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ABSTRACT

Computations of the Dynamic Fracture of Quasi-Brittle Plane and Shell Structures by

the Extended Finite Element Method

Jeong-Hoon Song

Finite element methods for the simulation of dynamic fracture in plane and thin shell

structures and their application to quasi-brittle fracture problems are presented. The

method is based on the extended finite element method (XFEM) and is incorperated

within an explicit time integration scheme. The method is implemented using 4-node

quadrilateral plane and Belytschko-Lin-Tsay shell elements, which have high computa-

tional efficiency because of their use of a one-point integration scheme. Discontinuities

in the translational and angular velocity fields are introduced to model cracks by XFEM

based on the Hansbo and Hansbo approach; the element which contains the crack is

replaced by two superposed elements with additional phantom nodes. Though this dis-

continuity representation scheme uses the same linear combination of enrichment func-

tions as the conventional XFEM, it allows for considerable simplifications in fractured

plane and thin shell elements formalisms, and furthermore is applicable to arbitrary large

deformations. Also, the method provides consistent history variables because it retains
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the original quadrature points even for the integration of the discontinuous integrands of

cracked elements.

When modeling fracture, the method employs a cohesive law with a fracture criterion.

The development of a fracture criterion that is computationally efficient and is easily

applied, in terms of available data, poses a significant difficulty. Fracture criteria for quasi-

brittle materials are usually expressed in terms of the critical maximum principal tensile

strain. However, in low order finite element models solved by explicit time integration, the

maximum principal tensile strain tends to be quite noisy, so that crack paths computed by

direct application of such criteria tend to be erratic and do not conform to experimentally

observed crack paths. To circumvent these difficulties, a nonlocal form of a strain-based

fracture criterion is developed. The nonlocal form is obtained by a kernel-weighted average

over a sector in front of the crack tip.

The methodology is applied to the simulation of several experiments involving dynamic

fracture and nonlinearities. They demonstrate that the method is able to reproduce the

observed failure modes in the experiments quite well and they support the use of the

developed methods for general applications of dynamic fracture.
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CHAPTER 1

Introduction

This chapter provides an introduction to various finite element methods for dynamic

fracture. Section 1.1 gives the objectives of the thesis. The following section reviews some

of the previous work on finite element methods for dynamic fracture. Finally, section 1.3

presents an outline of the remainder of the thesis.

1.1. Objectives

The main objective of this work is to develop a numerical scheme for modeling quasi–

brittle dynamic fracture by means of the extended finite element method (XFEM) [1, 2].

The methodology is intended primarily for shells, but some of the preliminary work was

done in the context of two dimensional plane problems. The following goals have been

identified to meet our primary objective:

(1) Develop an efficient and accurate formulation for dynamic fracture based on the

XFEM basis functions.

(2) Develop a fracture criterion that is computationally efficient and is easily applied

within the framework of explicit dynamic methods.

(3) Demonstrate the effectiveness and robustness of the proposed method with nu-

merical examples for dynamic crack propagation with two dimensional plane and

shell structures.
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1.2. Overview of finite element methods for dynamic fracture

The finite element method is one of the most popular numerical methods in solid

mechanics due to its robustness. A classical way for modeling discontinuities such as

cracks and shear bands in finite elements is to model them coincident with element edges

and then introduce an additional set of nodes so that the interpolation functions across

the element edge can be discontinuous; for growing cracks, these are called remeshing

methods. In this approach, when the discrete equations are developed from a Galerkin

weak form, the correct interface condition are provided naturally. Examples are Ingraffea

et al. [3], Swenson and Ingraffea [4, 5], Bittencourt et al. [6], Martha et al. [7], and Neto

et al. [8].

However, these remeshing methods [3, 4, 5, 6, 7, 8] are quite unwieldy for modeling

evolving discontinuities because they require mesh generation in each time step and pro-

jections of field variables from the previous time step. Furthermore, even with excellent

projection schemes, significant errors can be introduced in the velocities, stresses and dis-

placements by projection. Also, in most dynamic crack propagation problems, the crack

advances over a large part of the mesh, so that remeshing would need to be performed

many times. Even for modeling of the stationary discontinuities, these methods can be

quite cumbersome, because the construction of a mesh that conforms the element edges

and the cracks surfaces is often awkward for mesh generation.

To circumvent these difficulties, several different types of numerical methods for mod-

eling dynamic crack growth have been proposed. We cannot review the entire literature

here, but summarize some of the key works on the major methods. In the following

sections, we reviews the key works with emphasis on:
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(1) the extended finite element method [1, 2]

(2) the element deletion method

(3) the interelement crack method [9, 10]

1.2.1. Review of the extended finite element method

The extended finite element method (XFEM) [1, 2] was first applied to two dimensional

dynamic fracture problems in Belytschko et al. [11] and has since been developed for

two dimensional multiple crack growth [12, 13], two dimensional dynamic fracture prob-

lems [11, 14], three dimensional static crack propagation problems [15], and recently for

dynamic fracture of shells [16, 17, 18].

One of the underlying key concepts in the XFEM is the partition of unity [19, 20].

In the partition of unity approach, the approximation basis is spanned by the standard

finite element approximation space and extended by the products of the standard finite

element shape functions with special local characteristic functions which are constructed

from knowledge about the solution.

To describe these concepts in more detail, consider a domain Ω which contains a

discontinuity Γc, as shown in Figure 1.1. In the classical partition of unity method [19, 20],

:

c*

X
*

Figure 1.1. Nomenclature for a body which contains a discontinuity.
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the domain Ω is divided into subdomains ΩI and then a set of unity functions NI is selected

so that the supports of NI corresponds to ΩI and furthermore

∑

I

NI = 1 in Ω (1.1)

A local characteristic of the solution can then be incorporated into the approximation

by letting

uloc(X) =
∑

I

NI(X)Ψ(X)qI (1.2)

where qI are arbitrary parameters that are obtained as part of the solution process and the

function Ψ(X), often called an enrichment function, since its product with the partition

of unity functions NI enriches the approximation space. The partition of unity functions,

NI , can be the standard finite element shape functions with domain corresponding to the

elements surround node I. Note that Equation (1.2) implies that the classical partition

of unity method [19, 20] applies the enrichment to the entire domain and so would entail

considerable computational expense.

However, in the XFEM a local partition of unity with a discontinuous enrichment

that only spans one element and vanishes at the edges is constructed instead of a global

partition of unity. In this approach, the partition of unity is only applied locally in a

subdomain around the feature that requires enrichment: i.e. for fracture problems, a

discontinuous function that only spans the elements that contain the crack, and vanishes

at the edges of these elements is used. In this case, Equation 1.2 can be written as

uloc(X) =
∑

I∈Sc

NI(X)Ψ(X)qI (1.3)
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where NI is a conventional finite element shape function and Sc is the set of locally

enriched nodes.

In a fracture problem, the displacement field is decomposed into a continuous and

discontinuous parts since the major local characteristic behavior is the discontinuity in

displacement field:

uh(X, t) = ucont(X, t) + udisc(X, t) (1.4)

where ucont and udisc denote continuous and discontinuous parts of the solutions at ma-

terial points X and time t, respectively. Note that in the above decomposition, the

continuous part of the solution is the standard finite element field, whereas the discon-

tinuous part of the solution is the enriched field. The approximation of the conventional

XFEM displacement field is given by

uh(X, t) =
∑

I

NI(X){uI(t) + H(f(X))qI} (1.5)

where uI and qI are the regular and enrichment nodal variables, respectively, and H(·)

is the Heaviside step function given by

H(x) =

⎧
⎪⎨

⎪⎩

1 x > 0

0 x ≤0
(1.6)

and f(X) is the level set function used to define the location of the discontinuity: see

Stolarska et al. [21], Belytschko et al. [22], Ventura et al. [23, 24], and Prabel et al.

[25]. In XFEM, the enrichment is injected when a criterion for crack nucleation or crack

growth is met.
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1.2.2. Review of the element deletion method

The element deletion method, often called element erosion, is the one of the simplest

methods which can simulate fracture problems within the framework of the conventional

FEM without complicated modifications. The attractiveness of the method lies in the fact

that it requires no alteration of standard finite element software. One can simply introduce

a discontinuity with constitutive equations in which the stress vanishes at specified criteria

or due to a damage law. Because of their simplicity, these methods have been widely used

in industry.

More precisely, a set of deleted elements which have zero stress, i.e. zero material

resistance, is used to model a crack as shown in Figure 1.2. This is implemented by con-

stitutive equations in which the stress tends to zero for sufficiently large strain; examples

of such stress-strain laws are shown in Figure 1.3.

Deleted
elements

Crack

Figure 1.2. Representation of a crack by a set of deleted elements.

One of the crucial points in using the element deletion method is the scaling of the

constitutive equation. In the element deletion method, it is imperative that the consti-

tutive equation be adjusted with respect to the element size so that the fracture energy

is independent of element size. Unless the constitutive equation is adjusted to reflect

element size, the energy released due to deleting an element depends on the element size,
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Microscopic 
damage

Macroscopic
crack

V

H
0H 1H

(a)

Microscopic 
damage

Macroscopic
crack

V

H
0H 1H

(b)

Figure 1.3. Schematic of the stress-strain curves for: (a) an elastic softening
material and (b) a hardening plasticity material.

which causes spurious mesh dependency. However, even with these modifications in the

constitutive equations, the element deletion method suffers from substantial mesh depen-

dence; in Song et al. [26], it was shown that the element deletion method completely fails

in the prediction of crack branching for structured meshes.

Consider a linear elastic-linear softening constitutive model as shown in Figure 1.4(b).

In the application of the element deletion method, the energy dissipation in an element

eh

Area= eA

(a)

V

H
1H0H

tf

E

(b)

Figure 1.4. Schematic of: (a) a deleted element and (b) a linear elastic-
linear softening material.
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with this stress-strain law is then equated to the surface energy of a crack passing through

the element parallel to the element sides by modifying the stress strain law. This energy

consistency renders solutions relatively mesh size independent. Generally, no information

about the orientation of the crack surface is included, so it is best to use square or nearly

square elements. To obtain energy equivalence in two dimensional problems for the stress-

strain law shown in Figure 1.4, the upper strain limit ϵ1 is scaled so that

Gfh
e =

1

2
Eϵ0ϵ1A

e (1.7)

where Gf is the fracture energy, he is a characteristic dimension (the length of a side for

a square element), and Ae is the area of the element (unit thickness is assumed).

1.2.3. Review of the interelement crack method

The interelement crack method employs discontinuity models that are identical to those

in remeshing methods; i.e. element edges coincident with the discontinuity modeled with

independent nodes on opposite sides. No effort is needed to track the discontinuity with

remeshing, but these methods rely on dense meshes to approximately capture the topology

of the discontinuity and on cohesive surfaces to model the nucleation and evolution of

the discontinuity. Two forms have evolved: methods where element edge separation is

possible on all edges from the beginning of the simulation as in Xu and Needleman [9]

and methods where the cohesive surfaces is injected selectively, as developed by Camacho

and Ortiz [10], and Ortiz and Pandolfi [27]; see Figure 1.5. In the former, some errors are

introduced in the bulk properties of the material and convergence is not clear. Papoulia

et al. [28, 29] have also pointed out that errors occur due to lack of continuity in injected
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Element

Cohesive
zone

Crack

(a) (b)

Figure 1.5. Schematic of the Xu and Needleman method [9] and (b) the
Camacho and Ortiz method [10].

cohesive laws; these must also be considered in the use of XFEM with cohesive traction

laws on the faces formed by cracks. Overall, these methods show a significant degree of

mesh sensitivity [11, 26], although Zhou and Molinari [30] have shown that introducing

a degree of randomness in the cohesive strength ameliorates this problem.

In the Xu and Needleman [9] approach, all of element edges are mechanically joined

from the beginning of the simulation by cohesive laws of the form:

Tn = −φn

∆n
e(−δn/∆n){ δn

∆n
e(−δ2

n/∆2
n) +

1 −q

r −1
[1 −e(−δ2

n/∆2
n)](r − δn

∆n
)} (1.8)

Tt = −φn

∆n
(2

∆n

∆t
)

δt

∆t
{q +

r −q

r −1

δn

∆n
}e(−δn/∆n)e(−δ2

t /∆2
t ) (1.9)

where T is the traction across the interelement surface, subscripts n and t denote the

normal and tangential components, respectively, δ is the displacement jump across the

cohesive surface interface, φ is the cohesive potential function, and ∆ is a characteristic

length; for details, refer to [9]. In the Camacho and Ortiz approach [10], elements are

allowed to separate along edges only when a fracture criterion is met or the element edges
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are contiguous to a crack tip: the criterion is given by

σeff =
√

σ2
n + β−2σ2

t ≥σfr (1.10)

where σn and σt are the normal and tangential stress along an element edge, respectively,

and σfr is the material fracture strength. The cohesive law used in Camacho and Ortiz

[10] is

Tn = e
σc

δc
β2δse

−δ/δc (1.11)

Tt = e
σc

δc
δne−δ/δc (1.12)

where σc and δc are the maximum cohesive traction and critical opening displacement,

respectively; for details, refer to [10]. Once a criterion for insertion of the cohesive law

is met, the crack automatically chooses its path by solving the momentum equation that

takes into account the traction forces on the cohesive edges. The method is further

developed in Ortiz and Pandolfi [27].

1.3. Outline

The remainder of this thesis is as follows: in Chapter 2, a new formulation for the

modeling of discontinuities in two dimensional plane problems that is particularly suited

to explicit time integration methods is presented and then, in Chapter 3, the proposed

method is extended for shells. Chapter 4 reviews some of constitutive models which

are used in this work along with a cohesive model and fracture criteria. In Chapter

5, numerical examples for finite strain elastic and elasto-plastic crack propagation are
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provided to demonstrate the effectiveness and the robustness of the method. Finally,

Chapter 6 presents the conclusions.
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CHAPTER 2

Phantom Node Method for Two Dimensional Plane Problems

We present a method for the modeling of dynamic crack propagation for two dimen-

sional plane problems that is particularly suited to explicit time integration methods.

The formulation enables crack propagation to be easily treated by low order elements,

particularly with one-point quadrature elements; it is also applicable to shear bands. The

method is based on the XFEM [11], but it uses a transformation of the nodal variables

that leads to the superposed element formalism of Hansbo and Hansbo [31].

The advantage of this formalism is that an element containing a discontinuity is re-

placed by two elements with additional phantom nodes or phantom degrees of freedom, so

that little modification of existing explicit finite element programs is needed to implement

this formulation for elements with cracks or shear bands. The associated shape functions

in a cracked or sheared element are identical to the shape functions of an intact element,

which leads to certain simplifications of the implementation in existing codes. Within

this context, we have also developed simple quadrature rules for the elements with cracks

and shear bands that involve only a single quadrature point for each of the superposed

elements.

In the description of a crack, we use implicit functions, i.e. level set functions, to

describe the geometry of the cracks, as proposed in Stolarska et al. [21] and Belytschko

et al. [22]. This is not an intrinsic part of the approach, although it does simplify

implementations, particularly in three dimensions, which are not considered here.
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2.1. Enriched displacement fields for discontinuity

Consider an initial domain Ω0∈ R2, as shown in Figure 2.1. The motion is described

by x = φ(X, t), where X and x denote material and spatial coordinates, respectively.

In the current domain, the image of the initial domain Ω0 is denoted by Ω. We allow

this domain to contain an internal discontinuity Γc which is enveloped by a region Ωc.

Inside of the region Ωc, we defined two local functions f(X) and g(X, t) where f(X) and

g(X,t) are the signed distance function that describe the crack surface and tip geometry,

respectively. The surface f(X) = 0 corresponds to the crack surface denoted by Γc and

the function g(X, t) is defined so that g(X, t) > 0 along the crack surface and vanishes

at the crack tip as shown in Figure 2.2.

0
u

0

t
*

0:

0

c
*

0

c
:

( , )tI x X

t
*

u
*

:
c

:

c
*

Figure 2.1. A two dimensional body with a discontinuity and its represen-
tation in the initial and the current domains.

The crack geometry is implicitly defined by

X0
c ∈ Γ0

c if f(X) = 0 and g(X, t) > 0, X ∈ Ω0
c (2.1)
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te
n

( ) 0f !X

( ) 0f �X

( , ) 0g t  X

Crack or shear band

( , ) 0g t !X

( , ) 0g t �X

( ) 0f  X

Figure 2.2. A two dimensional discontinuity represented by two implicit
functions f(X) and g(X, t).

For the numerical representation, we approximate the level set function by

∑

I

f(XI)NI(X) = 0 (2.2)

where f(X) = min ||X −X̄ || ¯X∈Γc
. As a consequence of Equation (2.2), the surface of

discontinuity can be represented by f(XI) at the nodes of the cracked elements.

Note that the implicit functions f(X) and g(X, t) need only to be defined locally

around the discontinuity. Furthermore, for elementwise propagation of the discontinuity,

we can replace the function g(X, t) by the set of elements that are cracked or sheared, as

shown in Figure 2.3.

( ) 0f !X

( ) 0f �X

Crack or shear band

Figure 2.3. The representation of a discontinuity with an implicit functions
f(X) for the elementwise propagation of the discontinuity; the function
g(X, t) is replaced by the set of gray elements.
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2.1.1. Representation of a discontinuity with phantom nodes

In the following, we will refer specifically to a crack, although the arguments also apply to

a shear band. We first illustrate the crack modeling concept in one dimension. Consider

a crack at X = a and let the nodes of the element containing the crack be nodes 1

and 2 as shown in Figure 2.4(a). We start with the standard XFEM description of the

1 2

1

2
u

( ) 0f X � ( ) 0f X !

( )u �

( )u �
a bu

X

I I
I

N¦ u

X a 

Discontinuity

(a)

1

2

1

2

4

3

4

3

u ( )u �

( )u �

a bu

XX a 

e1

e2

Discontinuity

(b)

Figure 2.4. A one dimensional representation of a discontinuity by: (a) the
standard XFEM and (b) the phantom node method; solid and hollow circles
denote the original nodes and the added phantom nodes, respectively.

discontinuous displacement field in an element

u(X, t) =
2∑

I=1

NI(X) { uI(t) + qI [H(X −a) −H(XI −a)] } (2.3)

where H(x) is the Heaviside step function given by

H(x) =

⎧
⎪⎨

⎪⎩

1 x > 0

0 x ≤0
(2.4)
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We will now transform this to a superposed element formulation for the specific case

where node 1 is to the left of the discontinuity as shown in Figure 2.4(b); the general

transformation is given subsequently. Writing out Equation (2.3) in abbreviated notation,

we have

u = u1N1 + u2N2 + q1N1H + q2N2(H −1) (2.5)

where H = H(X −a). We can rewrite the above equation as

u = (u1 + q1)N1H + u1N1(1 −H) + (u2 −q2)N2(1 −H) + u2N2H (2.6)

where we have used the identities N1 = N1H + N1(1 −H) and N2 = N2H + N2(1 −H).

We now define

element 1

⎧
⎪⎨

⎪⎩

u1
1 = u1

u1
2 = u2 −q2

(2.7)

element 2

⎧
⎪⎨

⎪⎩

u2
1 = u1 + q1

u2
2 = u2

(2.8)

where superscripts and subscripts denote the element and node numbers, respectively.

Equation (2.6) can then be rewritten as

u = u1
1N1(1−H(X −a))+u1

2N2(1−H(X −a))+u2
1N1H(X −a)+u2

2N2H(X −a) (2.9)

Thus, we can consider the displacement field to consist of the displacement fields of two

elements: element 1, which is only active for X < a, because of the terms (1−H(X −a))
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and element 2, which is only active for X > a because of the terms H(X −a). The

displacement jump across the crack is

[[u]]X=a = lim
ϵ→0

[ u(X + ϵ) −u(X −ϵ) ]X=a (2.10)

= N1(a)(u2
1 −u1

1) + N2(a)(u2
2 −u1

2)

= q1N1(a) + q2N2(a)

From Equation (2.9), we can see that the discontinuous field can be constructed by

adding an extra element, element 2 in this case, as shown in Figure 2.4(b). Then two

phantom nodes are added: in this case they are u1
2 and u2

1. As shown in Figure 2.4(b),

the two parts of the model are completely disjoint except for a cohesive law which relates

the traction across the discontinuity to the jump in the displacement.

We start with the conventional XFEM displacement field

u(X, t) =
nN∑

I=1

NI(X) { uI(t) + qI [H(f(X)) −H(f(XI))] } (2.11)

Expanding the above as we did for the one dimensional case by subdividing each term

into parts that are associated with f(X) < 0 and f(X) > 0, we have

u =
nN∑

I=1

[ uINI(1 −H) + uINIH + qI(H −HI)NI ] (2.12)

where H = H(f(X)). We now further expand both fields by duplicating them with the

multipliers H−
I = H(−f(XI)) and H+

I = H(f(XI)), which do not change the fields, and

we make use of the fact that H −HI = H −1 when H+
I ̸= 0 and H −HI = H when
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H−
I ̸= 0. So we have

u =
nN∑

I=1

[ uIH
+
I NI(1 −H) + uIH

−
I NI(1 −H) + uIH

+
I NIH + uIH

−
I NIH

+qIH
+
I NI(H −1) + qIH

−
I NIH ] (2.13)

We then rewrite the above as

u =
nN∑

I=1

[ (uI −qI)H
+
I NI(1 −H) + uIH

−
I NI(1 −H) + uIH

+
I NIH + (uI + qI)H

−
I NIH ]

(2.14)

If we then let

u1
I =

⎧
⎪⎨

⎪⎩

uI if f(XI) < 0

uI −qI if f(XI) > 0
(2.15)

u2
I =

⎧
⎪⎨

⎪⎩

uI + qI if f(XI) < 0

uI if f(XI) > 0
(2.16)

then we can write the displacement field as

u(X, t) =
∑

I∈S1

u1
I(t)NI(X)︸ ︷︷ ︸
u1(X ,t)

H(−f(X)) +
∑

I∈S2

u2
I(t)NI(X)︸ ︷︷ ︸
u2(X ,t)

H(f(X)) (2.17)

where S1 and S2 are the index sets of the nodes of superposed element 1 and 2, respectively.

As can be seen from Figure 2.5, each element contains original real nodes and phantom

nodes. Thus the XFEM field for a completely cut element can be written as the sum

of two element fields; one, u1(X, t), which holds for f(X) < 0 and the other, u2(X, t),

which holds for f(X) > 0. This form corresponds to the concept proposed by Hansbo and

Hansbo [31], though they did not present it in this form. It was previously pointed out
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e1

e2

1
2

34

1 2

67

8 5

34

Crack

( ) 0f  X

( ) 0f �X

( ) 0f !X

( ) 0f !X

( ) 0f �X

Figure 2.5. The decomposition of a cracked two dimensional element with
generic nodes 1 to 4 into two elements e1 and e2; solid and hollow circles
denote the original nodes and the added phantom nodes, respectively.

by Areias and Belytschko [32] that the Hansbo and Hansbo [31] formulation is another

form of the XFEM displacement field.

( ) 0f !X

( ) 0f �X

Crack
opening

e1

e2

Figure 2.6. The representation of a crack opening with the phantom node
method; solid and hollow circles denote the original nodes and the added
phantom nodes, respectively.

Note that this equivalence holds for any element, i.e. 3-node triangles, 8-node quadri-

laterals, etc. Recasting the discontinuous field in this form simplifies the implementation

of the element in existing finite element codes. It is only necessary to add an extra ele-

ment (i.e. element 2 in this case) and phantom nodes and modify the element quadrature
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procedure. The phantom nodes are defined by

I is a phantom node in

⎧
⎪⎨

⎪⎩

element 1 if f(XI) > 0

element 2 if f(XI) < 0
(2.18)

All nodes are integrated in time by the same procedure, as will become clear subsequently.

2.1.2. Representation of a shear band with phantom nodes

The same procedure can be used to model shear bands by adding discontinuities in the

tangential component of the displacement in elements crossed by a shear band. Let the

tangential direction be denoted by et; in the context of the level set formulation described

here

et =
∂g

∂X
= ∇0g (2.19)

where g(X, t) is a signed distance function. The standard XFEM field for a shear band

is then

u(X, t) =
nN∑

I=1

NI(X) { uI(t) + qIet[H(f(X)) −H(f(XI))] } (2.20)

To develop the shear band element, it is necessary to express the normal and tangential

components in the nodal displacements, as

u(X, t) =
nN∑

I=1

NI(X) { unI(t)en + utI(t)et + qIet[H(f(X)) −H(f(XI))] } (2.21)
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where unI(t) and utI(t) are the normal and tangential components and en is the unit

normal to the shear band. Going through the same procedure as before, we obtain

u =
nN∑

I=1

{ et[ (utI −qI)H
+
I + utIH

−
I ] + enunI }NIH(−f(X)) (2.22)

+
nN∑

I=1

{ et[ (utI)H
+
I + (utI + qI)H

−
I ] + enunI }NIH(f(X))

We let

u1
tI = utI −qIH(f(XI)) (2.23)

u2
tI = utI + qIH(f(XI)) (2.24)

u1
nI = u2

nI = unI (2.25)

Then we can write the displacement field u(X, t) as the sum of two element displacement

fields

u(X, t) = u1(X, t) + u2(X, t) (2.26)

u1(X, t) =
∑

I∈S1

utINIH(−f(X)) +
nN∑

I=1

unINIH(−f(X)) (2.27)

u2(X, t) =
∑

I∈S2

utINIH(f(X)) +
nN∑

I=1

unINIH(f(X)) (2.28)

In the shear band elements, phantom degrees of freedom are added only in the tangential

direction; the normal components of the nodal displacements correspond to the normal

components of the original nodes and are the same in both elements. Consequently, the

normal displacement field is also identical in the two elements. The procedure is illustrated
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in Figure 2.7, where the phantom degrees of freedom are indicated by dashed lines. The

e1

e2

1
2

34

1 2

6
7

8
5

34
Shear band

( ) 0f  X

( ) 0f �X

( ) 0f !X

( ) 0f !X

( ) 0f �X

Figure 2.7. The decomposition of a shear element with generic nodes 1 to
4; dashed lines indicate phantom degrees of freedom.

interpretation and its implementation is now somewhat different than for a crack. The

construct in Figure 2.5 is replaced by that shown in Figure 2.7 and Equations (2.26)–

(2.28). However, as indicated in [22], the modeling of discontinuous tangential fields

where the discontinuity is not rectilinear does present certain difficulties. Some of these

difficulties arise because we have used C0 shape functions to describe the discontinuity

surface.

2.2. Weak formulation and discretization

2.2.1. Strong from and weak form

We consider a two-dimensional dynamic problem. The strong form of the linear momen-

tum equation in a total Lagrangian description is

∂Pji

∂Xj
+ ρ0bi −ρ0̈ui = 0 in Ω0 (2.29)
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where P is the nominal stress tensor, ρ0 is the initial mass density, b is the body force

vector.

The boundary conditions are

n0
jPji = t̄0i on Γ0

t (2.30)

ui = ūi on Γ0
u (2.31)

n0
jP

−
ji = −n0

jP
+
ji = τ0c

i ([[ui]]) on Γ0
c (2.32)

where n0 is the normal to the indicated boundary, τ0c is the cohesive traction across

the crack, t
0

is the applied traction on the Neumann boundary Γt and u is the applied

displacement on the Dirichlet boundary Γ0
u; Γ0

u ∪ Γ0
t = Γ0, Γu ∩ Γt = ø. Superscript plus

and minus signs refer to the two sides of the discontinuity. Indicial notation is used for

any lower case indices and repeated subscripts imply summations.

The discrete equations are constructed by the standard Galerkin procedure. The

admissible space for the displacement fields is defined as follows:

U = {u(X, t) | u(X, t) ∈ H1 in Ω \ Γc, u(X, t) = ū(t) on Γu, and discontinuous on Γc}

(2.33)

U0= {u(X, t) | u(X, t) ∈ H1 in Ω \ Γc, δu(X, t) = 0 on Γu ∪ Γc} (2.34)

The weak form of the momentum equation is given by: for u(X, t) ∈ U

δW kin = δW ext −δW int + δW coh ∀ δu(X) ∈ U0 (2.35)



38

where δW int is the internal work, δW ext is the external work performed by applied loads,

δW kin is the kinetic work performed by inertia and δW coh is the work performed by the

cohesive traction on the crack surface Γc. These quantities are defined as (see Belytschko

[33] et al. for details)

δW kin =

∫

Ω0

δu · ρ0ü dΩ0 (2.36)

δW int =

∫

Ω0

∂δu

∂X
: P dΩ0 (2.37)

δW ext =

∫

Ω0

δu · ρ0b dΩ0+

∫

Γ0
t

δu · t̄0 dΓ0
t (2.38)

δW coh = −
∫

Γc

δ[[u]] · τ c dΓc (2.39)

where t̄ is the normalized traction prescribed on Γ0
t and τ c is the cohesive traction applied

on the discontinuity surface; an updated Lagrangian form is used for (2.39).

The finite element discretization of Equation (2.35) yields the discrete form of the

momentum equation which leads to

fkin = f ext −f int + f coh (2.40)

where the internal force f int, the external force f ext, and the cohesive force f coh are

assembled from element matrices given below. Since the element matrices for uncracked

elements are standard, we give them only for a generic pair of elements 1 and 2 crossed

by a crack. They are

f kin
e =

∫

Ωe
0

ρ0N
T NH((−1)ef(X)) dΩe

0 üe (2.41)
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f int
e =

∫

Ωe
0

BT P eH((−1)ef(X)) dΩe
0 (2.42)

f ext
e =

∫

Ωe
0

ρ0N
T bH((−1)ef(X)) dΩe

0+

∫

Γe0
t

NT t̄0H((−1)ef(X)) dΓe0
t (2.43)

f coh
e = (−1)e

∫

Γe0
c

NT τ cn0 dΓe0
c (2.44)

where the subscript e is either 1 or 2, as shown in Figure 2.5, and the superscript e indicates

a domain restriction to element e; B is the discrete strain-displacement operator.

2.2.2. One point integration scheme with hourglass mode control

To evaluate the integrals Equation (2.41)-(2.43) in the elements in which the Heaviside

function appears, a modified numerical quadrature scheme such as subdomain integration

is needed [11]. In subdomain integration, the element is subdivided into several subdo-

mains, and each subdomain is integrated separately as shown in Figure 2.8. However,

Crack
Project history 

variables

Subdomain

Quadrature
point

Figure 2.8. Schematic of the conventional subdomain integration scheme
for a cracked element.

several difficulties arise in subdomain integration methods when we consider moving dis-

continuities. For example, in crack or shear band growth in nonlinear materials, the

history variables stored at the current quadrature points need to be projected to the

newly created quadrature points when a subdomain integration scheme is used.
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To circumvent those difficulties, here we adopt a one-point integration scheme in which

the Gauss quadrature point is fixed as shown in Figure 2.9. The element uses hourglass

Use consistent 
history variables e1

e2

Crack
Quadrature point

Figure 2.9. Schematic of an one point integration scheme which can provide
consistent history variables.

mode control; for details on the hourglass mode control scheme, see [34, 35]. We assume

that the stresses are constant within the element and given by the values at the origin of

the parent coordinate system.

As we can see from Figure 2.9, the cracked element is replaced by two elements and

the nodal forces can be integrated separately as follows:

f e = f e1 + f e2 (2.45)

where f e is element force matrix of the cracked element and f e1 and f e2 are the force

matrices of newly superposed elements with phantom nodes. Expanding Equations (2.41)-

(2.44) yields

f kin
(e1/e2) =

A(e1/e2)

A0

∫

Ωe
0

ρ0N
T N dΩe

0 ü(e1/e2) (2.46)



41

f int
(e1/e2) =

A(e1/e2)

A0

∫

Ωe
0

{BT P (e1/e2) + f stab
(e1/e2)} dΩe

0 (2.47)

f ext
e1 =

Ae1

A0

∫

Ωe
0

ρ0N
T b dΩe

0+

∫

Γe0
t

H(−f)NT t̄0 dΓe0
t (2.48)

f ext
e2 =

Ae2

A0

∫

Ωe
0

ρ0N
T b dΩe

0+

∫

Γe0
t

H(f)NT t̄0 dΓe0
t (2.49)

f coh
e1 = −

∫

Γe0
c

NT τ cn0 dΓe0
c (2.50)

f coh
e2 =

∫

Γe0
c

NT τ cn0 dΓe0
c (2.51)

where f stab is a stabilization force matrix to control the hourglass modes, A0 is the total

area of the uncracked element and Ae1 and Ae2 are the activated areas of the correspond-

ing superposed elements which consist of regular and phantom nodes. As we can see

from Equation (2.46)-(2.49), to compute the force matrix for a cracked element, we only

modify it by the area fraction. This computational procedure can be easily implemented

within the context of conventional software; it can also be applied to elements with full

quadrature.



42

CHAPTER 3

Phantom Node Method for Shell Problems

Simulation of the fracture of shell structures is engendering considerable interest in

the industrial and defense communities. Many components where fracture is of concern,

such as windshields, ship hulls, fuel tanks and car bodies are not amenable to three

dimensional solid modeling, for the expense would be enormous. Furthermore, fracture is

often an important criterion in determining their performance envelopes.

Here, we describe a finite element method based on the extended finite element method

(XFEM) [1, 2] for modeling shell structures in explicit finite element programs and illus-

trate their performance in non-linear problems involving dynamic fracture. The method-

ology is based on the Hansbo and Hansbo [31] approach, which has previously been

applied by Song et al. [14] and by Areias et al. [16, 17]. The equivalence of the Hansbo

and Hansbo [31] basis functions to XFEM [1, 2] is shown in Areias and Belytschko [32].

The method employs an elementwise progression of the crack, i.e. the crack tip is always

on an element edge. Réthoré et al. [36] have reported that this is usually adequate for

dynamic crack propagation. We do not use any near-tip enrichment, although Elguedj et

al. [37] have achieved good success with near-tip enrichments for static problems.

The literature on dynamic crack propagation in shells is quite limited. Cirak et al. [38]

have developed on interelement crack method, where the crack is limited to propagation

along the element edges. The method is based on the Kirchhoff shell theory. Penalty

functions were used to enforce continuity on all interelement edges. Areias and Belytschko
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[39] and Areias et al. [16, 17] have developed a method for shell fracture based on the

extended finite element method for static and implicit time integration.

3.1. Shell formulation with fracture

The discontinuous shell formulation is based on the degenerated shell concept (Ahmad

et al. [40], and Hughes and Liu [41, 42]), which is almost equivalent to the Mindlin-

Reissner formulation when the edges connecting the top and bottom surfaces are normal

to the midsurface. We will use a kinematic theory based on the corotational rate-of-

deformation and the corotational Cauchy stress rate. These features are briefly summa-

rized in Section 3.2, but are well-known, so we will focus on the modifications needed for

the XFEM treatment of fracture.

The velocity field is given by

v(ξ, t) = vmid(ξ, t) −ζe3 ×θmid(ξ, t) (3.1)

where vmid ∈ R3 are the velocities of the shell midsurface, θmid ∈ R3 are angular velocities

of the normals to the midsurface, ζ varies linearly from −h/2 to h/2 along the thickness,

and ξ = (ξ1, ξ2) are material coordinates of the manifold that describes the midsurface of

the shell; at any point of the shell, we construct tangent unit vectors e1 and e2 so that

e3 = e1 ×e2 (3.2)

The nomenclature is illustrated in Figure 3.1.

For the further development of the discontinuous shell formulation, we will limit our-

selves to cracks with surfaces normal to the shell midsurfaces as shown in Figure 3.2.
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1e

midv

1T

Mid surface

2T
3T

2e3e

/ 2h9  

/ 2h9  �
09  

Figure 3.1. The nomenclature for a continuum shell.

Although this is not an intrinsic limitation of the method, it simplifies several aspects of

the formulation.

( ) 0f !ȟ

Crack: ( ) 0f  ȟ

( ) 0f �ȟ

Figure 3.2. Representation of a discontinuity in the reference configuration
by a level set function f(ξ) in the shell midsurface.

The discontinuous velocity fields due to a crack in any Mindlin-Reissner theory can

be described by

vmid(ξ, t) = vcont(ξ, t) + H(f(ξ))vdisc(ξ, t) (3.3)

θmid(ξ, t) = θcont(ξ, t) + H(f(ξ))θdisc(ξ, t) (3.4)
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where f(ξ) = 0 gives the intersection of the crack surface with the midsurface of the shell

and H(·) is the Heaviside function given by

H(x) =

⎧
⎪⎨

⎪⎩

1 x > 0

0 x ≤0
(3.5)

In the above, vcont and vdisc are continuous functions that are used to model the

continuous and the discontinuous parts of the velocity fields, respectively. Similarly, θcont

and θdisc are the continuous functions that are used to model continuous and discontinuous

parts of the angular velocity fields, respectively. The discontinuities that model the cracks

arise from the step function that precedes vdisc and θdisc. It can be seen from Equations

(3.1) and (3.3)-(3.4) that these velocity fields can result in a loss of compatibility and

in particular material overlap, as indicated in Figure 3.3, when there is a significant

discontinuity in the angular motion but the crack opening is small. We will deal with this

incompatibility by introducing a penalty in the cohesive law.

2 2,cont discT T

1 1,cont discT T

contv

( ) 0f !ȟ ( ) 0f �ȟ

Material
overlap

Crack
opening

discv

Figure 3.3. Nomenclature of a fractured shell: incompatible material over-
lapping may occur at the bottom surface due to the opening of the crack.
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3.2. Element formulation

The shell element used here is a 4-node shell originally described in [43] with im-

provements in [44, 14]. The shell element employs an one-point quadrature rule with

stabilization [45, 46] for computational efficiency.

When the velocity fields given in Equations (3.3)-(3.4) are specialized to shell finite

elements, the continuous part of the corotational velocity components are given by

v̂x(ξ, t) = NI(ξ)v̂xI(t) + ζNI(ξ)θ̂yI(t) (3.6)

v̂y(ξ, t) = NI(ξ)v̂xI(t) −ζNI(ξ)θ̂xI(t) (3.7)

where NI are the conventional 4-node finite element bilinear shape functions and the

repeated subscripts I denote summation over all nodes. The corotational components of

the rate-of-deformation tensor are given by

D̂ij =
1

2

(
∂v̂i

∂x̂j
+

∂v̂j

∂x̂i

)
(3.8)

Substituting Equations (3.6)-(3.7) into (3.8) yields an expression for the rate-of-deformation

components

D̂x = bx̂I v̂x̂I + ζ(bc
x̂Ivx̂I + bx̂IθyI) (3.9)

D̂y = bŷI v̂ŷI + ζ(bc
ŷIvŷI −bŷIθxI) (3.10)

2D̂xy = bx̂I v̂x̂I + bŷI v̂ŷI + ζ(bc
x̂Ivx̂I + bc

ŷIvŷI + bx̂IθyI −bŷIθxI) (3.11)
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where ⎧
⎪⎨

⎪⎩

bx̂I

bŷI

⎫
⎪⎬

⎪⎭
=

1

2A

⎡

⎢⎣
ŷ24 ŷ31 ŷ42 ŷ13

x̂42 x̂13 x̂24 x̂31

⎤

⎥⎦ (3.12)

⎧
⎪⎨

⎪⎩

bc
x̂I

bc
ŷI

⎫
⎪⎬

⎪⎭
=

2γ̂K ẑK

A2

⎡

⎢⎣
x̂13 x̂42 x̂31 x̂24

ŷ13 ŷ42 ŷ31 ŷ24

⎤

⎥⎦ (3.13)

and where x̂IJ = x̂I −x̂J , A is the area of the element and γ̂K is a projection operator,

see Belytschko and Bachrach [45]. A state of plane stress is assumed. In Belytschko et

al. [44], two methods are proposed for the evaluation of bc. Here in the equation (3.13),

we adopted the ẑ method. In this case, curvature is only coupled with the translations

for a warped element.

We also have used the shear projection scheme introduced in Belytschko et al. [44].

This shear projection scheme gives the components of the transverse shear strain as

D̂xz = bs
x1I v̂zI + bs

x2I θ̂xI + bs
x3I θ̂yI (3.14)

D̂yz = bs
y1I v̂zI + bs

y2I θ̂xI + bs
y3I θ̂yI (3.15)

where

⎧
⎪⎨

⎪⎩

bs
x1I bs

x2I bs
x3I

bs
y1I bs

y2I bs
y3I

⎫
⎪⎬

⎪⎭
= (3.16)

1

4

⎡

⎢⎣
2(x̄JI −x̄IK) (x̂JI ȳJI + x̂IK ȳIK) −(x̂JI ȳJI + x̂IK ȳIK)

2(ȳJI −ȳIK) (ŷJI ȳJI + ŷIK ȳIK) −(ŷJI ȳJI + ŷIK ȳIK)

⎤

⎥⎦

and where (I, J, K) = {(I, J, K) | (1, 2, 4), (2, 3, 1), (3, 4, 1), (4, 1, 3)} and x̄IJ = x̂IJ/||x̂IJ ||.
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3.2.1. Representation of the discontinuity

The velocity field of a fractured shell element, which is given by Equations (3.3)-(3.4),

can be approximated in the XFEM by

v̂mid(ξ, t) = NI(ξ)v̂cont
I (t) + H(f(ξ))NI(ξ)v̂disc

I (t) (3.17)

θ̂
mid

(ξ, t) = NI(ξ)θ̂
cont

(t) + H(f(ξ))NI(ξ)θ̂
disc

I (t) (3.18)

However, when element-wise crack propagation is employed, we have found that it is sim-

pler to program the implementation in the Hansbo and Hansbo [31] form, as developed

by Song et al. [14]. An element completely cut by a crack is represented by a set of over-

lapping elements with added phantom nodes as shown in Figure 3.4. The discontinuous

e1

e2

1
2

34

1 2

67

8 5

34
Crack

surface

( ) 0f  ȟ
( ) 0f �ȟ

( ) 0f !ȟ

( ) 0f !ȟ

( ) 0f �ȟ

Figure 3.4. The decomposition of a cracked shell element with generic nodes
1–4 into two elements e1 and e2; solid and hollow circles denote the original
nodes and the added phantom nodes, respectively.
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velocity field is then constructed by two superimposed velocity fields:

v̂(ξ, t) = v̂e1(ξ, t) + v̂e2(ξ, t) (3.19)

=
∑

I∈S1

NI(ξ)H(−f(ξ))v̂e1
I (t) +

∑

I∈S2

NI(ξ)H(f(ξ))v̂e2
I (t)

θ̂(ξ, t) = θ̂
e1

(ξ, t) + θ̂
e2

(ξ, t) (3.20)

=
∑

I∈S1

NI(ξ)H(−f(ξ))θ̂e1
I (t) +

∑

I∈S2

NI(ξ)H(f(ξ))θ̂e2
I (t)

where S1 and S2 are the sets of the nodes of the overlapping element e1 and e2, respectively.

Note that velocity fields v̂e1(ξ, t) and v̂e2(ξ, t) (or θ̂
e1

(ξ, t) and θ̂
e2

(ξ, t)) are non-zero only

for f(ξ) < 0 and f(ξ) > 0, respectively, due to the Heaviside step function H(x) that

appears in the above equations. The phantom nodes are integrated in time by the same

central difference explicit method as those of the other nodes.

( ) 0f !X

( ) 0f �X

Crack
opening

e1

e2

Figure 3.5. Schematic of a crack opening in shell elements with the phantom
node method; solid and hollow circles denote the original nodes and the
added phantom nodes, respectively.
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3.2.2. Representation of multiple discontinuities: crack branching

The concept of the overlapping element method can be easily extended to crack branch

modeling. When the original crack, crack 1, branches into crack 1 and crack 2, as shown

in Figure 3.6, the element in which the crack branches is replaced by three overlapping

elements.

e1

e2

e3

1( ) 0f  ȟ
1( ) 0f �ȟ

1( ) 0f !ȟ

2 ( ) 0f  ȟ2 ( ) 0f �ȟ 2 ( ) 0f !ȟ

Figure 3.6. The decomposition of an element into three elements e1, e2 and
e3 to model crack branching; solid and hollow circles denote the original
nodes and the added phantom nodes, respectively.

Let f 1(ξ) = 0 describe the original crack and one branch, and let f 2(ξ) = 0 describe

the second branch. The discontinuous velocity field is then given by

v̂(ξ, t) = v̂e1(ξ, t) + v̂e2(ξ, t) + v̂e3(ξ, t) (3.21)

=
∑

I∈S1

NI(ξ)H(−f 1(ξ))H(−f 2(ξ))v̂e1
I (t)

+
∑

I∈S2

NI(ξ)H(−f 1(ξ))H(f 2(ξ))v̂e2
I (t)

+
∑

I∈S3

NI(ξ)H(f 1(ξ))H(−f 2(ξ))v̂e3
I (t)
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The element nodal forces are developed as in Belytschko et al. [43]. In addition,

curvature-translation coupling terms are added and a shear projection operator replaces

the previous transverse shear terms. The principle of virtual power is used to derive the

relationship for the internal nodal forces. The principle states that:

δP int = A(Bmδv)T

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f̂ r
x

f̂ r
y

f̂ r
xy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
︸ ︷︷ ︸

virtual membrane power

+ A(Bbδv)T

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m̂r
x

m̂r
y

m̂r
xy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
︸ ︷︷ ︸

virtual bending power

+ κ̄A(Bsδv)T

⎧
⎪⎨

⎪⎩

f̂ r
xz

f̂ r
yz

⎫
⎪⎬

⎪⎭
︸ ︷︷ ︸
virtual transverse shear power

(3.22)

where κ̄ is the shear reduction factor from the Mindlin shell theory, and f̂ r
ij and m̂r

ij are

the resultant forces and moments which are integrated through the element thickness.

f̂ r
ij =

∫
σ̂ij dẑ (3.23)

m̂r
ij =

∫
ẑσ̂ij dẑ (3.24)

where ẑ = ζ h
2 .

We substitute Equations (3.9)-(3.16) into (3.22) and invoking the arbitrariness of δv

yields the discretized element nodal forces:

f̂ int
xI = Ae (bxI f̂

r
x + byI f̂

r
xy + bc

xIm̂
r
x + bc

yIm̂
r
xy (3.25)

f̂ int
yI = Ae (byI f̂

r
y + bxI f̂

r
xy + bc

yIm̂
r
y + bc

xIm̂
r
xy) (3.26)

f̂ int
zI = Aeκ̄ (bs

x1I f̂
r
xz + bs

y1I f̂
r
yz) (3.27)

m̂int
xI = Ae [κ̄(bs

x2I f̂
r
xz + bs

y2I f̂
r
yz) −(byIm̂

r
y + bxIm̂

r
xy)] (3.28)
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m̂int
yI = Ae [κ̄(bs

x3I f̂
r
xz + bs

y3I f̂
r
yz) + (bxIm̂

r
x + byIm̂

r
xy)] (3.29)

m̂int
zI = 0 (3.30)

The final form of the element internal forces in the global coordinates can be determined

by performing the transformation between the corotational and global coordinates as

below:

f int
e = T T

e (f̂
int

e + f̂
stab

e ) (3.31)

where T is the transformation matrix between global and corotational components and

f̂
int

e is the nodal internal force vector in the corotational coordinate systems. In Equation

(3.31), to circumvent the rank deficiency due to one point integration, an hourglass control

force, f̂
stab

e , is added to the internal force vector. For a description of the hourglass control

scheme, see [44, 45].

For each of the overlapped elements modeling a crack, the nodal forces are given by

f int
e = (

Novr
ele∑

k=1

Aek

Ae
T T

ek
f̂

int

ek
) + T T

e f̂
stab

e (3.32)

where Novr
ele is the total number of overlapped elements, Aek

is the activated area of

the corresponding overlapping elements in the corotational coordinates, f e is the nodal

force vector of a cracked element and f̂ ek
is the corotational nodal force vector of the

overlapped element ek. Note that the internal nodal forces of elements ek can be calculated

by multiplying Equations (3.25)-(3.30) by the area fraction, Aek
/Ae. A more detailed

discussion of the concept of the modification of cracked element nodal forces by area

fractions can be found in Song et al. [14].
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CHAPTER 4

Constitutive Models and Continuous-Discontinuous Transition

In this chapter, we will briefly review some of the constitutive models that are used

in this work. Also, we will describe proposed fracture criteria which are suitable for

numerical computations with low order element within the framework of explicit dynamic

methods and we also describe the cohesive law which is used to model fracture energy

dissipation.

A cohesive crack model is prescribed along the newly injected strong discontinuity

surfaces until the crack opening is fully developed, i.e. cohesive traction has vanished.

The roles of the cohesive model are:

(i) To remedy spurious mesh-dependent pathological behavior by providing a bounded

solution at the crack tip. For linear elastic fracture simulations, if the crack tip is

not smoothly closed with cohesive forces, finite element solutions are unbounded

at the crack tip due to the crack tip stress singularity and a crack path is depends

strongly on the surrounding mesh resolution. Also, for fracture in plastic bulk

materials, the crack tip stress singularity can be slightly alleviated by plasticity.

However, the finite element solutions still depend on the mesh resolution.

(ii) To ensure an accurate dissipation of energy due to fracture. If the crack opening

displacement is not governed by a cohesive model, the normal component of the

stress along the crack surface can suddenly drop to zero due to lack of fracture
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energy dissipation; note that injecting a strong discontinuity without including

a cohesive force is the same as creating two free surfaces without dissipating

additional surface energy. In this case, the total system suffers from an excessive

accumulation of elastic energy and this excessive energy accelerates the crack

propagation speed: for details on the relationship between crack propagation

speed and dissipated fracture energy, refer to Song et al. [26] and Rabczuk et al.

[47].

4.1. Constitutive models

4.1.1. Material damage model

One of the material models used for this work is the damage model of Lemaitre [48].

In this model, a scalar damage parameter D represents the extent of damage. This

constitutive model was used only for small displacement problems, so the constitutive

relation is given as:

σij = (1 −D)Cijklϵkl (4.1)

where D can have values from 0 to 1, Cijkl is the elastic modulus of the undamaged

material, and σij and ϵkl are the Cauchy stress and linear strain, respectively. As can be

seen from Equation (4.1), an increase in damage parameter D leads to a softer material

response. The damage evolution law is given by

D(ϵ̄) = 1 −(1 −A)ϵD0 ϵ̄
−1 −Ae−B⟨ϵ̄−ϵD0⟩ (4.2)
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where ϵ̄ is the effective strain, A and B are material parameters and ϵD0 is the strain

threshold. The effective strain ϵ̄ is defined as

ϵ̄ =

√√√√
3∑

i=1

⟨ϵi⟩2 (4.3)

where ϵi is the ith principal strain and ⟨·⟩ is the Macaulay bracket. Note that in Equation

(4.3), the compressive strain components are filtered out by the Macaulay bracket and

therefore do not contribute to the damage.

4.1.2. Hardening plasticity for quasi-brittle material

We employed a von-Mises type hardening J2-plasticity model for quasi-brittle materials.

For the integration of the constitutive model we used a first-order forward Euler explicit

integration scheme. In the simulation of fracture within the explicit simulation framework,

the integration time step is limited to a small fraction of the critical time step, which is

usually smaller than the critical time step for the integration of the constitutive equation.

The rate form of the constitutive equation in the corotational coordinate system is

given by

Dσ̂

Dt
= Ĉ

elas
: (D̂ −D̂

p
) (4.4)

where, σ̂ is the corotational rate of Cauchy stress, Ĉ
elas

is the corotational elastic moduli

tensor and D̂
p

is the corotational rate of plastic deformation tensor. For a von-Mises

material with isotropic hardening, the plastic corotational rate of deformation tensor is

given by

D̂
p

= rλ̇ = r
r : Ĉ

elas
: D̂

r : Ĉ
elas

: r + hp

(4.5)
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where r is J2 plasticity flow direction, λ̇ is plastic flow rate parameter, and hp is the

plastic hardening modulus.

4.1.3. Thermo elasto-viscoplasticity

For ductile fracture and shear band simulations, we used a thermo-elasto-viscoplastic

constitutive model in which heat conduction is neglected for simplicity. The rate form of

the constitutive equation is given by

∇
τ= Celas : (D −Dvp −Dt) (4.6)

where,
∇
τ is the Jaumann rate of Kirchhoff stress, Celas is the elastic moduli tensor, Dvp is

the viscoplastic rate of deformation and Dt is the thermal rate of deformation. For a von-

Mises material with isotropic hardening condition, the viscoplastic rate of deformation,

Dvp, is given by

Dvp =
3 ˙̄ϵ

2σ̄
τ ′ (4.7)

where, τ ′ is the deviatoric part of Kirchhoff stress and σ̄ is the effective stress. ˙̄ϵ is the

effective plastic strain rate which is characterized by the power law relation

˙̄ϵ = ϵ̇0

[
σ̄

g(ϵ̄, T )

]m

(4.8)

where m is a power index which indicates the rate sensitivity of the material and g(ϵ̄, T )

is the material hardening or softening parameter. In this study g(ϵ̄, T ) is given by

g(ϵ̄, T ) = σ0

[
1 +

ϵ̄

ϵ0

]N {
1 −δ

[
exp(

T −T0

k
) −1

]}
(4.9)
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The details about the constitutive equation can be found in Perzyna [49], Lemonds and

Needleman [50], Zhou et al. [51] and Li et al. [52]. The thermal rate of deformation,

Dt, is given as

Dt = αṪI (4.10)

where α is coefficient of the thermal expansion. For adiabatic heating, we have

ρ0CpṪ = χτ : Dvp (4.11)

where χ is the fraction of plastic work converted to heat. For the explicit stress update

algorithm, we employed the rate tangent modulus algorithm given by Peirce et al. [53].

4.2. Continuum to discontinuity transition

4.2.1. Maximum tensile principle strain criterion

A strain based fracture criterion was used to determine the onset point of a post strain

localization behavior of a material, i.e. fracture. When the strain at a crack tip material

point reaches a fracture threshold, we inject a strong discontinuity at the previous crack

tip according to maximum principal tensile strain direction of an averaged strain, ϵavg.

We use a nonlocal (i.e. surface weighted average) scheme to compute the averaged strain,

ϵavg , which is given by

ϵavg =
4

π

∫ π
2

−π
2

∫ rc

0

w(r) ϵ dr dθ (4.12)

where r and θ are the distance from the crack tip and the angle with the tangent to the

crack path, respectively, and w(r) is a weight function; for the latter, we use a cubic spline
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function given by

w(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4( r
rc
−1)( r

rc
)2 + 2

3 0 < r < 0.5 rc

4
3(1 − r

rc
)3 0.5 rc ≤r ≤rc

0 otherwise

(4.13)

where rc(≃ 3he) is the characteristic size of the averaging domain. A typical averaging

domain is shown in Figure 4.1.

Crack

cr

r

T

X

Averaging
domain

Figure 4.1. Schematic of the averaging domain with a radius of rc.

4.2.2. Material stability criterion

The discontinuous crack or shear band model is initiated when the material loses stability.

In a rate-independent material, loss of stability coincides with loss of hyperbolicity and

the conditions are well known; for examples, see Belytschko et al. [11].

However, in a rate-dependent material, hyperbolicity is not lost, so the transition to a

discontinuity is governed by material instability. Material instability can be determined



59

by examining whether growth occurs in an initially stressed infinite body perturbed by a

harmonic field (see, Belytschko [33], p. 386)

ũ = h1 · eat · ei(bt+kh2·X) (4.14)

where h1 is the polarization direction, h2 is the direction of the wave propagation, k is

the wave number and a is a real number that determines the stability of the response; if

a > 0 the response is unstable. The conditions that a < 0 coincides with the condition

that

h1 ⊗ h2 : A : h1 ⊗ h2 < 0 ∀ hi (4.15)

where A relates the rate of stress to the rate of strain. At the point that there exist

hi such that Equation (4.15) is violated, a discontinuity is introduced such that ∇f is

parallel to h2.

4.3. Cohesive crack models

In this study, we prescribed only the normal traction of a linear cohesive model, as

shown in Figure 4.2, since crack propagation is usually due to mode I fracture in quasi-

brittle materials.

The cohesive model is constructed so that the dissipated energy due to the crack

propagation is equivalent to the fracture energy:

Gf =

∫ δmax

0

τc(δn) dδ =
1

2
τmaxδmax (4.16)

where δmax is the maximum crack opening displacement, Gf is the fracture energy, and

δn is the jump in the displacement normal to the crack surface, Γd, as shown in Figure
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Figure 4.2. Schematic of a linear cohesive law: the area under the curve is
the fracture energy, Gf .

4.2. In addition, a penalty force was added in compression. This penalty force depends

only on δn and is given by τc = kδn when δn < 0.
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CHAPTER 5

Numerical Examples

5.1. Dynamic fracture of two dimensional planes

5.1.1. Edge-cracked plate under impulsive loading

These simulations concern the experiment reported by Kalthoff and Winkler [54] in which

a plate with two initial edge notches is impacted by a projectile as shown in Figure 5.1(a).

In the experiment, two different failure modes were observed by modifying the projectile

speed; at high impact velocities, ductile failure with a shear band propagation is observed

to emanate from the notch at an angle of −10◦ with respect to initial notch, whereas at

lower strain rates, brittle failure with a crack propagation angle of about 70◦ is observed.

In this study, we consider both failure modes.

To take advantage of the twofold symmetry of the configuration, only the upper half of

the plate is modeled, as shown in Figure 5.1(b): at the bottom edge of the finite element

model, the boundary conditions are uy = 0 and tx = 0. The initial impact velocity, v̄,

is applied to the left edge of the plate along the segment 0 ≤y ≤25 mm. We assumed

that the projectile has the same elastic impedance as the specimen, so we applied one

half of the projectile speed, v̄ = 16.5 m/s for the brittle fracture mode and v̄ = 32.0 m/s

for the ductile shear mode, to the left edge as an initial condition (see, [55, 56]). The

initial notch was modeled by including two lines of nodes separated by 300 µm. The

material is a maraging steel 18Ni1900 [57] and its material properties are ρ = 8000 kg/m3,
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E = 190 GPa and ν = 0.30. The initial Rayleigh wave speed is cR = 2799.2 m/s. We

used a central difference time integration scheme with a Courant number of 0.1.

0v

100 mm

75
 m

m
50

 m
m

20
0 

m
m

Twofold symmetry
line

(a)

100 mm

75
 m

m
25

 m
m

v

(b)

Figure 5.1. Setup for the edge-cracked plate problem under impact loading:
(a) the original experimental setup and (b) its numerical model.

5.1.1.1. Dynamic crack propagation with a damage model. We considered a

Lemaitre damage constitutive model [58] with A = 1.0, B = 200.0 and εD0 = 3.0×10−3.

A linear cohesive crack model with fracture energy GF = 2.213 ×104 N/m was used.

Numerical simulations were made with two different meshes to observe mesh sensitivity:

50 ×50 and 100 ×100 meshes.

The results for the 100×100 mesh and a comparison of the results of the 50×50 and

100 ×100 meshes are shown in Figure 5.2 and Figure 5.3, respectively. Both simulations

are concluded at around 80 µs when the crack tip reaches the upper boundary. Both

results show very similar trajectories for the crack. The initial crack propagation angle

is around 64◦ and the average angle from the initial crack tip to the final crack tip is

about 60◦ for both meshes; the crack path is nearly straight. This angle is 10◦ smaller
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than the observed angle [54] and the angle obtained by meshfree [59, 60] and XFEM

[36]. In the latter, the crack tip singularity was included as an enrichment at the notch.

Evidently, due to approximation errors of constant strain elements, the near tip field is

not reproduced well enough to yield a highly accurate direction for crack propagation.

However, for most engineering purposes, the accuracy is more than adequate. There are

damaged areas in the bottom right corner of the model due to wave reflection.

The crack propagation speed is shown in Figure 5.4. The crack tip speed never exceeds

the Rayleigh wave speed 2799.2 m/s. For the 50 ×50 mesh, the crack tip speed is

substantially higher than reported in Belytschko et al. [11]; in the reference [11], the

method that modeled crack progression within the element was used. This suggests

that elementwise propagation of the crack introduces some errors in crack tip speed for

coarse meshes, and in particular, it appears to increase the predicted crack tip speed.

However, the crack tip speed for the 100×100 mesh decreases and agrees better with the

computation of Belytschko et al. [11]. Note that the crack tip speed is taken to be the

average over 5 time steps.

5.1.1.2. Comparisons with the element deletion and the interelement crack

methods. Figures 5.5(a) and (b) show the crack paths computed by the element deletion

method with structured 100×100 mesh and equivalent unstructured meshes, respectively.

In these calculations, we used Gf = 2.213×104 N/m and ϵ0= 4.440×10−3m for a linear

elastic-linear softening law where ϵ0 is the strain at the peak stress. As we can see from

Figure 5.5(a), a structured mesh cannot predict the experimental crack path and shows

a severe pathological behavior. For an unstructured mesh, the crack first grows vertically
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Figure 5.2. The crack path for a 100 ×100 quadrilateral mesh with a
Lemaitre damage model at different time steps: (a) t = 39.29 µs, (b)
t = 42.86 µs, (c) t = 53.58 µs and (d) t = 88.58 µs.
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Figure 5.3. Comparison of the crack paths for a 50 ×50 and a 100 ×100
quadrilateral meshes with a Lemaitre damage model at t = 88.58 µs: (a) a
50 ×50 quadrilateral mesh and (b) a 100 ×100 quadrilateral mesh.
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Figure 5.4. Crack propagation speed for the edge-cracked plate problem
under impulsive loading: (a) the current method and (b) the previous results
in Reference [11]; in Reference [11] a 80 ×80 cross-triangular mesh was
used.

upward and then grows at an angle of 50◦. There are fractured areas in the bottom right

corner of the model due to wave reflection.

Figures 5.6(a) and (b) show the final crack path by the interelement crack method of

the Xu and Needleman [9] with structured 50 ×50 and 100 ×100 meshes, respectively.

In these calculations, we used φn = φt = 2.2170 ×104 J/m2, δn = δt = 4.720 ×10−6m,

r = 0.0 and q = 1.0 for cohesive zone model [9]. For a 100×100 mesh, the crack initially

propagates with an angle of 70◦, which agrees quite well with the experiment, but after

the mid point of the simulation, the crack suddenly propagates at a 45◦ angle. For the

simulation with a 50 ×50 mesh, there is no shift. The overall crack propagation angle is

around 55◦. For both meshes, crack paths meander along the 90◦ and 45◦ edges to achieve

this angle.
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(a) (b)

Figure 5.5. Crack paths for the element deletion method with: (a) a 100×
100 structured quadrilateral mesh at t = 60.19 µs and (b) an unstructured
mesh (he

avg = 1.0 mm) at t = 67.85 µs.

(a) (b)

Figure 5.6. The crack paths of the interelement crack method of Xu and
Needleman [9] with 50 ×50 and 100 ×100 quadrilateral meshes: (a) t =
98.65 µs and (b) t = 98.73 µs.

5.1.1.3. Dynamic crack and shear band propagation with an elasto-viscoplastic

model. In this example, we simulate both the brittle and the shear fracture mode of the

Kalthoff and Winkler experiment [54]. To observe dynamic shear band propagation, we

employed a themo-elasto-viscoplastic constitutive model [50, 51, 52] with an explicit
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stress update algorithm [53]. The material is a maraging steel, 18Ni1900, as in the pre-

ceding example and the material properties for the thermo-elasto-viscoplatic constitutive

model can be found in reference [51, 52]. For the crack and shear band criterion, as an

indicator of the propagation and the direction, the loss of material stability condition is

employed. Note that a rate-dependent material such as an elasto-viscoplastic material

does not lose hyperbolicity, but lose material stability.

At an initial impact velocity of 16.5 m/s, we observe dynamic crack propagation

as in the preceding example. The comparison of the crack growth paths between the

results with damage model and elasto-viscoplastic model are shown in Figure 5.7. The

crack growth paths of the elasto-viscoplastic model agree better with the experimental

results than those for the hypo-elastic constitutive law with damage. The initial crack

propagation angle is around 67.4◦ and the average overall crack propagation angle is 65.1◦.

This 2 ∼ 5◦discrepancy in the angle with the experiment may be due to the absence of a

crack tip stress concentration.

At an initial impact velocity of 32 m/s, the effective plastic strain distribution and a

comparison of the shear band path with experimental results are shown in Figure 5.8. We

assumed that the shear band energy is GF = 100 N/m. In this study, since we adopted a

strong discontinuity approach to represent sheared elements, the localized plastic strain

along the shear band is substantially lower than that of the physical shear band. However,

as we can observe from Figure 5.8(b), the overall shear band propagation path agrees quite

well with the experimental results [56], though the shear band path drifted downward

more than the experimental results along the last half of the path.
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Figure 5.7. The crack paths of the simulations with the damage model and
the elasto-viscoplastic model.

Plastic strain

2.02
1.79
1.57
1.34
1.12
0.90
0.67
0.45
0.22
0.00

(a)

0.0

20.0

40.0

60.0

80.0

100.0

(mm)20.0 40.0 60.0 80.0 100.0
0.0

(mm)

Experiment

This method

(b)

Figure 5.8. Dynamic shear band propagation: (a) effective plastic strain
distribution at t = 35.00 µs and (b) comparison of the computed shear
band path with experimental results [56].

5.1.2. Crack branching

In this example, we consider a prenotched specimen 0.1 m by 0.04 m, as shown in Figure

5.9. Tensile tractions, σ = 1 MPa, are applied on both the top and the bottom edges as a
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step function in time. Numerical results for this problem have been given by Belytschko

et al. [11], Rabczuk and Belytschko [61], Xu and Needleman [9] and experimental results

with different dimensions are available in [62, 63, 64, 65, 66].

1 00 mm

4
0

 m
m

5 0 mm
2
0

 m
m

ı

Figure 5.9. Plate with a horizontal initial notch under tensile loading.

We used the Lemaitre damage law [58] for the continuum domain and imposed a

linear cohesive law with fracture cohesive energy Gf = 3.0 N/m once a discontinuity

developed. The material properties are ρ = 2450 kg/m3, E = 32 GPa and ν = 0.20. We

used A = 1.0, B = 7300.0 and ϵD0 = 8.5×10−5 for the Lemaitre damage model [58]. The

initial Rayleigh wave speed is cR = 2119.0 m/s. For the discretization, we modeled the

domain with 50 ×21, 100 ×51, and 200×81 structured quadrilateral elements and used

explicit time integration.

The crack branching phenomena is governed by the material stability criterion, which

is a property of the constitutive equation. Crack branching was initiated when the two

polarization angles from the material stability analysis differed from that of the previous

crack direction. When this occurred, the crack was also injected into the adjacent ele-

ments. Unless the latter step was taken, crack branching could not be modeled accurately
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with low order elements. For simplicity, we only allow the crack to branch once and set

the element stress to zero in elements in which three cracks have formed.

The pattern of crack propagation is shown in Figure 5.10(a)-(c) along with a sketch

of the experiment paths reported by Ramulu and Kobayashi [62]. The crack pattern is

similar to the experimental results.

(a) (b)

Damage
parameter

1.00
0.88
0.77
0.66
0.55
0.44
0.33
0.22
0.11
0.00

(c) (d)

Figure 5.10. Crack branching and damage evolution with a 100 ×51 mesh
at different time steps: (a) t = 30.29 µs (b) t = 46.14 µs (c) t = 55.93 µs
and (d) a sketch of the experiment paths reported by Ramulu and Kobayashi
[62].

The computed crack propagation speed is shown in Figure 5.11(a) along with the

reported crack propagation speed by Belytschko et al. [11]. The crack begins to propagate

at 15.38 µs. From this initial phase until crack branching, the crack tip speed increases

linearly and peaks at around 29.04 µs; at this point the crack branches into two cracks.

After branching, the crack tip speed becomes almost constant at 75% of the Rayleigh

wave speed. This agrees with the results which were reported by Belytschko et al. [11],
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and Rabczuk and Belytschko [61]. The numerical simulation finishes at 55.93 µs when

the crack tip reaches the boundary of the specimen.

Crack branching
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Figure 5.11. Crack propagation speed for the crack branching problem: (a)
the current method and (b) the previous results in Reference [11].

5.1.2.1. Comparisons with the element deletion and the interelement crack

methods. Figure 5.12 shows the results for the element deletion method at two different

times. In these calculations, we used Gf = 3 J/m2 and ϵ0 = 8.50 ×10−5 for the linear

elastic-linear softening law, where ϵ0 is the strain at the peak stress. It can be seen

(a) (b)

Figure 5.12. The final crack path of the element deletion method with a
200 ×81 structured quadrilateral mesh at different time steps: (a) t =
30.56 µs and (b) t = 65.62 µs.
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that the crack continues in a straight path without branching. The calculation shown

was made with a 200 ×81 structured quadrilateral mesh, but we have also used 50 ×21

and 100 ×41 structured quadrilateral meshes and obtained a straight crack. One would

expect the solution to exhibit an increase in the tensile strain adjacent to the crack as its

velocity increases, which would trigger crack branching. In the simulation by the element

deletion method, the stress adjacent to the crack tip does increase, but it never becomes

large enough to initiate crack propagation in the lateral direction. The crack tip speeds
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Figure 5.13. Crack propagation speed for the crack branching problem: (a)
the element deletion method and (b) Camacho and Ortiz method [10].

for three different meshes computed by the element deletion method are shown in Figure

5.13(a). It can be seen that the crack tip velocity for all meshes is significantly less than

that of XFEM. This is perhaps why branching does not occur. Also, the time history

obtained by element deletion is completely different and bears little relationship to the

results obtained by the other methods.



73

Figures 5.14(a)-(b) and (c)-(d) show the final paths obtained by Camacho and Ortiz

method [10] for 76×30 and 152×60 structured cross-triangular meshes, respectively. In

these calculations, σc = 2.8 MPa, δc = 3.9 ×10−7 m and β = 1.0 were used for cohesive

model [10]. The crack tip speeds for 76 ×30 and 152 ×60 structured cross-triangular

meshes computed by the interelement crack method are shown in Figure 5.13(b). The

interelement method predicts crack branching but the branching point depends somewhat

on mesh refinement. Figure 5.15 shows the final crack paths for the element deletion

(a) (b)

(c) (d)

Figure 5.14. Crack path of the Camacho and Ortiz method [10] with: a 76×
30 structured cross-triangular mesh at (a) t = 48.38 µs; (b) t = 100.00 µs
and a 152 ×60 structured cross-triangular mesh at (c) t = 48.09 µs; (d)
t = 100.0 µs. The deformed shapes are magnified by 90.

method and for the interelement crack method with unstructured mesh. As we can see
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from Figure 5.15(a), for an unstructured mesh, the element deletion method predicts crack

branching, but it is quite different from the experimental observations [62].

(a) (b)

Figure 5.15. The final crack paths for unstructured meshes (he
avg =

1.0 mm): (a) the element deletion method and (b) the Camacho and Ortiz
method [10]; the deformed shapes are magnified by 90.

We should make some remarks about the nucleation criteria in the interlement method

and in XFEM. In the interelement method, the crack propagation was modeled strictly

by separation of element edges. The only aspect of the algorithm that limits the evolution

of the crack is the transition from edges that share nodes (and thus can not separate) to

edges that have duplicated nodes (and thus can separate). In XFEM, the crack growth

was governed by the material stability criterion, which is a property of the constitutive

equation used. Crack branching was initiated when the two polarization angles from the

material stability analysis differed from that of the previous crack direction. When this

occurred, the crack was also injected into the adjacent elements. Unless the latter step

was taken, crack branching could not be modeled accurately with XFEM with low order

elements.
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5.2. Dynamic fracture of thin shells

5.2.1. Notched cylinder fracture under internal detonation pressure

An interesting series of experiments concerned with the quasi-brittle fracture of shells has

been reported by Chao and Shepherd [67], and Chao [68]. These experiments involve

notched thin-wall pipes filled with gaseous explosives through which a detonation wave is

passed. This is accomplished in the experiment by filling the pipe with an explosive gas

and initiating a detonation wave at the left end as shown in Figure 5.16(a).

In this study, we focused on numerical simulations of two experimental results, shot 7

(L= 5.08 cm) and shot 4 (L= 2.54 cm) [67, 68], since these two experimental results

exhibit strikingly different growth of the fracture, which is ascribed to the length of

the notch. Chao and Shepherd [67], and Chao [68] reported that with a notch size of

L = 5.08 cm, the backward crack tip, which is closer to the detonation initiation point,

showed a curving crack path, whereas the forward crack tip propagates only a short

distance in a straight line and then bifurcated into two cracks. However, with a notch size

of L = 2.54 cm, the backward crack tip curved, whereas the forward crack tip propagates

only a short distance in a straight line and then is arrested.

For the numerical simulation, we discretized the right segment of the cylinder length

of the 91.40cm with 54,382 4-node quadrilateral shell elements (he ≃ 0.90 mm); see Figure

5.16(b)-(c). The shell material is aluminum 6061-T6 and we modeled it with J2-plasticity;

the material properties are density ρ = 2780.0 kg/m3, Young’s modulus E = 69.0 GPa,

Poisson’s ratio ν = 0.30, and yield stress σy = 275.0 MPa. We used linear hardening

with a constant slope hp = 640.0 MPa. The cohesive fracture energy Gf = 19.0 kJ/m2 is
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Figure 5.16. Setup for the notched cylinder fracture test under internal
detonation pressure [67, 68]: (a) the total experiment assembly, (b) the
cylinder with the notch size of L = 5.08 cm (shot7) and (c) the cylinder
with a notch size of L = 2.54 cm (shot4).

treated in terms of a cohesive law (the assigned fracture energy is based on Johnson and

Radon [69, 70] and Roychowdhury et al. [71]).

In order to induce unsymmetrical crack propagation with an axisymmetric shell struc-

ture and loading, we introduced a small scatter in the yield strength of the bulk material.

The yield strength at every material points is perturbed by factors ranging from −5.0%

to 5.0%: the perturbation factor is obtained from a log-normal distribution around the
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mean value of 1.0 and a standard deviation of 2.0%. We also considered bulk materials

in which the yield strength is perturbed by ± 10.0%; the results are almost identical.

For the fracture criterion, we used a 12% maximum tensile strain as the fracture strain.

This strain value was used to nucleate any new cracks and to propagate cracks, but in

these simulations no new cracks were nucleated as the notches and subsequent cracks

served as the only nucleation mechanisms. The cracks were propagated in the direction

normal to the direction of maximum principal strain.

For the applied pressure, we used a pressure time history function, p(x, t), which is

provided by Beltman and Shepherd [72]:

p(x, t) =

⎧
⎪⎨

⎪⎩

0 t < x/vcj

pcj exp(−(t −x/vcj)/T0) t > x/vcj
(5.1)

where x is the axial distance from the detonation initiation source to the material point,

t is the simulation time, T0(≃ 3.0 x/vcj) is pressure decay time, and pcj and vcj are the

Chapmand-Jouguet pressure and detonation wave propagation velocity, respectively. For

the simulation, we used pcj = 6.2 MPa and vcj = 2390 m/s to model the internal deto-

nation wave as in [72] and applied this pressure normal to all surfaces of the shell model

throughout the entire simulation, even after extensive fracture and large deformation.

Fluid-structure interaction effects were not modeled.

Here, we need to make a remark on the way we modeled the initial notch. The

notches in the experiment were not machined through the entire depth of the shell. In

this study, we modeled the notch by using the XFEM methodology, so we immediately

allowed the translational and angular velocity fields across the notch to be discontinuous.
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The penalty part of the cohesive law in the compressive regime was activated to prevent

incompatibilities in the compressive part (below the notch), but the tensile part of the

cohesive law is not activated in the notch since the fracture in the notch is assumed to

be completed. The penalty constants for these constraints did not effect the final results

very much.

5.2.1.1. Cylinder with notch size of L= 5.08 cm (shot 7). Figure 5.17 shows

deformed configurations and contour plots of the effective plastic stress at the beginning

of the backward crack propagation and just before and after the forward crack branches

into two cracks. As we can see from Figure 5.17(c), the forward crack tip branches with an

angle of 45◦ and forms stress concentrations ahead of the two branched tips. In contrast

to the forward moving branched tips, the backward tip retains its straight path.

Figure 5.18 shows the different perspective views of the computed deformed configu-

rations at an intermediate stage, time t = 256.86 µs. Subsequently, the forward branches

turn to propagate along the circumferential direction. The computed final configuration is

shown in Figure 5.19(a) along with the final experimental configuration, which is shown at

Figure 5.19(b). The computation reproduces some of the key features of the experiment

quite well. In the computations, the crack propagates from the notch to the backward

and the forward tips. The forward propagating crack then branches initially at 45◦, but

then turns to propagate along the axis of the cylinder. The experimental specimen shows

evidence of similar crack branching and turning. As can be seen from Figure 5.19(b), in

the part of the pipe that has opened up, the crack progresses initially at an angle, but then

the final crack path is circumferential, i.e. normal to the axis of the pipe. The computed
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(a)

(b)

(c)

Figure 5.17. Evolution of the crack paths and the distributions of effective
plastic stress for the cylinder with the notch size of L = 5.08 cm (shot7)
at different time steps: (a) t = 213.55 µs, (b) t = 228.61 µs, and (c)
t = 238.01 µs. Note that the finite element nodes are plotted and the crack
paths are explicitly marked.

crack paths are quite similar. In the center of the fracture, a little wedge shaped pipe is

apparent. This is absent in the computation.

There are some discrepancies in the final configurations as can be seen from Figure

5.19. The lower flap, as computed, opens up more than in the experiments. In the

experiment, both the lower and the upper flaps show significant bends, but these are

not apparent in the computation. This can be due to: (1) absence of fluid-structure

interaction effects in the computation, (2) errors in detonation wave loading function,

particularly in the later stages, and (3) lack of fidelity in fracture criterion or material

model.
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(a)

(b)

Figure 5.18. Crack opening at time t = 256.86 µs along with the distri-
bution of effective plastic stress for the cylinder with the notch size of
L = 5.08 cm (shot7): (a) side view, and (b) top view. Note that the
finite element nodes are plotted and the crack paths are explicitly marked.

(a)

(b)

Figure 5.19. Comparison of the final deformed shape for the cylinder with
the notch size of L = 5.08 cm (shot7): (a) the simulation result, and (b)
the experimental result [67, 68].

Figure 5.20 shows time histories of the forward and backward crack propagation

speeds. The forward crack tip starts to propagate around t = 210.0 µs and then lin-

early speeds up and shows a peak speed around t = 229.0 µs; at this point the crack
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branches into two cracks. After branching, the crack tip loses speed, but then the speed

recovers and reaches a plateau.
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Figure 5.20. Propagation speeds of two crack tips for the cylinder with the
notch size of L = 5.08 cm (shot7).

5.2.1.2. Cylinder with notch size of L= 2.54 cm (shot 4). Experiments with the

shorter notch showed substantially different crack evolution, and this is also evident in

the computations. Figure 5.21 shows the distribution of effective plastic stress in the

computed deformed configuration before the backward crack starts to rotate. As can be

seen from Figure 5.21(a), the axisymmetry of the stress field ahead of the backward crack

tip is broken and then the crack tip path exhibits a change in direction as shown in Figure

5.21(b). Note that this sudden direction change of the crack path causes a concentration

of plastic strain at the kinked points and it reduces the crack speed, as indicated in Figure

5.22.
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(a)

(b)

Figure 5.21. Evolution of the crack and the distributions of the effective
plastic stress for the cylinder with the notch size of L = 2.54 cm (shot4) at
different time steps: (a) t = 231.41 µs and (b) t = 239.05 µs. Note that the
finite element nodes are plotted and the crack paths are explicitly marked.
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Figure 5.22. Crack propagation speeds of two crack tips for the cylinder
with the notch size of L = 2.54 cm (shot4).

Figure 5.23 shows the different perspective views of the computed deformed configu-

ration at time t = 261.98 µs. As we can see from the figure, the backward crack follows

a circumferential path but the forward crack path remains straight. Shortly after this
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point, the strain concentration ahead of forward crack tip is diffused and the crack tip is

arrested.

(a)

(b)

Figure 5.23. Evolution of the crack paths and the distributions of the ef-
fective plastic stress for the cylinder with the notch size of L = 2.54 cm
(shot4) at time t = 261.98 µs: (a) top view and (b) side view. Note that
the finite element nodes are plotted and the crack paths are explicitly
marked.

A comparison between computational and experimental results of the final configura-

tion is in Figure 5.24. Again, the computed size of the crack opening in the pipe agrees

reasonably well with the experiment and so do the crack paths, except that the tran-

sition from the axial path to a circumferential path is quite smooth in the experiment,

but rather rough in the computation. The shapes of the flaps are not predicted well.

Evidently, fluid-structure interaction effects play a substantial role in their shapes.

The computed crack propagation speeds for shot 7 and shot 4, which are shown in Fig-

ures 5.20 and 5.22, respectively, are somewhat faster than the reported experimental crack
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(a)

(b)

Figure 5.24. Comparison of the final deformed shape for the cylinder with
the notch size of L = 2.54 cm (shot4) at time t = 298.1 µs: (a) the simula-
tion result, and (b) the experimental result (shot 4).

speeds (maximum 250 m/s) [68]. This may be due to the shortcomings in the numerical

representation of the crack: i.e. lack of crack tip blunting and tunneling phenomena.
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CHAPTER 6

Conclusions

Finite element methods which are incorperated within an explicit time integration

scheme have been developed for the prediction of dynamic fracture in shells and dynamic

crack and shear band propagation in two dimensional planes. In the methods, by rein-

terpreting the conventional XFEM displacement field, a cracked or sheared element is

represented by two superposed elements with a set of added phantom nodes or phantom

degrees of freedom. The numerical integration of those elements is simplified by the use of

an one point quadrature scheme with a hourglass control. This facilitates the implemen-

tation of the methods into standard finite element programs. Another attractive feature

of the methods is that they provides consistent history variables and low computational

cost. This allows large scale nonlinear dynamic fracture problems to be solved efficiently.

A nonlocal fracture criterion based on the maximum tensile principal strain has been

developed for the modeling dynamic fracture in a quasi-brittle material. In order to miti-

gate spurious predictions of fracture within the framework of an explicit time integration

scheme, the criterion uses a weighted average of the strain ahead of the crack tip, i.e.

a nonlocal form of a strain-based fracture criterion. For the weighting function, a cu-

bic spline that extends to approximately the edge of the near tip plastic field was used.

For the modeling of shear band propagation in a rate-dependent material, the material

stability criterion also used.
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Fracture energy dissipation was modeled by a cohesive law across the crack and shear

band surfaces. The cohesive law serves to represent plastic work and other fracture

processes that are not resolved by the model.

To evaluate the applicability of the proposed method, several numerical examples for

which experimental or numerical results are available have been analyzed for two dimen-

sional plane and shell fracture problems. In the Kalthoff and Winkler [54] problem, which

is handled with two dimensional elements, the method showed a little mesh dependency:

the crack tip speed decreases somewhat with mesh size. We attribute this effect to the

elementwise cracking procedure, i.e. due to the absence of a model for a partially cracked

element. It is apparent that the elementwise cracking approach requires finer meshes to

match the accuracy of methods with partial element cracking. So while the elementwise

progression of a crack is simple, it tends to overestimate the crack speed. However, over-

all crack and shear band propagation paths are in reasonable agreement with what was

obtained experimentally. In the dynamic crack branching problem, we found that the

proposed method is quite effective for these complicated crack patterns.

Simulations of shell fracture were made for two of the Chao and Shepherd [67] exper-

iments of explosively loaded pipes. The finite element model was directly loaded by the

pressure time history of the detonation traveling wave; fluid-structure interaction effects

were not considered. Nevertheless, the computations reproduce many of the salient fea-

tures of each experiment and the differences in the crack paths between two experiments.

For the pipe with the longer pre-notch, the computations correctly predict crack branch-

ing at one end and the subsequent wrap-around of the crack path that severs the pipe

at the other end. For the pipe with a shorter pre-notch, a twisting of the crack path is
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correctly predicted. However, the deformed configurations observed experimentally shows

some deformations of the flaps of the pipe that are not replicated by the computation.

These are probably due to fluid-structure interaction effects that were not modeled.

Overall, these computational results show substantial promise for predicting the dy-

namic fracture behavior of two dimensional plane and shell structures. They furthermore

indicate that the methods lend a great support for the simulations of dynamic fracture

involving nonlinearities.
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