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ABSTRACT
Powder-based additive manufacturing technologies introduce se-
vere variations in microstructure in terms of grain size and as-
pect ratio that, coupled with porosity, can result in dramatic ef-
fects on the functional (mechanical, thermal, fatigue, fracture
etc.) performance of as-produced parts. In the context of Inte-
grated Computational Materials Engineering (ICME), it is es-
sential develop a computationally efficient approach for gener-
ating synthetic microstructural morphologies that reflect these
process-induced features. In the present paper, we employ two
methodologies for computing the evolution of metal solidifica-
tion at the microstructural level as a function of process param-
eters associated with additive manufacturing. The first method
is the Continuum Diffuse Interface Model (CDM) applied to an
arbitrary material system, and the second, the Multi-Phase Field
Model (MPFM) applied to pure nickel (Ni). We present examples
of microstructures generated by these methods within the context
of additive manufacturing.

INTRODUCTION
The paradigm of Integrated Computational Materials Engineer-
ing (ICME) has been proposed as a viable and effective approach
for the control of manufacturing processes including additive
manufacturing by various research organizations and investiga-

tors [1–4]. In our view, ICME is essential for controlling additive
manufacturing processes in a manner that enables the discovery
of how process parameters determine material properties via the
interdependence of the micro-, meso-, and macro-structure. It
also has the potential to enable the control of AM processes for
tailoring the features at each of these scales, including micro-
structure. In Fig. 1 we present the entities involved in an ICME
framework as we envision it.

The goal motivating the creation of an ICME framework, is
the desire to be able to control the AM process parameters such
that the functional performance of the manufactured part satis-

FIGURE 1: Entities involved in proposed ICME framework for
Additive Manufacturing.
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fies specific performance requirements. Ideally, such a frame-
work would allow the prediction of the functional performance
of a part once the process parameters are known (left to right
transition in Fig. 1); Conversely, it would enable controlling the
process parameters to tailor the process for a desired functional
performance (right to left). However, the actual physical mech-
anisms controlling this desirable functional relationship between
process and functional performance can only be realized via the
compositional aggregation of sub-processes present at each of
the micro-, meso- and macro- length scales. The recognition
of the fact that the AM processes have a direct impact on the
morphological characteristics of the microstructure is hardly dis-
putable as it can be evidenced by a plethora of studies for vari-
ous material systems and processes as indicated in [5–8]. Less
prevalent, but still applicable, are the effects of the process pa-
rameters on the mesoscale either through the microscale, or, via
direct influence from the process. Remelting and resolidifica-
tion fronts, anisotropic banding and porosity are process induced
features that fall in to this category. Finally, the effect of the
process parameters through the interaction of the mesoscopic
and microsopic features, or those directly associated with the
macroscale, like extreme size porosity, warping and surface fin-
ish, must also be considered. In our proposed ICME framework,
all the invertible arrows between the blocks in Fig. 1, represent
relations and associated computational functionality that need
to be encapsulated in a manner that preserves the relationship
between successive representations of matter at distinct length
scales. Creating the modeling and simulation infrastructure that
permits the construction of this synthetic representation of mate-
rial at all these length scales constitutes our long term goal. The
motivation for this goal is the need for the ability to tailor the AM
process of interest for specified functional outcomes that satisfy
performance requirements.

Being able to connect all features observed at various length
scales would enable the transitive closure of the functional mor-
phisms in Fig. 1. The relationship that needs to be established
first is the one closest to the AM-process and expresses the re-
lationship between the process parameters and the features of
the microstructure. Within the scope of a new grand-challenge
project for establishing the scientific principles of layered de-
position processes for novel naval materials, recently initiated
at the Naval Research Laboratory (NRL), we have identified a
grain size variation of 3 to 4 orders of magnitude, and aspect
ratios that span 2-3 orders of magnitude [9]. These variations
are in addition to multiscale porosities that appear as well, all
as a result of the chosen process parameters. It is therefore im-
perative that any computational infrastructure aligned with the
ICME paradigm for AM processes, has the ability to create com-
putationally synthetic microstructures that exhibit these features.
The specific objective of the present work is to explore potential
methods that can be utilized to predict and simulate evolution of
microstructure in a manner that accounts for such features.

In the following section we will describe a brief overview
of methods that are capable of modeling solidification of liq-
uid metals and alloys as it evolves from nucleation centers in
a volume and converges to a particular crystalline microstructure
morphology. After this section we describe the continuous dif-
fuse interface model (CDM) method and then the multi phase
field model (MPFM) method, followed by a section on the ma-
terial properties used for this method. We subsequently provide
some examples of creating synthetic microstructures by each of
the methods and after their discussion our conclusions and plans
complete the present work.

FIELD THEORIES OF MOVING BOUNDARIES
A careful observation of the area involving theories of mov-
ing boundaries between phases, easily yields the realization that
there are two approaches for phase-field modeling as noted in
[10]. One class of approaches is only concerned with reproduc-
ing the sharp-interfaces between phases, while the other class of
approaches use thermodynamic treatment with gradient flow to
account for the evolution of the sharp boundaries between phases
in physics informed manner.

In order to support the present study for generating syn-
thetic microstructures for Random Volume Elements (RVEs), we
have established a computational infrastructure that implements
a CDM for simulating grain evolution within 3D domains and
falls within the first category of methods that are interested for
the interfacial evolution alone. It was first introduced in [11] for
2D domains and without grain aspect ratio control capability. In
the present case we generalized this model for 3D domains and
introduced the proper parameters for controlling the size and as-
pect ratio variation distributions.

When it comes to the second category of methods, the devel-
opment of continuous field theories for moving boundaries such
as solidification began with the diffusive interface model more
than a century ago [12] followed by the development of the phase
field model (PFM) by Cahn and Hilliard [13] and more recently
by [14].

PFM approaches are widely used in science and engineer-
ing to model a variety of moving interface phenomena. Typi-
cal examples are the dendritic alloy solidification [15], various
moving boundary phenomena including solidification and mi-
crostructure evolution in materials processing [10, 16–20], frac-
ture problems [21, 22] and multiscale up-scaling for nonlinear
materials [23].

The advantage of the PFM lies on its capability to address
the numerical problem of tracking a sharp solid-liquid interface
without rigorous attention to the involved physics. Its princi-
pal characteristic is the diffuse interface between two phases, de-
scribed by a steep but continuous transition of a phase field vari-
able between two states. The PFM models are also benefited by
the fact that they are derived in a thermodynamically consistent
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manner which enables the correlation of the model parameters
with proper thermodynamic variables. Subsequently, the multi-
phase field model (MPFM) was developed [24–26] to address an
arbitrary number of different distinct phases or grains of different
orientation. In the MPFM approach, a grain α can be distinguish-
able from other grains either by its orientation or phase (or both)
and is endowed with an individual phase field variable φα .

Despite the significant advances in MPFM, a major diffi-
culty in its wide applicability to real multicomponent alloy sys-
tems is the lack of knowledge of several required materials-
specific parameters, such as bulk free energies, the diffusion
coefficients, interfacial free energy, kinetic coefficients and so
forth. To supplement experimental measurements, or to generate
some of these quantities when experiments are not feasible, com-
putational techniques have become essential tools for extracting
the relevant material parameters [27–31]. For example, the small
anisotropy coefficient that is vital to determining the shape and
velocity of dendritic growth cannot be measured accurately by
existing experimental techniques. Instead, ab initio molecular
dynamics (MD) simulations have been shown to be capable of
computing the necessary phase field parameters and their asso-
ciated small anisotropies. The semi-empirical embedded atom
model (EAM) potentials have been introduced to compute the
kinetic and diffusion coefficient of a variety of pure metals in-
cluding Cu, Ni, Au and Ag [28, 30]. Several investigators em-
ployed an analysis of the equilibrium fluctuation spectrum of the
solid-liquid boundary to extract the interfacial free energy and its
small anisotropy in Ni, Cu, Fe, and Al metals [27–29, 32].

An important question relating to the applicability of PFM
and MPFM is whether these methods, in which the relaxation
dynamics are driven by thermodynamic forces, can capture well
the physical phenomena at the time and length scale achievable
by atomistic models. In other words, whether the PFM and
atomistic simulation such as MD can be equivalent in describ-
ing nano-scale phenomena. A comparison of the results from
PFM and MD simulations of the propagation of the planar so-
lidification front of a two-phase NixZr1−x crystal-liquid sample
subjected to an abrupt temperature drop has been demonstrated
in [33, 34]. They have also shown that the MD and PFM ap-
proaches can yield equivalent results in a manner that enables key
physical parameters to be transferable from the former method
to the latter one. In particular, the free energy density participat-
ing in the formulation of the PFM guided by the free energy in
the atomistic calculations was found to be the enabling factor in
bridging the gap between the two approaches [34]. Recently, we
have also demonstrated the ability to bridge MD with MPFM for
a Nickel (Ni) system by calibrating the MPFM to a MD-based
analysis [35]. In fact, many critical thermodynamic and kinetic
parameters were calibrated in this study using MD for the solidi-
fication process of Ni at moderate undercooling degree (∼200 K)
and the equivalence of MD and PFM methods was demonstrated
at the nanometer length scales.

BRIEF REVIEW OF THE CONTINUUM DIFFUSE INTER-
FACE MODEL

In the CDM, an arbitrary polycrystalline microstructure is de-
scribed by a set of continuous field variables ηi (i = 1, ..., p), that
are called orientation field variables for distinguishing different
orientations of grains and p is the number of possible grain ori-
entations.

It is assumed that across the grain boundaries between the
grain η1 and its neighbors the value of η1 changes continuously
from 1 to 0. We now can express the total free energy of an inho-
mogeneous system in terms of all the orientation field variables
and their gradients as:

F =
∫
[ f0(η1(r),η2(r), ...,ηp(r))+

p

∑
i=n

κi

2
(∇ηi(r))2]d3r, (1)

where f0 is the local free energy density, which is a function
of field variables ηi, and κi are the gradient energy coefficients.
The main requirement for f0 is that it has p degenerate min-
ima with equal depth, fmin , located at (η1(r),η2(r), ...,ηp(r)) =
(1,0, ...,0),(0,1, ...,0), ...,(0,0, ...,1) in p-dimensional space.

Because the orientation field variables are non-conserved
quantities, their local evolution rates can be considered linearly
proportional to the variational derivative of the total free energy
with respect to the local orientation field variable and therefore
they are governed by the Ginzburg–Landau equations,

∂η(r, t)
∂ t

=−L
δF

δη(r, t)
, i = 1,2, ..., p, (2)

where L are relaxation coefficients, t is time, and F is total free
energy. Substitution of the free energy form in Eq. 1 into this
equation leads to the form:

∂η(r, t)
∂ t

=−L[
δ f0(η)

η
−κ∇

2
η ]. (3)

By following the process described in [11] in specializing
the initial free energy we can finally derive the system of equa-
tions that need to be solved for obtaining the evolutions of all ηi
in the form

∂ηi

∂ t
=−Li[−a1ηi +a2η

3
i +2a3ηi

p

∑
j 6=i

η
2
j −κi∇

2
ηi], (4)

for i = 1,2, ..., p and for ak,(k = 1,2,3) defined as indicated in
[11] to have the values a1 = a2 = 1, a3 = a1/2.

To simulate the grain growth evolution for the purpose of
generating synthetic RVE microstructures, the set of equations
(4) are solved numerically by discretizing them in space and
time. The Laplacian is discretized by the following finite dif-
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ference discrete form,

∇
2
ηi =

1
3(∆h)2 [τ (ηi(x−∆h,y,z)+ηi(x+∆h,y,z)+

+ηi(x,y−∆h,z)+ηi(x,y+∆h,z)−ηi(x,y,z))+

+ηi(x,y,z−∆h)+ηi(x,y,z+∆h)]

, (5)

where ∆h is the size of the grid element and τ represents a bias
factor on the x− y plane such that we can tune a desired varia-
tion of grain aspect ratio. In fact, if we consider that the energy
gradient coefficients κi are not represented by scalar quantities
(isotropic case), but rather they are second order diagonal ten-
sors κκκ i (anisotropic case), then this factor can be thought of as
the proportion of discrepancy of the gradient energy coefficients
along directions x and y relative to those along z. This generaliza-
tion can be expressed by κκκ i = ((τxκi,0,0),(0,τyκi,0),(0,0,κi)).
For the case where we want to allow the response to be the same
on both directions in the x− y plane we have τ = τx = τy, and
this is the case that we will use for our numerical analysis later
in this paper.

The discretization with respect to time was implemented via
a simple explicit forward Euler scheme described by,

ηi(t +∆t) = ηi(t)+
dηi

dt
∆t, (6)

where ∆t represents the integration time step. Thus, for a given
initial distribution of ηi, which describes the initial grain struc-
ture, the temporal and spatial evolution of the microstructure can
be obtained by solving equation (4) numerically via Eqs. (5) and
(6).

BRIEF REVIEW OF THE MULTI-PHASE FIELD MODEL

The multigrain growth model adopted here is based on the con-
ventional MPF developed in [24–26]. The general free energy
functional F , incorporates multiple physical phenomena includ-
ing contributions from interfacial fint and chemical fchem energy
densities as expressed:

F =
∫

Ω

f int + f chem (7)

where the interfacial energy density is defined by

(8)f int =
N

∑
α,β=1,α 6=β

4σαβ

ηαβ

{
−

η2
αβ

π2 ∇φα · ∇φβ + φα φβ

}
,

and the chemical energy density fchem is defined for a pure system
containing only one element according to

f chem = ∑
α=1,..,N

h(φα) fα (9)

In Eqs. (7)-(9), φ α (α=1 ,. . . , N) is the phase field vari-
able (i.e. order parameter) which represents a grain α with a
different orientation; N represents the total number of grains in
the system, and φ α =1 indicates that the grain α is present (i.e.
the solid phase) while φ α =0 indicates its absence (i.e. the liquid
phase). σα β the interfacial energy between phases (or grains) α

and β , ηα β the interface width that is assumed to be constant
η for all interfaces, f α is the bulk free energy of an individual
phase (grain) α , and h(φ α ) represents a contour function. The
condition ∑

N
α=1 φα(x) = 1 must be satisfied at all time instances

at any spatial position x within the domain.
The evolution of grain α can be considered as φ̇α =

−∑
N
β=1

π2

8mη
µαβ

(
δF
δφα
− δF

δφβ

)
, and therefore through Eqs. (8)-

(9) we can obtain

(10)φ̇α =
N

∑
β=1

µαβ

m

{
N

∑
γ=1

(
σβγ − σαγ

)
Iγ +

π2

8η
h′∆gαβ

}

(11)Iγ = ∇
2
φγ +

π2

η2 φγ

where µα β stands for the interfacial mobility at the boundary of
grains α and β , m represents the total number of locally existing
grains at the spatial point, and ∆gα β is the free energy difference
between grains α and β .

However, due to the difficulty of identifying a suitable con-
tour function for the case of multiple junctions, a so-called an-
tisymmetric approximation is further introduced [9]. Applying
antisymmetric approximation to Eqs. (10) and (11) yields the fi-
nal form of grain evolution law which is adopted in the current
study:

(12)
φ̇α =

N

∑
β=1

µαβ

{
σαβ

(
φβ ∇

2
φα − φα ∇

2
φβ

+
π2

2η2

(
φα − φβ

))
+

π

η

√
φα φβ ∆gαβ

}
.

DISCRETIZATION OF THE MULTI-PHASE FIELD
MODEL
The particle difference method (PDM) [36–38] is used for im-
plementing the discrete form of the MPFM analysis. The PDM
has shown great flexibility in discretizing various types of par-
tial differential equations (PDEs) while also can reach identical
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results as the finite difference method (FDM), which has been
frequently been used to solve phase field model by the material
science community.

The PDM possesses desirable features required for the nu-
merical method. It easily handles the high-order derivatives of
the functional, and it relies on the neighboring nodes within a di-
lation parameter suitable for local refinement and dynamic adap-
tivity. This PDM has the advantages as other mesh-free methods,
i.e., the grid can be easily adapted to resolve the sharp features
of the solution fields. Additionally, it does not require numer-
ical integration as it does not involve a weak formulation and
gives higher rates of convergence than other weak form based
methods. Furthermore, the computational speed for computing
the derivatives of mesh-free approximation can be accelerated
by the derivative-approximating technique. The PDM has been
shown to be highly robust, accurate and very easy to implement
compared to other mesh-free methods.

The PDM is a point collocation method that obtains shape
functions and the approximated differential coefficient vector
at the nodes based on the moving least-square approximations.
Therefore, the partial differential equations can be directly writ-
ten into discrete forms in terms of the approximated differential
coefficient vector in the PDM, without the weak form formula-
tion. While the details of this method can be found in our pre-
vious work [36–38], the differential coefficient vector up to the
1st order, Dα

x u(x), of a continuous function u(x), in 3-D is briefly
given as follows:

(13)Dα
x u(x) =

[
u(x1,x2,x3)

∂u(x1,x2,x3)
∂x1

∂u(x1,x2,x3)
∂x2

∂u(x1,x2,x3)
∂x3

]
and can be obtained by Dα

x u(x)=M−1(x)B(x)u=∑
N
I Φα

I uI with

M(x) =
N

∑
I=1

ω

(
xI−x

ρx

)
1 dI1 dI2 dI3

d2
I1 dI1dI2 dI1dI3

d2
I2 dI2dI3

sym. d2
I3

 (14)

where uI is the nodal solution at discrete nodes at position xI(I=1,
. . . , N), and dIi = xIi− xi. ρx is the dilation function indicating
the radius of the weight function ω

(
(xI− x)

/
ρx
)

and determines
the size of the neighborhood of x.

In this study, for the spatial discretization of the governing
equation (i.e. the MPF model in Eq. (12)), we consider a compu-
tational domain that is spatially discretized by distributing nodes
in the interior domain and on the boundaries. The PDM can be
directly applied to compute the differential forms of governing
equations at these distributed nodes. Besides from the spatial
discretization, applying the explicit time integration scheme to

Eq. (12) yields

(15)

φ n+1
α − φ n

α

∆t
=

N

∑
β=1

µαβ

{
σαβ

(
φ

n
β

∇
2
φ

n
α − φ

n
α ∇

2
φ

n
β

+
π2

2η2

(
φ

n
α − φ

n
β

))
+

π

η

√
φ n

α φ n
β

∆gαβ

}
where ∆t is the time step and the superscript on the phase field φ

represents the index for the time step. By discretizing Eq. (15)
with the PDM, the discretized governing equation can be written
as

N

∑
I=1

LΩ
I (x)φ

n+1
αI = FΩ

φ (x) (16)

where the subscript I denotes the nodal index of the distributed
node for the spatial discretization. In Eq. (16), the discrete oper-
ator LΩ

I (x) is given by

LΩ
I (x) = Φ

(0,0,0)
I (x). (17)

On the other hand, the generalized force FΩ
φ
(x) on the right-

hand side of Eq. (16) can be written as

(18)

FΩ
φ
(x) =

N
∑

I=1
Φ

(0,0,0)
I (x)φ n

αI+

+∆t ∑
β=1,...,N

µαβ

{
σαβ

((
N
∑

I=1
Φ

(0,0,0)
I (x)φ n

β I

)
N
∑

I=1

(
Φ

(2,0,0)
I (x) + Φ

(0,2,0)
I (x) + Φ

(0,0,2)
I (x)

)
φ n

αI−

−
(

N
∑

I=1
Φ

(0,0,0)
I (x)φ n

αI

)
N
∑

I=1

(
Φ

(2,0,0)
I (x) + Φ

(0,2,0)
I (x) + Φ

(0,0,2)
I (x)

)
φ n

β I

+ π2

2η2

N
∑

I=1
Φ

(0,0,0)
I (x)

(
φ n

αI − φ n
β I

))
+

+ π

η

√
N
∑

I=1
Φ

(0,0,0)
I (x)

(
φ n

αIφ
n
β I

)
∆gαβ

}

in terms of the computed differential operators by the PDM.
Comprehensive discussion about the PDM can be found in lit-
erature [31-33]; the application of the PDM to coupled MPF and
energy balance equations for multi-grain solidification analysis
will be presented in future work.

MATERIALS PARAMETERS IN THE MULTI PHASE
FIELD MODEL
The materials parameters needed for the MPF model include the
interfacial mobility µ , the interfacial energy σ , the free energy
difference between phases ∆g , and the interface width η be-
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tween solid and liquid phases. Because the solidification prob-
lem is mainly investigated before the complete liquid-to-solid
transformation here, the interfacial mobility, interfacial energy,
and the interface width among grains in solid phase with different
random orientations are not calibrated and are assumed to be the
same as the respective quantities for the case of the solid-liquid
interface. Since the Ni system has been relatively well inves-
tigated, most of the materials parameters are readily available.
The kinetic coefficient µ* (i.e., the constant of proportionality
between the velocity of crystallization and the degree of under-
cooling) [27] and the solid-liquid interfacial free energy (γ) have
been investigated thoroughly by MD techniques because of the
difficulty in obtaining their small anisotropy through experimen-
tal techniques [27, 29, 35].

The interfacial free energy σαβ (n̂) of a weakly anisotropic
crystal ( n̂ is the interfacial normal of the grain α) can be ex-
panded in terms of “Kubic harmonics”, which is a linear combi-
nation of spherical harmonics that obey a cubic symmetry [39]:

σαβ (n̂)
γ0

=1−3ζ +4ζ (n4
x +n4

y +n4
z )+

+δ (n6
x +n6

y +n6
z +30n2

xn2
yn2

z )

(19)

The anisotropic coefficients γ0, ς , and δ have been determined
through MD simulation (by employing the EAM interatomic po-
tential) in [35] to be γ0=325.88E-3 J/m2, ς=0.02269, and δ=-
0.01168.

The kinetic coefficient µ∗ can also be written in a format
according to the cubic symmetry [25, 26]:

(20)µ
∗(n̂)/µ

∗
0 = 1− 3ε + 4ε

(
n4

x + n4
y + n4

z
)

+ κ

(
n6

x + n6
y + n6

z + 30n2
xn2

yn2
z

)
The µ* obtained for Ni employing EAM potentials in

MD simulations [35] are µ∗100=35.8±2.2, µ∗110=25.5±1.6, and
µ*111=24.1±4.0 in the units of cm/(s K) [21]. Using these re-
sults to fit the above equation, we can obtain µ*0=31.2 cm/(sK),
ε=0.1488, and κ=0.069. The solution of the MPF method to the
1-D solidification problem predicts a diffusive interface bound-
ary that varies from the solid to the liquid phases as a smooth
sine function proceeding to the liquid phase at the velocity µ∆g.
Thus µ can be related to µ* by

µ = µ ∗ TM

L
(21)

The free energy difference between the solid and liquid
phases can be estimated as in [10] according to

(22)
∆g =

L(TM − T )
TM

=
L∆T
TM

where L is the latent heat, TM the melting temperature. For Ni,
L=2.311E9 J/m3 [27] and TM=1710 K [21].

Another physical parameter required to be determined is
the interfacial width between the solid and liquid phases. The
crystal-melt interface can extend over several lattice constants.
To track the growth process and obtain the interface width, a first
step is to distinguish the crystals from the undercooled liquids.
We have employed the averaged local bond order parameters pro-
posed by Dellago et al. [28], because this approach represents an
improved form of the bond orientational order method by Stein-
hardt et al. [29], and they are defined as

(23)ql(i) =

√√√√ 4π

2l + 1

l

∑
m=−l

|qlm(i)|2

where the complex vector qlm(i) of particle i is expressed by

(24)qlm(i) =
1

Nb(i)

Nb(i)

∑
j=1

Ylm(ri j).

Here, Nb(i) is the number of nearest neighbors of particle i, l is
a free integer parameter, and m is an integer that runs from m=-l
to m=+l, the functions Y lm(ri j) are the spherical harmonics and
ri j is the vector originating from particle i and ending to parti-
cle j. Depending on the choice of l, these parameters are sensi-
tive to different crystal symmetries. q6 is used here as it is good
at distinguishing among liquid and different types of crystalline
structures.

A further improvement of the above-mentioned method is
also introduced later [40] where the following averaged form of
the local bond order parameters were introduced:

(25)q̄l(i) =

√√√√ 4π

2l + 1

l

∑
m=−l

|q̄lm(i)|2

where

(26)q̄lm(i) =
1

Ñb(i)

Ñb(i)

∑
k=0

qlm(k)

Here the sum from k=0 to Ñb(i) runs over all neighbors of particle
i plus the particle i itself, i.e., the local orientational order vectors
qlm(i) is averaged over particle i and its surroundings. Because
this averaged local bond order approach has been shown to pro-
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vide improved accuracy with which different crystal structures
can be identified, it was adopted in our study.

The MD results after initial equilibration are processed us-
ing the averaged local bond order method to obtain the q6 for
each atom, which is subsequently averaged over equal-sized bins
and scaled to the range of (0∼1) in order to provide initial phase
field conditions to the PFM model. To reduce the possible un-
certainties introduced by the temperature, ten parallel simula-
tions are conducted for each example and averaged to provide
for the initial PFM condition and to generate the evolution snap-
shots during the solidification process. The typical values of q6
are 0.40 and 0.15 in the crystal and liquid phases, respectively,
around the melting temperature TM . According to the equilib-
rium state solution to the MPF model of two phase interface
φeq(x) = 1

2

(
1− sin π

η
x
)

[41], a fitting of the MD results to the

equilibrium solution yields η=12-16 Å and this led η to be set to
14 Å throughout the PFM simulation.

REPRESENTATIVE NUMERICAL EXPERIMENTS
To demonstrate the ability to capture the feature of variability of
aspect ratio we implemented the CDM presented earlier for an
RVE discretized by 512×512×512 discrete elements. Figure 2
shows the effect of transitioning from an isotropic configuration
for the bias coefficient defined in Eq. (5) τ = 1 to an anisotropic
configuration for τ = 6 and for an even more acute aspect ratio
for τ = 12. All three cases have been computed over the same
cloud of randomly distributed solidification nucleation points in
the volume of the RVE. The computational implementation of
this method was integrated in Matlab using a parallelized kernel
programmed in C++. The execution of 1800 steps of the 2.68 Bil-
lion DOFs Finite Difference model was completed in 1.7 hours
on a 24 core Intel E5 Shared Memory computer.

The variability on the grain size can be trivially achieved
by the extend of the period that over which the time integrator
evolves. A demonstration of the MPFM approach for Ni grain
solidification is shown in Fig. 3 for distinct time instances. This
simulation has been performed assuming a homogeneous tem-
perature field and therefore it does not exhibit any anisotropy.

The MPF analysis was conducted with a custom parallelized
PDM code. The computational parameters were chosen as fol-
lows: the grid size ∆x = ∆y = ∆z = 2 Å to ensure a satisfactory
resolution of the interface width. For the time integration of the
PFM with the PDM approach, we adopted forward Euler scheme
which is conditionally stable. According to our numerical ex-
periments, the PDM retains its numerical stability with the full
CFL condition ∆t > 1 f s, but to make an easy comparison with
MD results, we used ∆t = 1 f s as the size of stable time inte-
gration in our computations. The number of grid points depends
on the equilibrated dimension of the simulation cells in the cor-
responding MD simulation as described in [35]. To reduce the

required computational memory, of the MPF analysis, only the
nonzero MPF variables are stored in terms of the sparse matrix
representation [42].

CONCLUSIONS AND PLANS
We have introduced two methods for generating synthetic micro
structures with controlled morphological characteristics in order
to support our ICME paradigm for powder based additive man-
ufacturing processes. We generalized the original 2D version of
the CDM in 3D and introduced a bias factor to control the as-
pect ratio anisotropy of the microstructural grain morphology.
We also provided an overview of the MPFM/PFM approach and
introduced the PDM as an alternative solution method. We also
demonstrated that we can generate synthetic microstructures for
an arbitrary material with tailorable grain aspect ratio variability,
as well as Ni solidification microstructures, by using the MPFM.

Our plans include adding tailorable porosity morphologies
to both methods and implementing temperature gradient bound-
ary conditions for the MPFM in order to drive aspect ratio vari-
ability to appear naturally. We also plan to extend the MPFM for
multi-component alloy systems. Finally, we plan to connect the
morphological characteristics from all scales to crystal plasticity
models in order to establish a capability for predicting the me-
chanical properties of the relevant materials systems. Our initial
efforts on this topic can be found in [43].
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