ . The Stommel–Munk model [2] is given by

−ϵs∆ψ + ϵm∆
2ψ −

∂ψ

∂x
= F in Ω ,

ψ = 0 and ∇ψ · n = 0 on Γ
(11)

where n is the outward unit normal vector on the boundary Γ . For the wind-driven ocean circulation in an
enclosed mid-latitude basin, let ψ and F denote the velocity streamfunction and the wind forcing, respectively.
The parameters ϵs and ϵm are the non-dimensional Stommel and Munk numbers, respectively, which are defined
by

ϵs =
γ

βL
and ϵm =

A
βL3 . (12)
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Here, γ is the coefficient of the linear drag (or the Rayleigh friction) as might be generated by a bottom Ekman
layer, β is the coefficient multiplying the y-coordinate in the β-plane approximation, A is the eddy viscosity
parametrization, and L is the characteristic length scale.

The Stommel model (Vallis [2]) is given by

−ϵs∆ψ −
∂ψ

∂x
= F in Ω ,

ψ = 0 on Γ
(13)

where ϵs is the Stommel number defined in (12). Unlike the Stommel–Munk model, the Stommel model is a
second-order PDE and only ψ = 0 is imposed on the boundary.

For convenience, we define Λ = Λi ∪Λb where Λi is the set of Ni interior nodes and Λb is the set of Nb boundary
nodes, with Ni + Nb = N total nodes. If Φαk

I J is used to denote the J th entry of the αk th derivative operator at xI ,
then substituting (10) into (11) yields the discrete form of the Stommel–Munk PDE:

N∑
J=1

{−ϵs[Φ
(2,0)
I J + Φ(0,2)

I J ]

+ ϵm[Φ(4,0)
I J + 2Φ(2,2)

I J + Φ(0,4)
I J ] − Φ(1,0)

I J }ψJ = F(xI )

(14)

for each xI ∈ Λi . The boundary conditions are similarly discretized as
N∑

J=1

Φ(0,0)
I J ψJ = 0,

N∑
J=1

[Φ(1,0)
I J n1 + Φ(0,1)

I J n2]ψJ = 0 (15)

for each xI ∈ Λb. If we define Fi
≡ {F(x1), F(x2), . . . , F(xNi )}

T, then these discretized equations may be assembled
into an (Ni + 2Nb) × N system

Kψ = F (16)

where

K =

⎡⎣Ki

Kd

Kn

⎤⎦ and F =

⎡⎣Fi

0
0

⎤⎦ . (17)

In (17), the (I, J ) entry of the Ni × N block K i is given by

K int
I J = −ϵs[Φ

(2,0)
I J + Φ(0,2)

I J ]+

ϵm[Φ(4,0)
I J + 2Φ(2,2)

I J + Φ(0,4)
I J ] − Φ(1,0)

I J

(18)

The (I, J ) entry of the Nb × N block K d is given by

K d
I J = Φ(0,0)

I J (19)

Finally, the (I, J ) entry of the Nb × N block K n is given by

K n
I J = Φ(1,0)

I J n1 + Φ(0,1)
I J n2 (20)

Similarly, by substituting (10) into (13), the discrete form of the Stommel equation and its boundary conditions
can be obtained as

N∑
J=1

{−ϵs[Φ
(2,0)
I J + Φ(0,2)

I J ] − Φ(1,0)
I J }ψJ = F(xI ), for xI ∈ Λi

and
N∑

J=1

Φ(0,0)
I J ψJ = 0, for xI ∈ Λd .

(21)

These equations can also be assembled into a system (16), this time N × N , with

K =

[
Ki

Kd

]
and F =

[
Fi

0

]
. (22)
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where the (I, J ) entries of the Ni × N block K i and the Nb × N block K d are given by

K i
I J = −ϵs[Φ

(2,0)
I J + Φ(0,2)

I J ] − Φ(1,0)
I J , K d

I J = Φ(0,0)
I J . (23)

3. Numerical results

To verify our method, we perform numerical studies on three benchmark problems commonly used in geophysical
fluid dynamics [2]. The first two problems involve the Stommel model on a rectangular domain with a strong
Western boundary layer and the Stommel–Munk model without a strong Western boundary layer, presented in
3.1 and 3.2. The results from these studies motivate an examination of the effect of numerical parameters of
the proposed method on error behavior in the context of these benchmark problems, presented in 3.3. After this
investigation, results from the third benchmark problem, the Stommel–Munk equation on a rectangular domain with
a strong Western boundary layer, are discussed in 3.4. This includes results from applying a local refinement of the
discretization. Finally, the proposed method is used to solve the Stommel–Munk equation on a polygonal domain
representing the Mediterranean Sea in 3.5.

In the subsequent studies, we analyze convergence and error behavior by defining the following discrete L2-norm
and L∞-norm errors:

∥e∥2 ≡

√
Σ N

i=1(ψh
i − ψi )2

Σ N
i=1(ψi )2

(24)

and

∥e∥∞ ≡
max|ψh

i − ψi |

max|ψi |
, (25)

respectively, where ψh is the approximation of the exact solution ψ . In (6), the weight function does not need to
be differentiable. Hence, all simulations are performed using the weight function

w

(
xI − y
ρ(y)

)
=

(
1 −

xI − y
ρ(y)

)4

. (26)

The dilation parameter ρ, which represents the radius of the domain of influence of each collocation point, should
be chosen so that the resulting differential operators are sparse to save computational cost. On the other hand, ρ
should be large enough so that the M matrices are nonsingular and the solution is accurate. In general, there is
some minimum number of points in a domain of influence such that all M matrices (8) are nonsingular [23]. This
number of points dictates the radius of influence of each collocation point based on the spacing of nodes and the
geometry of the domain. More discussion of the dilation parameter related to a specific example can be found in
Section 3.3.

3.1. Stommel model

We consider the test problem (13) with the exact solution

ψ(x, y) =
sin(πy)

π (1 + 4π2ϵ2
s )

[
2πϵs sin(πx) + cos(πx) +

(1 + eR2 )eR1x
− (1 + eR1 )eR2x

eR1 − eR2

]
(27)

over the domain Ω = [0, 1] × [0, 1], where R1 and R2 are given by

R1 =
−1 +

√
1 + 4π2ϵ2

s

2ϵs
and R2 =

−1 −
√

1 + 4π2ϵ2
s

2ϵs
. (28)

This example was used for the test of an algorithm by Myers and Weaver [7], Foster et al. [10], and Kim et al. [14].
Upon taking ϵs = 0.05, we work in a setting identical to that considered in these references. The forcing term F
is chosen to match with that given by the exact solution (27). As shown in Figs. 1 and 2, a rectangular ocean is
chosen as a computational domain. With the origin of a Cartesian coordinate system at the southwest corner, the
x- and y-axis point eastward and northward, respectively, and the boundaries of the computational domain are the
shores of the ocean.
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Fig. 1. Examples of (a) a uniform distribution of 400 collocation points and (b) a random distribution of 821 collocation points.

Fig. 2. Heat map of the streamfunction for the Stommel model: (a) the numerical solution and (b) the exact solution given by (27).

In Fig. 1, we display uniform and random distributions of collocation points used for this study. In Fig. 2, we
compare the streamlines of the numerical solution using the randomly distributed collocation points with the exact
solution. Both solutions are qualitatively indistinguishable from the exact solution. Notice that the similar solution
using the uniform distribution of collocation points is observed.

To study convergence rates as a function of average nodal distance h, ∥e∥2 and ∥e∥∞ are measured for
approximately h = {0.020, 0.017, 0.014, 0.012}. Our method and the finite-difference method (FDM) both use
a Taylor expansion to approximate a solution variable. Thus, based on such a similarity with the FDM, we expect
that our approach also has an optimal order of convergence equal to the order of the Taylor expansion used. In
other words, the optimal convergence rates for our method would be quadratic or quartic for the second-order and
fourth-order polynomials, respectively. Theoretical study for the error analysis of the proposed method remains
as the authors’ future work while some theoretical works for similar types of strong form meshfree methods can
be found in [23,37]. For the second-order polynomial, Tables 2 and 3 show the convergence rates for uniformly
and randomly distributed collocation points in both L2- and L∞-norm errors. The plots of convergence rate in
L2-norm for both second-order and fourth-order polynomials are displayed in Figs. 3 and 4. Note that the presented
convergence analysis results, such as Fig. 3, adopted log–log plots, although it is sometimes hard to recognize this
due to the small range of values on the horizontal axis.

In Table 4, we summarize the convergence rates for the second-order and fourth-order polynomials for the
Stommel model with the exact solution given by (27). The results show higher than the expected convergence
rates in both L2-norm and L∞-norm.
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Table 2
Convergence rates in L2-norm ∥e∥2 and L∞-norm ∥e∥∞ with a second-order
polynomial using uniform distributions of collocation points.

# of collocation points ∥e∥2 ∥e∥∞

2500 5.20e−03 1.27e−02
3600 3.38e−03 7.86e−03
4900 2.36e−03 5.21e−03
6400 1.73e−03 3.63e−03

Convergence rate 2.31 2.61

Table 3
Convergence rates in ∥e∥2 and ∥e∥∞ with a second-order polynomial using random
distributions of collocation points.

# of collocation points ∥e∥2 ∥e∥∞

2212 7.16e−03 2.24e−02
3297 4.52e−03 1.31e−02
4705 2.92e−03 7.57e−03
6465 2.02e−03 5.03e−03

Convergence rate 2.37 2.82

Fig. 3. Convergence plot in ∥e∥2 for the Stommel model using the 2nd-order polynomial approximation. The slopes of the regression lines
are 2.31 (uniform) and 2.37 (random).

Fig. 4. Convergence plot in ∥e∥2 for the Stommel model using the 4th-order polynomial approximation. The slopes of the regression lines
are 4.11 (uniform) and 4.16 (random).
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Table 4
Convergence rates in ∥e∥2 and ∥e∥∞ with a second-order polynomial using random
distributions of collocation points.

Nodal arr. 2nd order 4th order

∥e∥2 ∥e∥∞ ∥e∥2 ∥e∥∞

Uniform grid 2.31 2.61 4.11 3.99
Random 2.37 2.82 4.16 4.07

3.2. The Stommel–Munk model without western boundary layer

In contrast to the Stommel model, a challenge in solving the fourth-order Stommel–Munk model is the need to
apply two Dirichlet boundary conditions ψ = ∇ψ · n = 0 on the entire boundary. In applying the proposed method
to a second-order PDE with only one boundary condition, nodal solutions are found by solving a linear system in
which each equation is a discretized version of (11) (for each of Ni interior collocation points) or of the boundary
condition (for Nb boundary nodes). In this way, boundary conditions are applied directly, and the resulting system of
equations is square. However, for the Stommel–Munk model, to apply both boundary conditions at each boundary
node, two separate equations must be written for each boundary node as shown in (15). This leads to a total of
Ni + 2Nb equations in Ni + Nb unknown nodal values of ψ , i.e., an overdetermined system of equations.

Our approach is to solve this overdetermined system by the method of weighted least squares. Introducing a
diagonal matrix D containing positive weight values along its diagonal into the system of equations (16), the
solution ψ that minimizes the norm (Kψ − F)T D2(Kψ − F) is obtained by solving

KT D2Kψ = KT D2F. (29)

Why might it be advantageous to use some weight values in D other than 1.0 (standard least squares)? As an
example, consider a problem in which the error between the numerical solution and the analytical solution is highest
at the boundary when standard least squares is used. Then, increasing the weight values applied to the boundary
condition equations penalizes this higher error at the boundary more heavily than does standard least squares,
potentially resulting in lower maximum or L2-error of the numerical solution. A discussion of how weights are
chosen for the problems in this study may be found in Section 3.3.

Using this weighted least squares strategy, we test the Stommel–Munk model on a rectangular ocean in similar
fashion to the Stommel model. We consider a benchmark example that is commonly used to test a finite-element
algorithm [8,14]. This example has a forcing F corresponding to the exact solution given by

ψ(x, y) = sin2(πx/3) sin2(πy) in Ω = [0, 3] × [0, 1]. (30)

The Stommel and Munk numbers are chosen to be ϵs = 0.05 and ϵm = 6.0 × 10−5, respectively.
To approximate the fourth-order derivative operators, at least a fourth-order polynomial is required. As a result,

we use fourth-order polynomials in this study. When assembling the overdetermined system of equations in the
solution of this problem, weights of 1.0 are chosen for the rows corresponding to interior collocation points, whereas
weights of 0.2 are used for the rows corresponding to boundary points. A more thorough discussion of this choice
of relative weights may be found in Section 3.3.

In Fig. 5, we display the streamlines of both numerical and exact solutions for the fourth-order polynomial.
Both results are qualitatively indistinguishable. In Fig. 6, the rates of convergence in L2-norm for both uniform and
random distributions of collocation points are presented. Moreover, convergence rates in both L2 and L∞-norms
are summarized in Table 5. While the order of convergence in L2-norm is quartic, slightly lower convergence rate
is observed in L∞-norm.

3.3. Study of error behavior for numerical parameters

While obtaining results for the Stommel–Munk model above with the exact solution given by (30), it became
apparent that the error behavior of the numerical solution is sensitive to the least squares weight values chosen for
the diagonal matrix D in (29) and the number of neighbors chosen for the compact support of each collocation
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Table 5
Convergence rates in ∥e∥2 and ∥e∥∞ with a fourth-order polynomial using uniform
and random distributions of collocation points for the test problem with the exact
solution (30).

Nodal arr. ∥e∥2 ∥e∥∞

Uniform grid 4.20 3.87
Random 4.06 3.74

Fig. 5. Comparison between (a) numerical and (b) exact solutions of the Stommel–Munk model for the test problem with the exact
solution (30).

Fig. 6. Convergence in ∥e∥2 for the 4th-order polynomial approximation for the problem with the exact solution given by (30). The slopes
of the regression lines are 4.20 (uniform) and 4.06 (random).

point. This section explores the effect of these numerical parameters on error behavior of the proposed collocation
method.

First, we conduct a numerical experiment to determine the effect of weight values on the error behavior. The
Stommel–Munk model with the exact solution (30) is used as a basis for this study. The number of neighbors in
the compact support is held fixed at 35. Weights corresponding to the interior nodes are fixed at 1.0, while weights
corresponding to the boundary nodes are varied between 0.001 and 100. We study the order of convergence in both
L2-norm and L∞-norm for both the uniform grid and random arrangements. The order of convergence is based on
the following ranges of total numbers of collocation points: For the uniform grid, error is computed for 243, 300,
432, and 675 total points; for the random arrangement, error is computed for 172, 304, 448, and 775 total points.
In addition to convergence rates, the values of ∥e∥2 and ∥e∥∞ are recorded for a fixed number of collocation points
(675 in the uniform grid case and 775 in the random arrangement case). The results are displayed in Figs. 7 and 8.

For the uniform grid, the highest rate of convergence appears to occur when the boundary condition (BC) weights
are less than 1.0, but this choice produces largest overall error of the solution for a fixed number of collocation
points. A possible explanation for this phenomenon is the following: When BC weights are less than 1.0, the error
tends to be high at the boundary and the weighted least squares method penalizes this high boundary error very
little. As a consequence, for low BC weights, the overall spatial distribution of error is unbalanced with highest error
at the boundary, causing the L2-norm ∥e∥2 and L∞-norm ∥e∥∞ errors to be relatively high. However, increasing
the density of the collocation points causes this boundary error to disappear rapidly, resulting in a high rate of
convergence. Conversely, strictly penalizing boundary error with larger weight values results in lower overall error
even for coarse discretizations, resulting in a lower rate of convergence. The spatial distributions of error for two
BC weight values, shown in Fig. 9, bear out this hypothesis. It is noteworthy that a choice of weights around 1.0



414 A. Beel, T.-Y. Kim, W. Jiang et al. / Computer Methods in Applied Mechanics and Engineering 351 (2019) 404–421

Fig. 7. Effect of BC weights on error behavior, uniform grid.

Fig. 8. Effect of BC weights on error behavior, random arrangement.

Fig. 9. Spatial distribution of absolute error for (a) BC weight = 5.0 and (b) BC weight = 0.2.

to 3.0 results in high error and in the lowest rates of convergence, suggesting that it can indeed be advantageous to
vary weight values away from 1.0 for the boundary condition equations. Further research should investigate what
characteristics of a problem (e.g., the forcing term) make it advantageous or disadvantageous to do so.

Similar error behavior occurs in the case of the random nodal arrangement, except with respect to the rate
of convergence in the L2-norm ∥e∥2 compared to the L∞-norm ∥e∥∞ errors for small values of BC weights. In
this case, it is possible that the maximum value of the error is localized to a few isolated collocation points at
the boundary, which would cause the maximum error to decrease slowly compared to the L2-norm error as the
density of the collocation points is increased. It is worth noting that the level of discretization and the boundary
condition weights (i.e. the matrix D) both have a limited effect on the condition number of the matrix KT D2K in
Eq. (29). However, proposed method has not exhibited a severe dependency on the condition numbers according to
the authors’ experience.
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Fig. 10. Effect of the number of neighbors in compact support on error behavior, uniform grid.

We also conducted a numerical experiment to determine the effect on error behavior of the number of neighbors
chosen for the compact support of each collocation point. As before, the problem with the exact solution given
by (30) was used. The weights applied to the interior node equations were again fixed at 1.0, but this time the BC
weights were fixed at 0.5 for all boundary nodes. The number of neighbors specified for the compact support of each
collocation point was varied between 30 and 50. In each trial, the dilation parameter at each collocation point was
taken to be the distance between the collocation point and the farthest of its 30–50 neighbors identified using the
k-nearest neighbors (KNN) search algorithm [38]. An alternative algorithm to construct spatially varying continuous
compact support function, which uses a pseudo-counting function constructed based on collocation point density,
is described in [39]. Again, the convergence rates and error values were measured for each choice of number of
neighbors, for a uniform grid of points. The results are shown in Fig. 10.

The highest rates of convergence were achieved when 41–43 neighbors were used. Some of the lowest values of
error for a fixed number of nodes were also achieved for this range of numbers of neighbors. These results suggest
that, for a uniform grid of collocation points, there is an optimal number of neighbors to specify for the compact
support. We propose the following reason for the sensitivity of the error behavior to this parameter: Depending
on the number of neighbors chosen, the spatial pattern of neighbor nodes in a compact support will be one of a
variety of shapes. Thus, just as the error behavior of the FDM depends on the choice of a five-point stencil versus
a nine-point stencil due to the relative positions of the neighbors and their effect on the numerical solution, so too
is the present method sensitive to the choice of spatial pattern of neighborhood nodes.

Based on the studies discussed in this section, values of number of neighbor nodes and BC weights were chosen
so as to optimize the convergence rate for the above problem, leading to the results displayed in Table 5 from the
previous section.

3.4. Stommel–Munk model with Western boundary layer

Having studied the effect of numerical parameters on error behavior, we are able to use our method to solve
the Stommel–Munk model with a different forcing term. This problem has a forcing corresponding to the exact
solution given by

ψ(x, y) =
[
(1 − x/3)(1 − e−20x ) sin(πy)

]2
. (31)

In contrast to the previous example in Section 3, this one has a strong Western boundary layer as shown in
Fig. 11. This boundary layer results in a region of very high gradient on the left side of the domain, which is
difficult to capture. For this reason, fourth- and fifth-order polynomials are unable to achieve reliable solutions
due to instability on the left side of the domain. Thus, a sixth-order polynomial is used. Fortunately, the jump in
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Fig. 11. Comparison between (a) numerical and (b) exact solutions of the Stommel–Munk model with the Western boundary layer.

Fig. 12. Convergence in ∥e∥2 for the Stommel–Munk model with the western boundary layer.

computational cost due to using a sixth-order polynomial approximation rather than a fourth-order approximation
is relatively small because the number of small matrices needing to be inverted while computing the differential
operators remains unchanged.

A comparison of the numerical solution with the exact solution shows qualitative agreement, as shown in Fig. 11.
Moreover, as shown in Table 6, for the uniform grid arrangement of collocation points, slightly lower than optimal
(sixth-order) convergence rate is obtained in both ∥e∥2 and ∥e∥∞ due to the presence of the Western boundary
layer. The convergence for uniform collocation points is remarkably steady, as shown in Fig. 12. For the random
arrangement of collocation points, low convergence rates and largely unpredictable error behavior are observed due
to local instabilities in the solution.

To improve accuracy, local refinement is applied to the left side of the domain where the strong Western boundary
layer is found. This is done for both uniform and random arrangements of collocation points. For the uniform grid,
we locally refined the domain by placing an extra collocation point at the centroid of each group of four existing
nodes in the left sixth of the domain. For the random arrangement, the left sixth of the domain had an average
nodal distance three times that of the right side of the domain; the gmsh software allowed a smoother transition
between the right side of the domain and the locally refined area on the left than in the case of the uniform grid.
Examples of the refined nodal arrangements used are given in Fig. 14.

Fig. 13 shows the convergence plots in ∥e∥2 for uniform and random arrangements with and without local
refinement. Table 6 contains the rates of convergence for these various schemes in ∥e∥2 and ∥e∥∞. It should be
noted that in the case of both uniform and random arrangements, the rate of convergence for the refined nodal
arrangements is much better than that for the uniform-density nodal arrangements. In addition, the errors for the
refined random arrangement are the lowest of all the schemes, suggesting that properly implemented refinement
would improve both the accuracy and the rate of convergence of the numerical solution for a problem with a
high-gradient region such as this one.

As shown in Fig. 13, instability (or suboptimal convergence) is exhibited by the proposed method for the Western
boundary layer example, especially for the random arrangements of collocation points. As explained in [37],
this is expected since the proposed method’s formulation is based on the strong form and avoids the Galerkin
framework. Currently, to the best of the authors’ knowledge, there are no theoretical stability and perturbation
analyses available for the proposed method other than numerical studies of the method. More numerical results
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Fig. 13. Influence of local refinement for the Stommel–Munk model with the western boundary layer.

Fig. 14. Illustration of nodal arrangements for local refinement applied to (a) uniformly spaced collocation points and (b) randomly spaced
collocation points.

Table 6
Rate of convergence (ROC) in ∥e∥2 and ∥e∥∞ with local refinement for both uniform
and random distributed collocation points.

Scheme ROC in ∥e∥2 ROC in ∥e∥∞

Unif. 5.23 5.78
Rand. 1.90 1.27
Unif. ref. 6.02 7.65
Rand. ref. 2.39 2.81

for the discretization sensitivity-induced instability of the method within similar contexts can be found in authors’
previous works [32,34,36]. Theoretical study for the error and stability analysis of the proposed method remains
part of the authors’ future work.

3.5. Wind-driven ocean circulation in the Mediterranean Sea

To demonstrate the usefulness of the proposed method in solving real-world problems on arbitrary shaped
domains, the method is used to solve the Stommel–Munk model on the interior of a polygon representing the
coastlines of the Mediterranean sea. This example was studied by Foster et al. [10] and Jiang and Kim [16] for
the test of their finite-element formulations of the stationary quasi-geostrophic equations. We use the forcing term
F = sin(πy/4) arising from the derivative of the wind stress (Myers and Weaver [7]). The same values of the
Stommel and Munk numbers (0.05 and 6.0 × 10−5, respectively) are used. Notice that an analytical solution is not
available, so a convergence study cannot be performed.

This polygon shown in Fig. 15 encloses a simply connected region. However, this region’s concavity and various
narrow subregions present challenges to solving the model on its interior. The first challenge in solving the Stommel–
Munk model on this domain is that of generating an arrangement of collocation points for the Mediterranean sea
region. Without an unreasonable degree of refinement, the use of a uniform tensor-product grid of points would
have been insufficient to capture the geometry of the region. Even in the case of the rectangular domain with
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Fig. 15. Polygon representing the boundary of the Mediterranean Sea.

Western boundary layer in Section 3.4, the random arrangement with selective refinement resulted in consistently
lower error than the uniform grid with no refinement, as shown in Fig. 13. The random arrangement was also less
cumbersome to produce than the uniform grid with selective refinement. For domains with complicated geometry,
producing a uniform grid with selective refinement is much more difficult and tedious, while producing a random
arrangement with selective refinement remains straightforward using readily available meshing software. Thus, for
complicated geometries, a selectively refined random arrangement of collocation points is more practical than a
selectively refined uniform arrangement, but still exhibits less error for a given number of collocation points than
a uniform grid with no selective refinement. Thus, generating a random arrangement of nodes is preferred and left
to the open-source meshing software gmsh [40]. Each segment of the polygon boundary is assigned a number of
boundary collocation points approximately proportional to this segment’s fraction of the total length of the boundary.
If this results in a number of boundary nodes that is too small for this segment (e.g., only two or three nodes), this
segment is assigned five nodes. Given these specifications, gmsh generated the arrangement of collocation points
shown in Fig. 16.

After discretizing the region, another challenge is to ensure that the domain of influence of each collocation
point is reasonable despite the concavity of some parts of the domain. For example, consider points A and B in
Fig. 15. Although these points are very close to each other, the solution of the PDE at point A cannot reasonably be
expected to affect the solution at point B because these points are separated by land. Thus, the domain of influence
of point A should exclude point B and vice-versa. To accomplish such exclusions, the domain is divided into the
subregions as shown in Fig. 17. Then, in selecting the points to include in the domain of influence of a given point
D, only candidate points from the subregion containing point D or adjacent subregions are considered.

Using MATLAB’s knnsearch accomplishes this task of selecting points for the domain of influence of each
point. Each domain of influence contains 18 collocation points, which proved the optimal number of points in
terms of ensuring invertibility of the M matrix (8), stability of the solution field at the boundary, and reasonable
computational time. Finally, the value chosen for the dilation parameter ρ at each collocation point D was simply
the distance between point D and the farthest-away point in the domain of influence of point D. An illustration
of the domain of influence for a point in this problem and related ideas is shown in Fig. 18. Once these tasks are
complete, we solve the Stommel–Munk model using the point collocation method. In order to balance the errors
between the boundary and the interior, we choose BC weights corresponding to the boundary condition u = 0 as
100 times those corresponding to the zero-flux boundary condition ∇u · n = 0. A similar scheme weighting the
Dirichlet boundary condition equations more heavily than the Neumann boundary condition equations was used in
the weighted collocation method of Chen et al. [41]; one should refer to the guidelines presented in [41] to choose
the proper values of BC weights for a general problem. In Fig. 19, we display a heat map of the streamfunction.
The plot shows qualitative agreement with the one obtained using finite-element methods by Foster et al. [10] and
Jiang and Kim [16]. This result verifies the capability of our method on realistic ocean circulation problems with
arbitrary shaped coastal boundaries.

4. Conclusion

In this paper, a new meshfree point collocation method was introduced to directly discretize the second-order
Stommel model and the fourth-order Stommel–Munk model for the large-scale wind-driven ocean circulation
simulations. The robustness and accuracy of the method was investigated with three benchmark problems commonly
used for the study of oceanic flows, as well as a more realistic problem related to wind-driven ocean circulation in
the Mediterranean Sea.
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Fig. 16. Arrangement of 4834 collocation points used for the Mediterranean sea example.

Fig. 17. Mediterranean Sea domain subdivided into cells in order to control the domain of influence of each collocation point. This plot
also shows the direction of the normal vectors to the boundary.

Fig. 18. Domain of influence of Point A (largest dot, in blue) from Fig. 15 containing 18 points. The radius of the circle is ρ for Point A.
Note that the domain of influence does not contain points from the subregion across land from Point A.

Fig. 19. Heat map of the PDM solution in the Mediterranean Sea example.

For each test problem, the numerical results exhibited near-optimal, and in some cases better than optimal,
convergence. Furthermore, local refinement was shown to improve the accuracy and convergence rate for both
uniform grid and random nodal arrangements in the context of a problem whose exact solution had a difficult-
to-capture high-gradient region. Finally, it was demonstrated that the proposed method successfully solved the
fourth-order Stommel–Munk model on a domain with complicated geometry, further implying the robustness of
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the method. The results from this study strongly suggest that the proposed meshfree collocation method has the
potential to predict the wind-driven ocean circulation on real complex domains with arbitrary shaped coastal lines.

In future work, the capability of the proposed method will be further explored by solving the nonlinear stationary
and the time-dependent QGE. The differences between the present work and solving the QGE are the nonlinearity
and time-dependent nature of the QGE. In this regard, it should be emphasized that the proposed method has
been successfully verified within the similar contexts through the authors’ previous works. Of course, yet another
challenge lies in combining the nonlinear, time-dependent, and higher-order PDE capabilities of the proposed
method to tackle the QGE. Building on this method’s demonstrated ability to solve higher-order PDEs, we will
also apply this method to solving other higher-order PDEs in other contexts, such as the phase field equations for
solid-state chemical diffusion in an alloy at the microscale. In addition, further examinations of the mathematical
properties of the method including conservative properties and error behaviors should be also conducted.
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