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Abstract
A numerical model to analyse the growth and the coalescence of cracks in
a quasibrittle cell containing multiple cracks is presented. The method is
based on the extended finite element method in which discontinuous enrichment
functions are added to the finite element approximation to take into account the
presence of the cracks, so that it requires no remeshing. In order to describe
the discontinuities only the tip enrichment and the step enrichment are used.
The method does not require a special enrichment for the junction of two
cracks and the junction is automatically captured by the combination of the
step enrichments. The geometry of the cracks which is described implicitly by
the level set method is independent of the finite element mesh. In the numerical
example, linear elastic fracture mechanics is adopted to describe the behaviour
of the cracks along with the Paris fatigue law and the intact bulk material is
assumed to be elastic. The numerical results show that cracks can grow and
interconnect with each other without remeshing as fatigue progresses and that
the pattern of fatigue crack development converges with mesh refinement.

1. Introduction

Considerable research has been devoted to obtaining stress intensity factors and the elastic
stiffness of materials with arrays of cracks [1, 2] etc. This effort has matured substantially.
Recently, Helsing [3] presented a very impressive study of the elastic properties of a unit cell
containing ten thousand randomly oriented stationary cracks.
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The study of materials with growing arrays of cracks however has been quite limited.
Carpinteri and Monetto [4] and Lauterbach and Gross [5] studied crack growth in a brittle
material with the boundary element method. Liang et al [6] applied the extended finite element
method to disordered multiple crack growth in a thin film bonded to an elastic substrate.
In [6], the junction of two cracks is not modelled so that a crack tip is not grown further
when it approaches another crack very closely. In the work of Budyn et al [7], an extended
finite element method was developed for growth of multiple cracks based on the critical stress
intensity factors. In this paper, that method is modified for fatigue crack growth and applied
to problems with two to fifty cracks.

The proposed method is based on the extended finite element method [8, 9], which has
been extended to many applications; crack growth with friction [10], arbitrary branched and
intersecting cracks [11], three-dimensional crack propagation [12], material discontinuity
problems [13], cohesive crack models [14], dynamic fracture problems [15] etc. We show
here how the method can be used to model the growth of multiple cracks and to model the
junction of cracks. The benefit of using the extended finite element method is that one can
model the discontinuities without remeshing.

To illustrate the method, we apply the method to the problem of fatigue crack growth
of multiple cracks in a quasi-brittle material. The failure of a quasi-brittle material
can be considered to be the consequence of the accumulation of micro-cracks and their
interconnection, which results in a complicated load-deflection behaviour [4]. Therefore,
the growth and the coalescence of the cracks is of great interest. Under monotonic loading,
the material fails as soon as the loading reaches the instability points.

Under cyclic loading with the stress, so that the stress intensity factor is far below the
fracture toughness, the material undergoes slow propagation of cracks and, eventually, it fails.
We are interested in the estimation of the fatigue life and the failure mechanism of a cell of a
quasi-brittle material containing multiple cracks.

We will use linear elastic fracture mechanics and drive the crack growth by the Paris Law
(see [16–20] etc). We adopt linear elastic fracture mechanics to describe the behaviour of the
cracks and assume that the intact bulk material is elastic. Recently, the cohesive crack model has
been studied for fatigue crack growth instead of the linear elastic fracture mechanics [21–23].
Cohesive laws could also be used, as in Zi and Belytschko [14]. However, we will use linear
elastic fracture mechanics with the Paris Law for simplicity.

The outline of this paper is as follows. The enrichment for the continuum with multiple
cracks is presented in section 2. The weak form and the finite element equations are given in
section 3. Section 4 gives the crack growth laws used here. Several numerical examples are
given in section 5. Section 6 presents the conclusion of this paper.

2. The enrichment

2.1. The approximation of the displacement field

A domain ! containing multiple cracks "c is shown in figure 1. The displacement field is
continuous for the intact region but discontinuous across the cracks "c. The approximation of
the displacement field uh of the domain is given by

uh = u0 + ue (1)

where u0 is the continuous displacement field and ue is the discontinuous (or the enriched)
displacement field. The continuous displacement field is approximated by the standard finite
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Figure 1. A two-dimensional linear elastic domain containing multiple cracks.

element shape function;

u0 =
∑

I∈N

NI u0
I (2)

in which N is the set of nodes, NI is the shape function of the finite element method and u0
I

is the nodal displacement of node I . The discontinuous displacement field ue, when there is
more than one type of enrichment, is given by

ue =
∑

J∈E

uJ,e (3)

where E is the set of the types of enrichments and uJ,e is the displacement enrichment by
enrichment type J . The displacement enrichment uJ,e is given by

uJ,e =
∑

I∈NJ

NI

(
ΨJ − ΨJ

I

)
aJ,e

I (4)

where NJ is the set of the nodes associated with enrichment type J , ΨJ are the enrichment
functions for enrichment type J and aJ,e

I are the enrichment parameters. Note that the
enrichment function is shifted by its nodal value ΨJ

I so that the displacement enrichment
vanishes at nodal points [14]. As a consequence, u0

I in (2) is equal to the nodal displacement.
Figure 2 shows an example of the enriched domain. To treat the displacement discontinuity

across the crack, the nodes marked by the symbols are enriched. Note that the order of
interpolation shape function in (4) does not need to be the same as that in (2) [25]. To obtain a
better approximation in the blending elements, we use the quadratic interpolation for (2) and
the linear interpolation for (3); therefore for the 6 node triangular elements, we do not use their
midpoints for the enrichments [26]. The details of the enrichment function Ψ are given in the
following section.

2.2. The enrichment functions

We use only two types of the enrichment functions: the step enrichment and the tip enrichment
[13]. When an element is completely cut by a crack, the displacement jump across the crack
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Figure 2. An example of the enriched elements (surrounded by thick lines) and the partially
enriched elements (hatched); the circled nodes are enriched by the step enrichment and the squared
nodes by the tip enrichment.

is modelled by the step enrichment Ψstep which is

ΨJ = Ψstep = sign(f ) (5)

in whichf is the signed distance function measured with respect to the current crack considered.
The position of the crack is defined implicitly by the level set function (see [13, 17, 27]). The
line defined by f = 0 corresponds to the position of the crack. The function in equation (5) is
constant on each side of f = 0 with a jump at f = 0. The step enrichment has the interesting
feature that the enrichment (4) completely vanishes outside the enriched elements due to the
shift in (4) [14].

The displacement field for any element containing a crack tip is modelled by the tip
enrichment Ψtip. The basis functions of the asymptotic solution of a linear elastic crack are
used [8]:

ΨJ = Ψtip = r1/2 ×
{

cos
θ

2
, sin

θ

2
, cos

θ

2
sin θ, sin

θ

2
sin θ

}
(6)

in which r is the distance from the current crack tip and θ is the angle measured with respect to
the tangent at the crack tip. Unlike the step enrichment (5), the tip enrichment does not vanish
outside the enriched elements as shown in figure 2.

The partition of unity property holds for the enriched elements surrounded by the thick
lines in the figure but it does not hold in the partially enriched elements shaded in the figure,
the so called ‘blended elements’. The product of the shape function NI and the enrichment
function ΨJ increases the order of interpolation in (4). In the blended elements, the partition
of unity property does not hold and this can lead to errors (see Chessa et al [24]). However,
these errors are small for the rapidly decaying asymptotic field and vanish for the step function.

The junction of two cracks occurs when one crack approaches and eventually touches the
other (figure 3). The tip enrichment of the approaching crack is removed after the two cracks
join, and the connection of two cracks is modelled by a junction enrichment. The enrichment
for the nodes whose supports are cut by two or more discontinuities was proposed by Daux
et al [11].
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Figure 3. Two cases of sign functions for junction of two cracks, in which crack 1 is approaching
crack 2; the signs of the signed distance function of crack 1 before and after junction are shown in
(b) and (d); sign distance functions f are positive in the shaded side.

We found that the junction of two cracks can be implemented more easily by the
combination of two step enrichments [28]. For this enrichment, the signed distance function
of the approaching crack is changed as shown in figures 3(b) and (d). For example, in figure 3,
we consider two cracks: crack 1 is approaching crack 2. The sign distance function of crack 1,
f1, is calculated by using the line APC in figure 3(b). The signs of f1 and f2 are identical in
the right side of crack 2. Therefore, there are three different types of domains in figure 3(b);
(f1 < 0, f2 < 0), (f1 > 0, f2 > 0) and (f1 > 0, f2 < 0). In figure 3(d), the three domains
are (f1 > 0, f2 < 0), (f1 > 0, f2 > 0) and (f1 < 0, f2 < 0). Therefore the combination
of two step function enrichments for cracks 1 and 2 with the change of the signed distance
function explained above will yield the displacement field required for the junction of two
cracks.

The change of the signed distance function seems complicated because it appears that the
signed distance function needs to be recalculated after the junction of the cracks. However
the recalculation is not needed. The signed distance function of crack 1 of a point x after the
cracks join, f1(x), is easily obtained by the following equation:

f1(x) =
{
f 0

1 (x) for f 0
2 (x1)f

0
2 (x) > 0

f 0
2 (x) for f 0

2 (x1)f
0
2 (x) < 0

(7)

in which f 0
1 , f 0

2 represent the signed distance functions of cracks 1 and 2 without consideration
of the junction, and x1 is any point on crack 1. Equation (7) means that we take f1 = f 0

1 on
the side of crack 2 that is joined by crack 1, and f1 = f 0

2 on the other side of crack 2.
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3. Weak form and discretized equations

Let us consider the domain ! containing multiple cracks "c shown in figure 1. The domain
is loaded by the external traction τ 0. It is assumed that the crack surfaces are free of traction,
and that the intact bulk material is a linear elastic. The weak form of equilibrium of the system
is given by

δW int = δW ext (8)

where

δW int =
∫

!\"c

∂δu
∂x

· σd! (9)

δW ext =
∫

"t

δu · τ 0 d". (10)

Here, W int is the internal work, W ext is the external work by the traction τ 0 along the traction
boundary "t, δu is the test function (which vanishes along the displacement boundary "u) and
σ is the stress which is calculated from the trial function u.

Following the standard Galerkin procedure, we use the same approximation defined in (1)
for both δu and u. From the weak form (8) and the displacement enrichments (1), one can
obtain the discrete equilibrium equation:

f int = f ext, (11)

where

f int = K q =
∫

!\"c

BTCB d! q , (12)

f ext =
∫

"t

NTτ 0 d". (13)

Here, f int and f ext are the internal and the external forces, respectively, K is the stiffness
matrix, q = [q T

1 , q T
2 , . . . , q T

Ntot
]T , q I = [uT

I , aT
I ]T are the generalized nodal displacements,

Ntot is the total number of nodes, B is the strain–displacement matrix and C is the elastic
modulus matrix. The size of aI is equal to ndof ×

(
nstep + ntip × 4

)
, in which ndof is the number

of degrees of freedom of a node (2 in two-dimensional problems) and nstep and ntip are the
number of step enrichments and tip enrichments of the node, respectively. Note that the tip
enrichment (6) consists of 4 basis functions. The B matrix is given by

B =
[
B0 Be

]
(14)

where B0, Be are the classical and the enriched parts, respectively. The B0 and Be matrices are
given by

B0 =
[
B0

1, B0
2, . . . , B0

ne

]
and Be =

[
Be

1, Be
2, . . . , Be

ne

]
(15)

B0
I =

⎡

⎢⎢⎢⎢⎢⎢⎣

∂NI

∂x
0

0
∂NI

∂y

∂NI

∂y

∂NI

∂x

⎤

⎥⎥⎥⎥⎥⎥⎦
(16)
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Figure 4. The subdivision of an element containing discontinuities; the thick lines are the
discontinuities, the dashed lines the edges of the subdivisions and the crosses are the quadrature
points.

Be
I =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂NI

∂x
(ΨJ − ΨJ

I ) + NI

∂ΨJ

∂x
0

0
∂NI

∂y
(ΨJ − ΨJ

I ) + NI

∂ΨJ

∂y

∂NI

∂y
(ΨJ − ΨJ

I ) + NI

∂ΨJ

∂y

∂NI

∂x
(ΨJ − ΨJ

I ) + NI

∂ΨJ

∂x

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∀J ∈ EI (17)

where ne is the number of the nodes of an element and EI is the set of the enrichments of
node I . Note that a node can be enriched by more than one enrichment function. Therefore,
to construct the strain–displacement matrix Be

I in equation (17), it is necessary to add all
contributions from the set EI to the B matrix of the current element. The set EI includes all
the enrichments of node I .

The differentiation of the enrichment function ΨJ yields the Dirac delta function at the
positions of the cracks "c. However, since the integration domain in (12) excludes the cracks
"c, we do not consider the Dirac delta function. For example, the derivative of the step
enrichment Ψstep (5) in (17) is zero.

Since the integral in (12) is discontinuous in the elements containing discontinuities, each
element containing any discontinuities is subdivided as shown in figure 4 (see Budyn [28] for
more details). The lines of the discontinuities coincide with the edges of the subdivisions.
Then the subdivisions are numerically integrated. The subdivision is just for the numerical
integration and does not affect the connectivity of the finite element mesh.

4. Description of cracks

4.1. Level sets

Each crack is described implicitly by the signed distance function f c. The signed distance
function f (x) is defined as the minimum distance from a point x to the crack "c. Given the
nodal values of the signed distance function f c

I , the signed distance function in the domain !
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is interpolated by means of finite element shape functions;

f c(x) =
∑

I

NI (x)f c
I . (18)

In addition, the end points of each crack need to be specified to describe the crack geometry.
Although other interpolation techniques, such as the moving least squares [29], are available,
(18) is the simplest yet that is accurate enough to capture the crack growth. We use the vector
level set method developed by Ventura et al [17,30], where a detailed discussion for updating
the level set can be found.

4.2. Crack growth law

The fatigue life of structural or mechanical members is defined as the number of loading cycles
until the member fails due to crack growth. The fatigue life can be divided into three main
periods: crack initiation, crack growth, and finally, overload failure. Here we are interested in
the crack growth period. The relation between crack growth and the stress intensity factor in the
period of crack growth is almost linear in a log–log plot. Based on experimental observation,
Paris and Erdogan [31] developed an empirical formula, which is called the ‘Paris Law’, for
crack growth as a function of stress intensity factor:

da

dN
= C (&K)m (19)

where a is the length of the crack, N is the number of cycles, &K is the change of the stress
intensity factor during a load cycle and C and m are the fatigue crack growth parameters. For
mixed mode fracture problems, K is the equivalent mode I stress intensity factor:

K =
√

K2
I + K2

II. (20)

Growing multiple cracks requires that the crack increments be computed for individual
cracks for a number of fatigue cycles. For this, we control the size of the crack increment &actl

at the crack tip at which &K is maximum. Once that crack tip is identified, we calculate the
corresponding number of fatigue cycles &N with &actl from (19). The crack increment &ai

of crack tip i is obtained by using the corresponding &Ki of the crack tip i and &N .
The direction of the crack growth ϑ is determined based on the maximum hoop stress

criterion:

ϑ = 2 arctan
1
4

(
ρK ±

√
ρK

2 + 8
)

(21)

where ρK = KI/KII is the ratio of the mode I stress intensity factor to the mode II one. The
stress intensity factors in (19)–(21) are calculated by interaction integral [9, 32, 33].

4.3. Coalescence of two cracks

When a crack reaches an external boundary " or is connected to another crack "c, the topology
of the crack changes as shown in figure 5. In these cases, only the step enrichment is retained—
the tip enrichment is removed (or ‘killed’). If any boundary is found within a distance rs

measured from crack tip i, then we join the crack to the boundary or the crack at point P . The
point P on the boundary is the closest point to the previous position of the crack tip as shown
in figure 5(a). If the boundary is another crack, P is the midpoint of the closest segment of
the crack to the crack tip as shown in figure 5(b).

After two cracks are connected, the strain energy near the connection is anticipated to be
very small. Therefore, if any crack tip of "c is found within the distance rs from the point of
the junction, the growth of the crack tip is disabled.
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Figure 5. Change of the topology of a crack when it approaches (a) a boundary " or (b) another
crack "c , in which the thick lines represent the cracks.

To avoid having boundaries in the annular domain used for the calculation of the
J-integral [8], the distance rs is chosen to be greater than or equal to the size li of the J-integral
domain. Therefore,

rs = max(&ai, li). (22)

The size of li is typically taken as 2hc where hc is the characteristic size of an element [9].
Note that to avoid the creation of a rigid body mode, if two cracks are already connected to
each other, we do not join them again.

If periodic boundary conditions are used, any crack that reaches a boundary must emerge
from the image boundary. This can be incorporated in this model but was not done here.

5. Numerical examples

5.1. Centre-cracked and edge-cracked specimens

The verification of the extended finite element method can be found in [8–10, 12]. For
completeness of this paper, we present the load–deflection behaviour and the stress intensity
factors of two typical fracture specimens shown in figure 6 under plane strain condition.
A centre-cracked and an edge cracked specimen are loaded at their top and bottom edges by
uniform traction. One node on the bottom edge is pinned, the other is on a horizontal roller.

We use the typical material properties of brittle materials, such as ceramics: Young’s
modulus E = 416 GPa, Poisson ratio ν = 0.23 and fracture toughness Kc = 3.5 MPa

√
m.

The radius for the calculation of the stress intensity factors by the interaction integral is taken
as 2hc. To obtain the load–deflection curve in figure 6, the external force is adjusted so that
the stress intensity factor is equal to the fracture toughness at the crack tips as the cracks are
grown.

It is shown that both stress intensity factors and the load deflection curves of the problems
considered agree well with the analytical results found in Tada et al [34].

5.2. Growth of 10 fatigue cracks with different mesh refinements

To test the mesh dependency of the method, we calculated the crack propagation patterns for 10
fatigue cracks with three meshes where hc = 0.05, 0.06, 0.07; hc is the ratio of the average size
of an element to the width of the cell. The meshes are shown in figure 7. The cell is squared with
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Figure 6. Results for centre crack and edge crack specimens with the meshes for (a) centre crack
and (b) edge crack, (c) the stress intensity factors and (d) the load deflection curves, in which the
stress intensity factor is scaled by E′√width.

(This figure is in colour only in the electronic version)

the side of length 0.2 m. The parameters of the Paris Law are C = 4.0×10− 10 (MPa
√

m)−m m
and m = 4. The cell is loaded by the cyclic traction ty = 0–30 kPa at the bottom and the
top edge. The left bottom corner of the cell is fixed and the right bottom corner is supported
by a roller.

The corresponding cracking patterns are plotted in the right side of the meshes in figure 7.
The cracking patterns with structured cross triangle meshes are also plotted. The cracking
patterns with all the meshes agree quite well with each other. Therefore, the mesh dependency
of the model appears very low.

5.3. Growth of 50 fatigue cracks

We consider a square plate with 50 initial cracks as shown in figure 8. The material parameters
and the loading condition are the same as those with 10 cracks. The positions and the
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Figure 7. Comparisons of the fatigue crack patterns for different meshes; (a) hc = 0.07, (b) 0.06
and (c) 0.05, in which the thick lines are for the initial 10 cracks, the thin lines for the cracks
and the dashed lines for the cracks obtained from the cross triangular meshes with the same mesh
refinements.

(This figure is in colour only in the electronic version)
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Figure 8. Cell model containing 50 randomly oriented cracks; the thick lines are for the initial
cracks and the thin lines represent the growth of the cracks.

orientations of the initial cracks are random. The initial crack lengths are fixed as 1.5 mm
and the average element size is hc = 0.04.

Because of the loading direction, some of the cracks do not grow or the amount of the crack
growth is negligible compared to others. Fatigue crack growth is most pronounced initially
for the cracks placed in the direction of the width of the cell. As fatigue proceeds, the cracks
join to form larger cracks. This joining process eventually results in the failure of the cell, i.e.
percolation occurs. When a crack coalesces with another larger crack like the cracks near the
bottom of the cell, they join approximately at a right angle. This is due to the fact that the
stress state near the crack tip gets close to mode I as it approaches another larger crack. This
phenomenon was also reported by [6].

The degradation of the elastic stiffness, i.e. ty/&V in which &V is the volume swept by
the loading surface, is plotted in figure 9. The stiffness is scaled by the initial value when there
is no crack. As fatigue proceeds, the stiffness degrades monotonically and is less than 10% of
its initial value for the configuration shown in figure 8. When junction of two cracks occurs,
the stiffness degrades rapidly. The labels on figure 9(a) correspond to the positions of junction
of cracks shown in figure 8. For example, the sudden stiffness degradation at the position of
A in figure 9(a) is due to three successive junctions A1, A2, A3 in figure 8. A sudden stiffness
degradation is observed in the models with 10–40 cracks when two cracks join each other. The
rate of the overall stiffness degradation is 7.4 in the log–log plot for this example as shown in
figure 9(b). We found that the junction significantly affects the overall stiffness degradation.

We also examined how a variable modulus affects the crack growth. This is the type
of problem that can be solved by this method but not easily by boundary element methods.
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Figure 9. The degradation of the representative modulus of a cell containing 50 randomly oriented
cracks as fatigue proceeds, in which the labels A, B, C correspond to the junctions shown in figure 8.

The Young’s modulus of the cell is given by

E(x, y) = E0

{
1 + 0.05

[
sin

(
4πx

W

)
+ sin

(
4πy

H

)]}
(23)

where E0 is the reference modulus, W and H are the width and the height of the cell,
respectively. The Young’s modulus is perturbed 10% from the reference value. The correction
for the variable modulus on the stress intensity factor as in [35] is not taken into account
although it can be incorporated in this model.

The cracking pattern with the variable modulus is shown in figure 10, in which the change
of the modulus is also plotted. The dark region corresponds to high value of the modulus.
Compared to figure 8, the cracks in the region with low modulus grow faster than in the
case with the homogeneous modulus. It seems that the smooth change of modulus with 10%
deviation does not affect the cracking pattern.

6. Conclusions

A method to simulate the fatigue failure of a quasi-brittle material containing multiple cracks
has been presented. The method is based on the extended finite element method. To model
the change of the displacement by the presence of the linear elastic cracks, the step enrichment
and the tip enrichments are used for each crack. A special junction enrichment is not needed
to model the junction of two cracks.

The cracks are described implicitly by using the level set method. The position of a crack is
identified by the finite element interpolation of the nodal values of the signed distance function
measured with respect to the crack. So the geometric description of a crack is completely
specified by nodal values of the level set and the positions of the end points.

The simulation with more cracks may require more computational resources. As the
number of cracks in a cell increases, so does the mesh refinement required to accurately
track it. The computational cost increases almost quadratically.

The numerical examples show that the model can simulate the growth and interconnection
and, eventually, percolation of a cell containing multiple cracks without remeshing. The pattern
of the fatigue crack development converges with increasing mesh refinement. It is shown that
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Figure 10. The fatigue crack pattern of a cell containing 50 randomly oriented cracks, in which
the thick lines are for the initial cracks and the thin lines the fatigue cracks; the Young’s modulus
of the specimen gradually changes.

the cracking patterns are almost independent of the mesh when the initial cracks span more
than approximately 4 elements.

While boundary element methods can also treat this class of problems, the extended finite
element method has the advantage that it can readily be applied to inhomogeneous problems.
It can also readily be applied to nonlinear problems, in contrast to boundary element methods.
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