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SUMMARY

This paper improves the 16 degrees-of-freedom quadrilateral shell element based on pointwise
Kirchhoff–Love constraints and introduces a consistent large strain formulation for this element. The
model is based on classical shell kinematics combined with continuum constitutive laws. The resulting
element is valid for large rotations and displacements. The degrees-of-freedom are the displacements at
the corner nodes and one rotation at each mid-side node. The formulation is free of enhancements, it
is almost fully integrated and is found to be immune to locking or unstable modes. The patch test is
satisfied. In addition, the formulation is simple and amenable to efficient incorporation in large-scale
codes as no internal degrees-of-freedom are employed, and the overall calculations are very efficient.
Results are presented for linear and non-linear problems. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shell element research in the past decades, with a few exceptions, has focused on shear-
deformable elements, i.e. those based on variants of Mindlin/Reissner plate theory
(e.g. References [1–5]). Although these elements have the advantage of being able to account
for the transverse shear that occurs for thicker shells, low order forms of these elements are
subject to shear locking. The amelioration of shear locking by auxiliary fields, such as in mixed
elements and assumed strain elements, can lead to instabilities in the shear field. It is note-
worthy that none of the 4-node quadrilaterals has yet been shown to meet the Babuska–Brezzi
stability condition for arbitrary meshes.
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Despite the wide availability of established numerical formulations, two aspects remain un-
satisfactory in the authors perspective. One is the frequent lack of an underlying classical
shell theory (e.g. a physical model) supporting the numerical method (a fact identified by
Simo et al. [6, 7]), and the lack of a simultaneously efficient and robust quadrilateral element
formulation. For example, most quadrilateral elements show severe performance degradation
for distorted meshes (c.f. Reference [8]). A difficulty with the commonly adopted degenerated
continuum shell element framework of Ahmad et al. [1] is that shear (and membrane) locking
occurs in its pristine form. In response to the inherent difficulties of treating thin shells, a
variety of techniques has been developed over the years, such as reduced integration [9, 10],
selective reduced integration [11] and its recent variants [12, 13], projection schemes [5, 14],
assumed natural strain methods [15], enhanced strain methods [16], discrete shear gap meth-
ods [17], to mention just a few. We will not describe the historical details, as the reader can
consult review articles (e.g. Reference [18]).

In this paper an improved element of the discrete-Kirchhoff genus, with long roots in the
history of finite elements (see Reference [19]), is presented with the generalization for finite
strains in the framework of a classical shell theory.

Existing shell theories are either based on three-dimensional continuum models with ap-
proximations permitted by the thickness, or ab initio two-dimensional models; Reference [20]
discusses these classical approaches. Recently, it was found (c.f. Reference [21]) that the ‘de-
generated approach’ by Ahmad et al. corresponds to a particular shell theory (not considered
by classical studies such as Reference [20]).

As the main source of element complexity is related with the various required techniques
developed to attenuate shear locking in shear-deformable shells, we avoid it. If the Kirchhoff–
Love (KL) constraints are employed, there is no transverse shear energy and hence no shear
locking occurs. However, it is well known that the finite element implementation of this theory
with irreducible formulations requires high order elements and is far from simple (Reference [22]
discusses these aspects).

The discrete-Kirchhoff (non-conforming) elements deal with this constraint at a specified
number of points and allow low order interpolation to be used (e.g. References [23–25]). Of
particular interest here is the configuration with mid-side rotations (e.g. References [19, 26, 27]).
The semiloof element of Irons [28] is similar, but employs more nodes. The idea of using a
quadrilateral plate with this configuration originates in the work of Fraejis de Veubeke [19]
(Herrmann [24] proposed the use of ‘crossed-triangles’ to form a quadrilateral). It was later
extended by Nagtegaal and Slater [29], Batoz et al. [25] and Crisfield and Tan [30]. The use
of mid-side rotations is of paramount importance for our current work as in a recent attempt
to extend our methodology for crack propagation in shells (inaugurated in Reference [31])
to folded geometries, we found that nodal spin degrees-of-freedom presented difficulties with
the extended finite element method (XFEM). Elements with mid-side rotations can be easily
incorporated within an XFEM framework, as will be seen in a subsequent paper.

Most previous work in shells with mid-side rotations was employed either triangles
[24, 27, 32, 33] or planar quadrilaterals [25, 34], often under very restrictive assumptions
(e.g. Reference [30]) such as moderate rotations and co-rotational formulations based on the
super-position of a plane element with a plate bending element, valid for triangular elements
only. Non-symmetric shape functions are employed in References [29, 35]. No complete theory,
including the constraints, has been developed for them in the fully non-linear range. Despite
these defects, the ‘side rotation’ degrees-of-freedom are very attractive for the aforementioned
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reasons. Certain authors refer to difficulties of dealing with warped quadrilaterals with this
formulation (c.f. Reference [34]), and these are required to solve most shell problems (e.g.
most non-linear shell bending problems involve warping).

In light of the above, and while recognizing some advantages in the continuum-based shell
models, we propose here a consistent thin-shell element based on discrete KL constraints and
a thin shell theory. Curvilinear co-ordinates are used and the KL constraints are imposed at
the sides of the element. Compared with co-rotational approaches (e.g. Reference [30]), the
resulting equations are concise and transparent.

The proposed element degrees-of-freedom are mid-side rotations and nodal displacements, a
nodal arrangement previously used in References [19, 25, 29, 30, 34]. Although the nodal arrange-
ment is identical, the element is different from these developments in the general derivations
and, in particular, its director shape functions and numerical quadrature. The proposed element
makes no use of enhanced strain degrees-of-freedom or assumed strain fields, and is directly
formulated, but it does use a special quadrature rule. During numerical testing, we obtained
very accurate results in most tests.

The paper is organized as follows: In Section 2 we describe our shell model and explore
some properties used in the following sections. In Section 3 we describe the quadrilateral
discretization, and in particular the nodal arrangement and a pragmatical approach to co-ordinate
transformation that avoids Lagrange multipliers. In Section 4 we inspect the performance of the
element through a series of relevant tests and examples which show remarkable robustness and
accuracy. Finally, Section 5 presents some conclusions and discusses the extensions in the works.

2. SHELL MODEL

2.1. Preliminary considerations

The shell theory we choose is characterized by the following:

• It obeys the KL strain constraints (c.f. Reference [36]).
• The form of the strain energy function is a particular case of the continuum strain energy

density.
• Curvilinear co-ordinates are employed.
• Under KL constraints, transverse shear and normal stress components cannot be determined

by constitutive considerations, as they are Lagrange multipliers. These are not explicitly
obtained from weak equilibrium considerations either.

This model is a compromise between the continuum-based shell and classical shell theory. From
the classical shell theory we retain the convenience of decoupled energies and the kinematic
assumptions (see, e.g. References [20, 37]), and from the continuum description we make use
of the generality provided by a specific form of the continuum strain energy. The latter is of
special importance because diverse continuum constitutive equations can be incorporated in the
existing shell framework with minimal alterations.

2.2. Undeformed geometry and KL constraints

The shell, whose undeformed region in E3 (the Euclidean 3-space) is here denoted as �0, can
be described by a reference surface S0, on which two curvilinear co-ordinates, �1 and �2, are
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defined. The signed distance to the reference surface is denoted by a third (normal) curvilinear
co-ordinate �3.

We make use the established convention for Latin and Greek indices (i.e. i= 1, 2, 3; �= 1, 2).
If n0(�

�) represents the unitary normal to S0 and R(��) represents the position of an arbitrary
point on S0, then, for sufficiently large radius of curvature, any point X ∈�0 is uniquely
identified in the undeformed configuration according to its reference position

X(�i) =R(��) + �3n0(�
�) (1)

The applicability of (1) to a neighbourhood of any point in S0 is based on the assumption
that points in this neighbourhood lie along one and only one normal to S0 (this is further
discussed in Reference [20], where {�i} is said to form the ‘normal’ co-ordinate system). With
the parametrization (1) we can directly write the particular forms of tangents, metric tensors
and related quantities for the undeformed geometry of the shell �0. We make use of the
notation where a comma denotes a derivative with respect to the curvilinear co-ordinates (c.f.
References [20, 36]). The first fundamental form of S0 is written as A�� =R,� · R,� and the
second fundamental form is written as B�� =R,�� · n0 = − R,� · n0,�. Note that neither B��

nor A�� depend on �3.
The curvilinear co-ordinates (��) are such that R,� form a basis for the tangent space in

X ∈S0. For arbitrary �3, we define a family of surfaces S0(�
3) with S0(0) =S0 for which

the tangent basis is established from (1) as X,� =R,� + �3n0,�. If we extend this basis by
including n0 =X,3, the resulting basis spans �0, and we can then define the metric of �0 as
Gij =X,i · X,j . The dual basis is given by Gi = GijX,j with [Gij ] = [Gij ]−1.

Let us now inspect what occurs if S0 is deformed into a distinct surface S. Let x denote
the deformed counterpart of X. Making use of lower-case notation for quantities defined in the
deformed configuration of the shell, we can define the right Cauchy–Green tensor according to
its components

C=FTF= (x,i · x,j)︸ ︷︷ ︸
Cij

Gi ⊗Gj (2)

If the KL constraint holds, Cij , and hence C, are not arbitrary but obey the relation

Ci3 = �i3 (3)

Despite the apparent simplicity of (3), its consequences are far-reaching, because of the re-
quirement that the compatibility conditions be satisfied (see the illuminating exposition in
Reference [36]). The condition C33 = 1 is of special importance in this theory, and under this
condition, no thickness change due to deformation occurs. We note that, in certain finite el-
ement implementations for rubber analysis [38], the thickness is forced to change due to the
incompressibility condition, but the present shell model, in this form, is not suitable for such
applications. However, this is not a limitation of the finite element application, and the proposed
element could be modified to account for thickness changes (relaxing C33 = 1 in the model).

We opt, in contrast with our previous work [31], to make use of Naghdi shell theory [20].
This option opens the path to constructing modern shell theories including discontinuities under
a firm theoretical framework.

Classical theories of deformable shells were developed as specialized cases of general elas-
ticity, from which analytical studies could be done more conveniently. Shell theories make
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use of known results of geometry concerning a Riemannian subspace (see References [39, 40])
together with the notion of thickness and both kinematical and constitutive assumptions. These
are the crucial aspects of the shell theory and limit its applicability. We choose to avoid for
now discussions on modern shell theories, and the interested reader is directed to the book
edited by Fortin [41].

2.3. Stress and virtual work

Let sij represent the contra-variant scalar components of the Kirchhoff stress tensor (in the
basis x,i ⊗x,j) and of the second Piola–Kirchhoff stress tensor (in the basis X,i ⊗X,j). The
virtual work of the internal forces can be written in terms of a kinematically admissible position
change, i.e. �x. Because Ci3 = �i3, it follows that �Ci3 = 0. If

√
G = [G1 · (G2 ×G3)] > 0 then

the work of internal forces, �WI can be written as

�WI =
∫

V

s��x,� · �x,�
√

G d�1 d�2 d�3 (4)

and, denoting as �WE the work of imposed forces, the weak form of the equilibrium equations
follows as

�WI = �WE (5)

Note that si3, s33 and s3i are not necessarily zero, but rather do not contribute to the internal
work. As will be seen later, they are Lagrange multipliers for the KL constraints. By means
of (2) of we can write (5) as∫

V

s��[(r,� + �3n,�)�r,� + �3(r,� + �3n,�)�n,�
]√

G d�1 d�2 d�3 = �WE (6)

Traditionally, the variables x,�, �x,� and s�� in (4) are specialized by making use of the
deformed second fundamental form, as n is still a unitary normal vector in the KL theory.
However, we retain the term n,� in (6), despite taking advantage of the KL simplifications. We
do not use stress resultants as in classical derivations [20]. Note that we retain all terms and
make no simplifications beyond our initial assumptions (3). Assuming a ‘linearized’ version of
the continuum constitutive law and (local) plane stress, we can write

s�� = E������� (7)

where ��� are the covariant components of the Green–Lagrange strain tensor. These are
given by

��� = 1
2 (x,� · x,� − X,� · X,�)

= 1
2 [a�� − A�� − 2�3(b�� − B��) + (�3)2(n,� · n,� − n0,� · n0,�)] (8)

where the explicit strain dependence upon �3 and (�3)2 is apparent. Note that symmetry of the
fundamental forms was used in obtaining (8).
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We will consider isotropic elastic materials (although this is not a limitation of the
model) with the elasticity coefficients E���� assumed to be constant (in the material frame),
and dependent on Young’s modulus E and Poisson coefficient �, according to

E���� =
E

2(1 + �)

(
G��G�� + G��G�� +

2�
1 − �

G��G��
)

(9)

with [G��] = [G��]−1 = [X,� ·X,�]−1. In Equation (6) the classical relations between the deriva-
tives of the normal (director) vector and the tangents are not introduced yet. These are included
by means of Lagrange multiplier fields, but in an unconventional manner. We do not impose
all Ci3 = �3

i through si3. The director inextensibility, which is imposed by use of spherical
co-ordinates as described later, eliminates the presence of s33 (e.g. it is imposed by the use
of a ‘co-ordinate transformation technique’). Therefore, we add the terms corresponding to the
Lagrange multipliers s�3 which modify (6) into∫

V

s��[(r,� + �3n,�) · �r,� + �3(r,� + �3n,�) · �n,�

+ �s�3(n · r,�) + s�3(�n · r,� + n · �r,�)]
√

G d�1 d�2 d�3 = �WE (10)

The solution of (10) involves a Newton numerical scheme in which d�WI, the first variation
of �WI, is needed. It is straightforward to show that d�WI can be written as

d�WI =
∫

V

{s��[(dr,� + �3 dn,�)(�r,� + �3�n,�) + (r,� + �3n,�)(d�r,� + �3 d�n,�)]

+ E����[(r,� + �3n,�)(�r,� + �3�n,�)][(r,� + �3n,�)(dr,� + �3 dn,�)]

+ �s�3(dn · r,� + n · dr,�) + ds�3(�n · r,� + n · �r,�)

+ s�3(d�n · r,� + dn · �r,�) + s�3(�n · dr,� + n · d�r,�)}
√

G d�1 d�2 d�3 (11)

Any specific implementation depends on the approximation of the variables r, n and their
first and second variations. A convenient basis in the shell geometry should be chosen first.
This is generally a matter of convenience, and we have already specified an elastic law in a
material basis and also specified the KL condition in terms of these components. After the
components are specified, it seems natural to use the basis R,�. Note that some authors prefer
the use of the basis (r,�).

Some of the terms in Equation (11) deserve special attention. For example the term d�n
arises from the fact that the condition n · r,� = 0 can be imposed either through the Lagrange
multipliers s�3 or through a specific relation between n and r so that, in the latter, the
terms naturally vanish, in agreement with what occurs with the condition n · n= 1 if spherical
co-ordinates are employed in the definition of n.

In what follows, we opt to use distinct interpolation functions for mid-side rotations and for
nodal positions and displacements. The discrete version of the KL conditions is detailed in the
following sections.
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3. FINITE ELEMENT DISCRETIZATION

3.1. Element characteristics

Our particular quadrilateral element is characterized by a number of specificities, itemized
below:

• Thickness is assumed to be uniform.
• Four corner nodes for position and displacement interpolation are employed.
• Four mid-side rotations are employed.
• A special quadrature is employed for both membrane and bending terms.
• Director shape functions are newly developed, characterized by the absence of non-

symmetric terms (see previous developments [29, 30, 35]).

The kinematic relations and weak form of equilibrium follow the results of the previous section,
and the above specificities.

3.2. Shape functions, director interpolation and numerical quadrature

The shell model of the previous section is implemented using the element depicted in Figure 1
(represented in a deformed configuration). For conciseness, the nomenclature of the previous
section is extended to the finite element context. Variables defined in the reference configuration
are identified by the same symbols, but uppercase is adopted.

Figure 1. Deformed configuration of a typical shell element. Only the degrees-of-freedom
of node 1 (u1) and side I (�I) are depicted.
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The deformed mid-surface position, r(�1, �2) is interpolated using conventional bi-linear
shape functions NK(�1, �2), where (�1, �2) ∈ [−1, 1] × [−1, 1]:

r(�1, �2) =
4∑

K=1
NK(�1, �2)rK =

4∑
K=1

1
4
(1 + �1�1K)(1 + �2�2K)rK (12)

where K represents the corner node number (K = 1, . . . , 4) and �iK are the values of the
curvilinear co-ordinates �i evaluated at nodes K. The reference mid-surface position, R(�1, �2)
is obtained by the same discretization.

The interpolation for the deformed director field n depends in the directors at the mid-side
values nP , with P = I, II, III, IV:

n(�1, �2) =
IV∑

P=I

MP (�1, �2)nP (13)

with an analogous interpolation for the reference director field, n0.
The shape functions MP (�1, �2) in (13) are distinct from the ones employed in (12). We also

use shape functions with quadratic terms, but they are different from those in References [29, 30]
(note that Batoz et al. favour the so-called ‘rational’ shape functions [25]). In References [30, 35],
a central node was considered in the derivation of the shape functions, which did not possess the
usual spatial symmetries. In addition, those authors took other special steps in the derivations,
including the introduction of two parameters to satisfy the patch test. For a general warped
mid-surface, these parameters were approximately determined using a ‘planified element’ [30].
This, along with the aforementioned non-symmetric shape functions, may have been the ob-
stacles to the widespread use of this element type, and are here removed. It is noted that, in
these works, a connection between the central degrees-of-freedom and the mid-side degrees-of-
freedom is carried out, with more than one possibility to accomplish this task. We circumvent
these considerations and procedures by starting with a complete quadratic polynomial for each
mid-side node shape function and by imposing the unitary sum condition, the symmetry con-
ditions, the exact representation of a linear director field and the exact representation of a side
average director. We do not make use of a central node or planification of warped elements.
The difficulty of meeting the patch test, which required planar elements in References [25, 34]
and approximate techniques in Reference [30], is here avoided by a specific quadrature scheme.

For the purpose of defining the director shape functions, let us start with a general quadratic
polynomial for each director shape function MP (�1, �2):

MP (�1, �2) = aP + bP �1 + cP �2 + dP �1�2 + eP (�1)2 + fP (�2)2 (14)

where aP , . . . , fP are polynomial coefficients corresponding to each mid-side node
P = I, . . . , IV.

Symmetry requirements (Nagtegaal and Slater [29] and Crisfield and Tan [35] did not require
their shape functions to be symmetric) result in the following relations:

• a1 = a2 = a3 = a4 = a
• b1 = c2 = − b3 = − c4 = b
• c1 = − b2 = − c3 = b4 = c
• d1 = d2 = d3 = d4 = d = 0
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• e1 = f2 = e3 = f4 = e
• f1 = e2 = f3 = e4 = f

with a, . . . , f being new shape function coefficients. The cross-term coefficients dP must be
null for symmetry of the shape functions. These terms had a role in the original derivations in
References [29, 30], related with the reproduction of an affine rotation field. Our formulation
reproduces exactly an affine director field, due to the quadrature rule employed. If rotations are
small enough, then the representation of an affine director field coincides with the requirement
for representing an affine rotation field.

Introducing the condition of unitary sum of the shape functions,
∑IV

P=I MP (�1, �2) = 1, we
obtain the additional equalities:

• a = 1
4• e = − f

Therefore, it remains to calculate b, c and e. This task can be easily carried out using the
equality relation between the average director along a side and the mid-side director. In this
circumstance, the coefficients b, c and e are

• b = 0
• c = − 1

2

• e = − 3
8

We can finally write the (mid-side) director shape functions as

MP (�1, �2) = 1
4 + 3

8 (�2P )2[(�2)2 − (�1)2] + 1
2 �2P �2 + 3

8 (�1P )2[(�1)2 − (�2)2] + 1
2�1P �1 (15)

where, in agreement with what was done for the corner nodes shape functions, we employ the
notation �iP to identify the ith curvilinear co-ordinate value of mid-side node P .

We now show that if an affine director field is imposed, it is exactly represented whenever
�1�2 = 0. Let n∗(x) denote an affine director field, which can be written as (r is the mid-surface
displacement)

n∗(r) =n∗
0 + Ar (16)

with n∗
0 being a given constant vector and A a constant, but otherwise generic 3 × 3 matrix.

Using (16) and (15), we write

n∗
0 + Ar=

IV∑
P=I

MP n∗
0 + A

IV∑
P=I

MP rP (17)

where rP denote the values of r at the mid-side nodes.
It is clear that the first term in the left-hand side of (17) has the same value as the first

term in the right-hand side. It remains to show that, if r=
∑4

K=1 NKrK , then, for arbitrary A,

4∑
K=1

NKrK =
IV∑

P=I

MP rP (18)

must hold for all quadrature points. Because rK are assumed to be arbitrary, we must inspect
each term of (18).
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For the constant term, we have rI + rII + rIII + rIV = r1 + r2 + r3 + r4, for the linear term in
�1 we have �1{(rIV − rII) + 1

2 [r2 + r3 − (r1 + r4)]} = 0 and for the linear term in �2 we have
�2{(rIII −rI)+ 1

2 [r1 +r2 − (r3 +r4)]} = 0. The two quadratic terms also vanish identically, with
3
8 (�1)2(rI + rIII − rII − rIV) = 0 and 3

8 (�2)2(rI + rIII − rII − rIV) = 0.
We note that the bi-linear term is problematic, because we have the requirement that

�1�2[r1 + r3 − (r2 + r4)] = 0. It is possible to conclude that the bi-linear term vanishes only if
(at least) one of the following conditions holds:

1. �1 = 0 or �2 = 0.
2. The element is a parallelogram.

Our approach to this problem consists in using a quadrature rule that satisfies condition 1.
The idea consists in using a 2 × 2 + 1 cross-shaped quadrature point distribution, as shown in
Figure 2. A 4-point variant of this quadrature rule was employed, using a triangular subdivision
of the quadrilateral, in the context of plane quadrilateral membrane elements, by Reddy and
Küssner [42]. It was found, in that context, to be beneficial in terms of element performance,
when compared with the usual Gauss quadrature. We used our quadrature with success in all
examples of this paper. It is worth mentioning that this scheme is not required for the bending
terms, but for the sake of generality (decoupling of bending and membrane strain energy is
not possible for general constitutive models), all terms are integrated as indicated in Figure 2.
For the points along the �3 direction, we use standard 2-point Gauss quadrature.

The rationale for the weights and positions is as follows. We start with a quartic polynomial
in �1 and �2 and arrange 8 points distributed symmetrically on the two lines I–III and II–IV
(see Figure 2). The distances between the quadrature points and the element’s centre are denoted
by l and k where l < k and the respective weights are wl and wk. We readily conclude that
such a scheme cannot integrate the (�1�2)2 terms and further that the following indeterminate
system holds for k, l, wl and wk:

k4wk + l4wl = 2
5

k2wk + l2wl = 2
3

wk + wl = 1

(19)

If we collapse the four l-points making l = 0, we obtain a 5-point quadrature (in the plane
case, this type of quadrature was used, for example, in Reference [43]).

From this point on, we extend the notation of the shape functions and all quantities identified
with a P subscript are associated with mid-side nodes and, in contrast, quantities identified
with a K subscript are associated with corner nodes. The same applies to the Arabic and
Roman numerals (the former indicating a corner node number and the latter indicating a mid-
side node).

3.3. KL conditions and discrete counterparts

It is well known that the use of spherical components for the definition of the director
n circumvents the need for an explicit term with the stress component s33 in the weak
(constrained) form of the equilibrium equations (e.g. Reference [44]). It is worth mentioning
that the condition C33 = 1 (and its discrete counterpart) is employed in other shell models not
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Figure 2. Quadrature scheme for a given �3. The quadrature point positions for i, . . . , v are given,
and only the weights of quadrature points i and v are depicted. The KL conditions are imposed at

the mid-side points I, . . . , IV as listed.

based on the KL conditions. Many authors make use of the ‘Rodrigues formula’ (in recognition
of the work of Olinde Rodrigues, see Reference [45] for a historical viewpoint on the man
and the formula) to rotate the reference director field n0 to its deformed counterpart n using
two (or three) Euler angles. It is clear that if ‖n0‖2 = 1 then this deformed director will also
satisfy ‖n‖2 = 1 without the explicit requirement for an s33 term. We will also incorporate the
remaining conditions C13 = 0 and C23 = 0 through analogous transformations of the directors.
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Despite the different contexts, an analogy can be made with the ‘transformation methods’ to
impose equality conditions in constrained optimization.

If these KL conditions are met through transformation, it is clear that we can discard the
Lagrange multipliers s3i. Therefore, to impose C13 = 0 and C23 = 0 we use side rotations in the
spirit of Morley [26], Dawe [27] in the triangle context. The idea consists in selecting specific
points where C13 = 0 is satisfied and C23 = 0 is violated and vice-versa. In general, in each of
the discrete-Kirchhoff points, either C13 = 0 and C33 = 1 are satisfied or C23 = 0 and C33 = 1
are satisfied. In contrast with previous works (e.g. Herrmann proposed ‘crossed-triangles’ [24]
to form a quadrilateral), we have a true quadrilateral, which can be warped, and there are
no limitations exists either on the rotation (i.e. bending) amplitude or membrane stretching.
For conciseness, we do not present the complete details of the implementation, as adequate
symbolic algebra systems are available to carry out the needed operations. We used such a
system to generate Fortran code used in our implementation.

One should observe that no requirement exists for an averaged normal along each element’s
sides. This contrasts with established procedures (which define a common side normal), and
it allows an arbitrary number of elements to share a common side. This versatility in treating
corners and edges is not present in other finite strain formulations, including the ones using
three nodal Euler angles. The validity of this technique rests on the fact that rigid body rotations
rotate elements’ normals‡ by the same amount.

Considering the generic side I (see Figure 1) and its undeformed counterpart, the undeformed
‘side triad’ TLP (corresponding to tlp in Figure 1) at P = I with L= 1, 2, 3 and n0P =T3P

is given by

T1I = T2I ×T3I (20a)

T2I =
R2 − R1

‖R2 − R1‖ (20b)

T3I = n0I =
T′

3I

‖T′
3I‖

with T′
3I =T2I × (R4 + R3 − R2 − R1) (20c)

For sides P = II, III and IV one can accordingly write the corresponding triads by a permu-
tation of indices in (20). It is observed that the deformed side-vector corresponding to (20b)
can be written as

t2I =
r2 − r1

‖r2 − r1‖ (21)

Because both t2I and T2I are common to all elements sharing this side, it is possible to define
normals for the shared side of each element, based solely on the undeformed normal (T3I)
and the two side-vectors (T2I and t2I )

t3I =�(T2I , t2I)T3I (22)

‡Keep in mind that, in the discrete setting under the KL conditions, directors and normals are distinct vectors.
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where the rotation matrix �(T2I , t2I) takes a specific form of the general case
(see Reference [31])

�(T2I , t2I) =
[
I + S(T2I , t2I) +

1
1 + T2I · t2I

S(T2I , t2I)2
]

(23a)

where S(T2I , t2I) is the following skew-symmetric matrix, written as a function of the scalar
components of t2 and T2:

S(T2I , t2I) =




0 −T2I1t2I2 + T2I2t2I1 T2I3t2I1 − T2I1t2I3

T2I1t2I2 − T2I2t2I1 0 −T2I2t2I3 + T2I3t2I2

−T2I3t2I1 + T2I1t2I3 T2I2t2I3 − T2I3t2I2 0


 (23b)

where T2Ij is the component j of T2I .
It is interesting to note that only the spin components along t2I ×T2I matter in the definition

of (22). The rotated normals contain the same amount of (spin) rotation for each element sharing
the corresponding side.

Similar to (22), the vector t1I is obtained as

t1I =�(T2I , t2I)T1I (24)

Evidently, general rigid body rotations should include a component around t2I , besides the
rotation of t2I itself. The rotation vector around t2I is indicated in Figure 1 as �I . Making
use of this rotation vector, the mid-side director nI is finally written as

nI =�∗(�I)t3I =�∗(�I)�(T2I , t2I)n0I (25)

where �∗(�I) is the standard rotation matrix (c.f. Reference [31]).
In general, for a given mid-side node P , the deformed normals nP can be written as

nP = cos(�P )t3P + sin(�P )t1P (26)

with �P being the mid-side node P degrees-of-freedom.
A picture with a 2D (in this case t3I =T3I ) interpretation of �P as a rigid body degrees-

of-freedom is shown in Figure 3. Generally, the deformation is a combination of bending,
stretching, and rigid body displacement.

One could use alternative definitions of (20); for example, when compared with the work of
Crisfield et al. [30, 32, 33] we do not impose a common side normal to adjacent elements. Our
definition of the side triad (20) is not arbitrary but guarantees compatibility of side rotation
for elements sharing the same side, whether they are co-planar or not.

In the plane, elements can have counter-clockwise or clockwise nodal numbering. It should
be noted that in the assembly of the rotation degrees-of-freedom, the global node numbering
is used to introduce a global orientation to each side.

With this methodology, the discrete counterpart of the condition C13 = 0 is imposed in the
sides �2 = ± 1 and C23 = 0 is imposed in the sides �1 = ± 1, as depicted in Figure 2. The
condition C33 = 1 is imposed at all four sides through the use of polar co-ordinates in the four
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Figure 3. Interpretation of �J as rigid body degrees-of-freedom. If pure-bending occurs (around T2J )
then �J = 0. In general, the motion is a combination of the two depicted situations.

planes defined by the side-vectors t3P and t1P . This particular arrangement is not unique and
other forms could be explored in future works.

3.4. Discretization of the constrained director and equilibrium equations

The entire finite element formulation is expressed in terms of the fields n, r, their surface
co-ordinate derivatives n,�, r,� and respective first and second variations. The variables related
to r,� involve a relatively simple discretization, following classical finite element derivations,
and we briefly present the terms arising from n,�.

We can write the director vector variation, n(�1, �2), omitting the explicit dependence
upon ��, as

�n,� =
IV∑

P = I

�MP

��� �nP =
IV∑

P = I

A1P ��P +
IV∑

P=I

4∑
K=1

A2PK · �rK (27a)

where A1P is a three-dimensional vector and A2PK is a 3 × 3 matrix. An analogous expression
for dn,� follows from relation (27a).
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The second variation of n,� can be written as

d�n,� =
IV∑

P=I

�MP

��� d�nP =
IV∑

P=I

A3P ��P d�P +
IV∑

P=I

4∑
K=1

��P A4PK · drK

+
IV∑

P=I

4∑
K=1

d�P A5PK · �rK +
IV∑

P=I

4∑
K=1

4∑
M=1

�rK · A6KPM · drM (27b)

The arrays A3, . . . ,A6 were evaluated using symbolic algebra.
For the correct integration through the thickness, h, we must calculate, for each element, the

domain of �3 ∈ [�, h+�] with �< 0 (see Reference [20] for a discussion). This is accomplished
by assuming that the undeformed mass density is uniform in the shell, and in particular along
the thickness direction. Using Reference [20], the lower limit of �3 domain, �, is determined
from the following equality:

∫ h+�

�

√
G�3 d�3 = 0 (28)

To obtain a closed-form solution for �, we evaluate the left-hand side of (28) at �� = 0. In
this case, the structure of the undeformed co-variant basis is very interesting, and it uncovers
an analogy with the formulas (20):

G,1(0, �3) =
1
2
(RII − RIV) +

�3

2
(n0II − n0IV) (29a)

G,2(0, �3) =
1
2
(RIII − RI) +

�3

2
(n0III − n0I) (29b)

G,3(0, �3) =
1
4

IV∑
P = I

n0P (29c)

Introducing the notation �RI = 1
2 (RIII − RI), �RII = 1

2 (RII − RIV), �n0I = 1
2 (n0III − n0I)

and �n0II = 1
2 (n0II − n0IV), Equation (28) can be written as

∫ h+�

�


�3 (�RII ×�RI) · G,3︸ ︷︷ ︸

	1

+(�3)2 (�n0II ×�RI + �RII ×�n0I) · G,3︸ ︷︷ ︸
	2

+ (�3)3 (�n0II ×�n0I) · G,3︸ ︷︷ ︸
	3


 d�3 = 0 (30)

which results in a cubic (the quartic terms cancel) equation

	3�3 +
(

	2 +
3
2

	3h

)
�2 + (	1 + 	2h + 	3h

2)� +
	1h

2
+

	2h
2

3
+

	3h
3

4
= 0 (31)
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In the authors’ knowledge, it is the first time the correct procedure for determining the domain
of integration of �3 is carried out in the finite element context. We use Cardano’s formula to
determine the zeros, and, according to �∈ [−h, 0], select the correct zero.

Introducing another thickness curvilinear co-ordinate �3∗ ∈ [−1, 1], we can write

�3 =
1 − �3∗

2
� +

1 + �3∗

2
(h + �) (32)

and the internal virtual work �WI for a given element e, takes the form (according to the
continuum counterpart in Equations (5) and (6))

�W e
I =

∫
[−1,1]3

s��x,� · �x,�
h

2

√
G d�1 d�2 d�3∗ (33)

where the integration domain is now the tri-unit cube [−1, 1]3.

4. NUMERICAL RESULTS

4.1. Remarks on the numerical tests

We perform a series of tests, both in the linear and geometrically non-linear range, to assess
the accuracy and versatility of the proposed shell model and finite element. We name the
previously described element as QBM to indicate that it is a quadrilateral (Q) with bending
(B) and membrane (M) energy. For conciseness, we present most results in graphical form and
denote the corresponding reference by the name of the first author, to facilitate the readability
of the results. All examples were carried out in the software Simplas, created by the first author
of this paper.

4.2. Linear beam problems

We test four well-known benchmarks for beam bending (see Figure 4): a cantilever beam with
regular mesh, the same beam with mesh distortion, a circular curved beam and a twisted beam.
It is important to note that, with the exception of the twisted beam, the loads correspond to
unitary analytical values of the transverse displacement at the monitored points. One purpose of
these tests is to detect any fundamental deficiency such as spurious mechanisms that occur with
coarse meshes. Another interesting result that can be obtained is the effect of using the correct
thickness integration instead of the approximate one (typically employed in the degenerated
elements).

Starting with the cantilever beam with regular mesh (Beam I in Figure 4) we inspect the
convergence of QBM element with mesh refinement, as illustrated in Table I. The monitored
value is the transverse displacement under load. Some very slight deviation from the analytical
result is obtained.

The same exercise is repeated for the 2 element mesh, Beam II, introducing a distortion
parameter a as in Figure 4. For this case, we monitor the normalized tip deflections of points
P and Q in Table II. For comparison, we run the same example with the 18 degrees-of-freedom
element of Reference [8], whose accuracy is usually very high for undistorted meshes. The
effect of this distortion is striking for the performance of 3D EAS elements (other EAS elements
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Figure 4. Linear elastic analysis of beams: geometry, boundary conditions and material properties.

Table I. Beam I: convergence with mesh refinement.

Number of elements QBM, normalized displacement

2 0.9520
3 0.9853
4 0.9958
6 1.001
8 1.002

10 1.002

show similar or worse performance under distortion, see Reference [8]), and only mild for the
present QBM element. It is interesting to note that, despite the obvious degradation in the
results with distortion, the symmetry of the displacement values is reasonably preserved for
the QBM element.

For the circular arch (Beam III in Figure 4), we show the convergence with mesh refine-
ment, and compare the normalized results with the ones in Reference [46] for the hexahedron
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Table II. Beam II: effect of mesh distortion (introduced through parameter a)
in the normalized transverse displacement, comparison with element HIS

described in Reference [8].

a QBM, point P QBM, point Q HIS, point P HIS, point Q

0 0.9520 0.9520 0.9376 0.9376
5 0.9042 0.9043 0.0020 0.0033

10 0.7839 0.7832 0.0002 0.0027

Table III. Beam III: normalized results as a function of mesh topology.

Mesh topology QBM HUHEXIN-4 [46] HIS [8]

3 × 1 0.932966 ∗ ∗
4 × 1 0.963842 ∗ ∗
5 × 1 0.977530 0.787 0.8418
6 × 1 0.984851 ∗ ∗
8 × 1 0.991217 ∗ ∗
10 × 1 0.993763 ∗ ∗
20 × 1 0.996310 ∗ ∗
40 × 1 0.996628 ∗ ∗
10 × 2 × 2† 0.9893 0.998 0.9955
20 × 4 × 4‡ 0.9918 1.023 1.012

∗Not available.
†10 × 2 × 1 for QBM.
‡20 × 4 × 1 for QBM.

HUHEXIN-4 and with the values of Reference [8] for the element HIS. Table III summarizes
the results, with the first column indicating the element arrangement along the circumferential
direction, the width and the thickness (the latter is used in the aforementioned 3D elements),
respectively.

This example provides an opportunity to examine the distribution of � along the beam. Two
situations can be envisaged: piecewise constant undeformed directors and ‘continuous’ directors
obtained from averaging neighbourhood elements. As all elements contain co-planar nodes, the
distribution of � is uniform and equal to −0.5 for piecewise constant directors, and varies from
element to element if average undeformed directors are employed. For this situation, Figure 5
shows the results.

For the pre-twisted beam (Beam IV in Figure 4) we present results for the two depicted load
cases, A and B, whose reference tip displacement in the direction of the load is 5.256 × 10−3

and 1.294 × 10−3, respectively (c.f. Reference [9]). This test was proposed by MacNeal and
Harder [47] and modified, through a reduction in thickness, by Belytschko and Wong [9]. We
follow the latter reference in our benchmark. The normalized tip displacements are shown in
Table IV, where a comparison with the 4 node uniformly reduced integrated element (URI)
documented in Reference [9] and with the hybrid stress element H8 by Sze et al. [48] is
observable. Note that a different version of this test was proposed by Simo et al. [7]. The
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Figure 5. Distribution of � for the circular arch with 6 elements
(�= − 0.5 corresponds to the traditional thickness quadrature).

Table IV. Beam IV: normalized results as a function of mesh topology. Case A
corresponds to in-plane bending and case B to out-of-plane bending.

Mesh QBM, A QBM, B URI, A[9] URI, B[9] H8, A[48] H8, B[48]

2 × 1 0.9793 0.5299 ∗ ∗ ∗ ∗
4 × 1 1.0120 0.8949 ∗ ∗ ∗ ∗
6 × 1 1.0180 0.9650 ∗ ∗ 1.023 0.979
8 × 1 1.0190 0.9880 ∗ ∗ ∗ ∗

10 × 1 1.0180 0.9985 ∗ ∗ ∗ ∗
10 × 2 0.9922 0.9784 ∗ ∗ ∗ ∗
12 × 2 0.9951 0.9877 1.007 0.984 ∗ ∗
20 × 2 0.9942 0.9984 ∗ ∗ ∗ ∗
∗Not available.

results are remarkable, and for case A, with one element, the tip displacement error is only
11.8%. It can be seen in Table IV that the in-plane bending (case B) accuracy of the element
is not as good as its out-of-plane bending (case A), because no special treatment is employed
for the former. This fact limits the in-plane performance to the one observed with standard
iso-parametric quadrilaterals.

4.3. Linear plate bending problems

We test 3 plate problems. Figure 6 shows the geometry, boundary conditions and relevant
elastic material properties. Plates I and III are submitted to point loads. Plate I is a clamped
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Figure 6. Linear elastic bending of plates.

circular plate, plate II is a (simply supported) 30◦ skew plate under uniform pressure. To verify
(and compare) mesh sensitivity, we use plate III with the 10 × 10 element mesh shown. This
mesh is formed by dividing the quarter plate into four mesh domains, where the common point
of the domains is displaced by a towards the load point. The results are normalized with the
Kirchhoff plate theory (see Reference [49]) for plates I and III.

The solution of the circular plate problem is interesting, since the clamped boundary is
represented by straight-edged elements. The best results obtained with reduced integration
hexahedral elements (see References [8, 46, 50]) are used for comparison. In Reference [46],
the best results were obtained with the NUHEXIN-4 element, and these are presented here for
comparison. Figure 7 summarizes the results.

For the skew plate, the target displacement at the centre of the plate with value 4.64 consistent
units is to be expected for shear-deformable models, as stated in Reference [51], whereas the thin
plate solution is Morley’s 4.455 [52]. In our test, a comparison with References [8, 51, 53, 54]
is carried out. The values of Reference [51] are the ones of shell element EAS7-ANS. Figure 8
shows the convergence of the results. Because two distinct solutions are usually presented for
the central displacement, according to the model in use, we do not normalize these results (see
also Reference [7] for further discussion). Finally, to study the plate mesh distortion effect, the
results for plate III are shown in Table V.

4.4. Linear shell problems

The linear shell problems considered are depicted in Figure 9, where a circle indicates the
position of the monitored quantity. Shell I consists of pinched cylinder with rigid end
diaphragms and has been analysed, among others, in References [7, 8, 48, 55–58], whose re-
sults are reproduced here for comparison. The values corresponding to the 4 node selec-
tively integrated quadrilateral (SRI) are taken from Reference [9]. A value of 1.82488 × 10−5

(c.f. Reference [59]) consistent units is adopted as a reference for the pinched displacement
under load.
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Figure 7. Circular plate (Plate I): comparison with References [8, 46, 50].
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Figure 8. Skew plate (Plate II): comparison with References [8, 46, 50].

Shell II is a closed hemisphere under two point loads, whose reference radial displacement is
0.0924 (c.f. Reference [50]). Results from References [7, 8, 55, 60, 61] are used for comparison,
along with the 4 node SRI. Shell III is a variant of shell II, with a 18-degree opening. A
reference value of 0.094 is adopted (see, e.g. Reference [59]) for the radial displacement under
the loads and the results used for comparison are those of References [7, 8, 57, 59, 62, 63]. The
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Table V. Plate III: normalized results as a
function of the distortion parameter a.

a QBM

0 1.04100
2.5 1.03900
5 1.03800
7.5 1.03700
10 1.03600
15 1.03500

values of Reference [7] were re-normalized to give a correct comparison, as Simo et al. used
0.093 as a reference value.

Shell IV is a ‘partly clamped hyperbolic paraboloid’ [64] and was proposed in Reference [64]
as a bending-dominated test for shell elements. According to this reference, two of the recom-
mended values of thickness are tested: 0.01 and 0.001m. For the first situation, the total strain
energy reference is En = 1.679 × 10−3 N m, and for the second situation, the reference value
is En = 1.1013 × 10−2 N m. These values were suggested, based on numerical experiments, in
Reference [64].

Shell V is the Scordelis-Lo roof [47] and consists of a shallow cylindrical shell supported
by rigid diaphragms and subjected to its weight. The monitored node has a reference vertical
displacement of 0.3086 consistent units [47]. Results from References [7, 8, 54] are employed
in the comparison. It is important to note that the values presented here from Reference [7]
was re-normalized, as other reference values were proposed (the value 0.3008 is proposed in
Reference [51], and 0.3024 is employed in Reference [7]) for the transverse displacement at
the mid-side.

The results for shell I are shown in Figure 10. We note that, despite the somehow soft
behaviour for moderately coarse meshes (only 4, 5, 7, 8, 30 and 32 elements per side are
shown for QBM), the results are very good overall.

For the closed and open hemispheres (shells II and III), the results are presented in Figures 11
and 12, respectively. The results are remarkable, as no enhancement exists in the present
element, in contrast with Reference [8].

For shell IV, we note that, despite inadequate accuracy for coarse meshes (see Figure 13),
the energy error is lower than the one observed in Reference [64] (the MITC4 element) for
sufficiently refined meshes. A similar observation was made in Reference [8] concerning the HIS
3D element. With respect to the Scordelis-Lo roof (shell V), we note that the QBM element’s
performance is comparable to the one shown by the previous HIS 3D element (Figure 14).

4.5. Pure bending of a beam

This classical geometrically non-linear solid mechanics problem (described in Reference [65])
consists of an elastic cantilever beam subject to a bending moment on one end and clamped
on the opposite end. The moment is gradually increased until the beam middle surface forms
a perfect cylinder. This problem has been solved numerically in several papers. Recently,
in References [66, 67] a simulation of this test was carried out in the context of validating
procedures for finite rotation of shell elements and in Reference [8] it was used to test a
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Figure 9. Geometry, boundary conditions and material properties for 5 linear shells.
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Figure 10. Shell I: pinched cylinder with rigid diaphragm. Comparison
of the normalized load-point displacement.
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Figure 11. Shell II: closed hemisphere. Convergence of the normalized displacement.

hexahedral element. The geometry and boundary conditions described in References [66–68]
are here reproduced. For the end moment, M , the following formula is employed (see also
Reference [68]):

M =
2EI
n

L
(34)
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Figure 12. Shell III: open hemisphere. Convergence of normalized displacement.
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Figure 13. Shell IV: hyperbolic paraboloid. Convergence of strain energy
error for two values of thickness.

where E represents the Young’s modulus, I represents the second order moment of the cross-
section relative to the bending moment direction and L represents the beam length. The integer
n represents the number of complete turns of the beam. For this problem the Poisson coefficient
is �= 0 and the Young’s modulus is E = 1.2 × 107.
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Figure 14. Shell V: Scordelis-Lo roof. Convergence of normalized mid-side displacement.

Figure 15 presents the 15 element mesh and the boundary conditions in the undeformed case
for �= 0, and also several steps during the deformation. In Reference [68] a 20 × 1 element
mesh was used and in Reference [66] the same problem was analysed with a 25 × 2 shell
element mesh. For comparison purposes, we use the values of Reference [68], as depicted in
Figure 16.

4.6. Hinged cylindrical shell under a central point load

This test has been considered by Sabir and Lock [69] and later by Ramm [70], and it is
a popular test (a non-exhaustive list of other references where this test has been studied
includes References [67, 71–76]). The test is useful to verify both the non-linear finite element
formulation and the path following algorithms.

It consists of a pinched shallow cylinder with hinged longitudinal edges and free curved
edges, as depicted in Figure 17. Due to symmetry, only one quarter of the model is actually
meshed. A thickness of 6.35mm is known to induce both snap-through and snap-back behaviour,
as detailed in Reference [71]. In this work, a standard spherical arc-length procedure is adopted
which is analogous to the one described in Reference [70]. In terms of results, we compare
ours with Reference [70] where a 2 × 2 mesh of bi-cubic 16-noded elements was employed.
The vertical displacement of points A and B identified in Figure 17 is monitored. We use a
6 × 6 element mesh as depicted in Figure 17. The material is considered elastic with a Young’s
modulus of E = 3.103 × 103 N/mm2 and a Poisson coefficient �= 0.3.

The load–deflection curves for points A and B are shown in Figure 18 with excellent
agreement with the high order 16 node element of Ramm [70].
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Figure 15. Pure bending of a beam: relevant data and deformed
meshes for �=
, �= 3
/2, �= 2
 and �= 4
.
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Figure 16. Pure bending of a beam: comparison of longitudinal (long.) and transverse (transv.)
displacements with the ones of Reference [68].
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Figure 17. Hinged cylindrical shell: geometry, mesh and boundary
conditions for one quarter of the shell.
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Figure 18. Hinged cylindrical shell: load–deflection curve for points A and
B, comparison with Reference [70].

4.7. Clamped frame problem

This problem was introduced by Argyris et al. [3] and further investigated by Nour-Omid and
Rankin [77] in the context of validating co-rotational formulations based on element frames.
Our purpose here is to inspect, using the same 64 element mesh tested in the latter reference,
the post-buckling behaviour of the QBM element.
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Figure 19. Relevant data for the clamped right-angle frame problem.

The relevant data corresponding to this problem is depicted in Figure 19. The deformed
mesh for a load of F = 18 N is depicted in Figure 20, along with the undeformed counterpart.
The load–deflection curve is compared with the results of Reference [77] in Figure 21.

4.8. Pinching of a short clamped cylinder

This test was carried out in References [44, 78, 79] in the context of representing finite rotations
in shell elements. A cylindrical shell is clamped at one end and it is subject to two diametrically
opposite forces in the other end. For further details, consult References [44, 76, 79, 80].

Our objective in inspecting this problem is that it was discovered by Crisfield and Peng [79]
that the Morley triangle showed severe ‘artificial’ instabilities for coarse meshes. As the Morley
triangle can be viewed as a simplified counterpart of the present QBM element, it is interesting
to inspect the existence of such instabilities.

The dimensions, material properties and boundary conditions for one-fourth of the geometry
are depicted in Figure 22. A regular 16 × 16 element mesh is employed, in agreement with
Reference [44]. It is noticeable that this is a known test to verify the behaviour of the element
under inextensional deformations [80].

Four different load steps are represented in Figure 23. The comparison of the results obtained
with element QBM, the variation of the MITC4 element proposed in References [44, 81] and the

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1166–1206



QUADRILATERAL SHELL ELEMENT BASED ON DISCRETE CONSTRAINTS 1195

Figure 20. Clamped frame problem: undeformed mesh and deformed mesh for a load of F = 10 N.

MTRIC shell element [76] is shown in Figure 24. No instabilities such as the ones described in
Reference [79] were noted. Two additional conclusions can be readily extracted from Figure 24:
there is a close agreement with the results of the above references and much higher values of
load can be imposed, without failure of convergence.

4.9. Thin plate ring

This problem was first considered by Basar and Ding [82] to test formulations for finite shell
rotations. Several other authors have studied this problem (e.g. References [83–86]). The test
consists in the pulling of a thin circular ring containing a radial cut. The pulling is car-
ried out by a distributed load in a fixed direction, applied on a edge. The opposite edge is
clamped.
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Figure 21. Clamped frame problem: load–deflection curve, comparison with Reference [77].

Figure 22. Clamped cylinder: geometry, mesh, boundary conditions and material properties,
in agreement with References [44, 76].

The ring is considered elastic with Young’s modulus E = 2.1 × 1010 and Poisson coefficient
of �= 0. The geometry, mesh, and boundary conditions are represented in Figure 25, along with
a highly deformed configuration. It is noted that, despite the localized mesh distortion, as can
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Figure 23. Clamped cylinder: several deformed meshes for increasingly higher load values.
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Figure 24. Clamped cylinder: load–displacement relation. Comparison with the
results obtained in References [44, 76].

be observed, there are few consequences in terms of the results. The mesh contains 6 × 30 × 1
elements as in Reference [86], where 3 types of shell elements (hybrid strain, hybrid stress and
enhanced strain) were tested with similar results for this mesh. For comparison purposes, the
results of Reference [86] are adopted, as noted in Figure 26.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1166–1206



1198 P. M. A. AREIAS, J.-H. SONG AND T. BELYTSCHKO

Figure 25. Thin plate ring: geometry, boundary conditions and deformed mesh for a load magnitude
of q = 12 000 consistent units (note the distorted mesh due to deformation). The shell on the clockwise

side of line AB is fixed, on the other side is free and loaded vertically (load q).

4.10. Pullout of an open cylinder

This example has been described and studied by various other authors (e.g. References
[32, 72, 84, 86–88]) and constitutes a difficult test for finite element formulations, combin-
ing bending and membrane effects. It consists of a cylinder shell with open ends which is
pulled at two diametrically opposite points through the application of point loads. The geometry,
mesh and boundary conditions for one-eighth of the model are presented in Figure 27. Point
A in Figure 27 is monitored in terms of absolute radial displacement. The material is con-
sidered elastic, with Young’s modulus E = 10.5 × 106 consistent units and Poisson coefficient
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Figure 26. Thin plate ring: load–displacement results for points A and B.

�= 0.3125, in agreement with the above references. A mesh containing 16 elements along
the circumferential direction and 8 elements along the longitudinal direction is employed.
A similar mesh has been used in Reference [87]. The absolute radial displacement for point A
is compared with the values obtained in References [32, 87]. Figure 28 shows this comparison.
It is noticeable that triangles were employed in Reference [32] and a coarser mesh. However,
this example illustrates the Newton–Raphson characteristics of the QBM element, which can
sustain very high levels of distortion without performance degradation.

4.11. Open hemisphere loaded by alternating forces

This example is a non-linear counterpart of the linear elastic open hemisphere example illustrated
in Figure 9. The shell undergoes large displacements but strains and rotations are relatively small
(c.f. Reference [66]). This test is widely studied, see References [58, 63, 66, 72, 84–87, 89–91].
Figure 29 shows half of a deformed hemisphere with 24 × 24 elements. Nodes A and B,
identified in the figure, are monitored in terms of absolute radial displacement. The material is
considered elastic with a Young’s modulus E = 6.825 × 107 and a Poisson coefficient �= 0.3.
The mean radius is 10 and the thickness 0.04. Only one quarter of the model is actually meshed
with two mesh densities: 16 × 16 elements and 24 × 24 elements. Most authors use a 16 × 16
mesh, but Reference [85] shows results for a 24 × 24 mesh. Reference [58] uses a even finer
32 × 32 mesh.

A comparison, in terms of point load/radial displacement, between the present formulation
and the ones of References [66, 85, 86] is presented in Figure 30. Very good agreement for the
16 × 16 element mesh is obtained between the present formulation and the above references
using the same mesh. It is clear that a much higher level of load can be achieved by the QBM
formulation, without loss of convergence.
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Figure 27. Pulled cylinder with free edges: geometry, mesh and boundary conditions for one-eighth
of the model, and deformed mesh for a radial displacement of 2.85 consistent units.

5. CONCLUSIONS

We have described a non-conventional formulation for shell analysis based on a classical
shell theory with Kirchhoff–Love constraints. These were concisely written as Ci3 = �i3 and
were imposed by appropriate transformations to define the director field. We combined a con-
tinuum (i.e. non-integrated) constitutive law with classical shell kinematics. From the application
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Figure 29. A deformed configuration of the (half) open hemisphere loaded by alternating point forces.
The picture corresponds to F = 104 consistent units.

viewpoint this constitutes a distinct advantage, as available continuum constitutive models can be
employed without modification and the specific shell kinematics remove the need of accounting
for the transverse shear energy (which, for large strain elasto-plasticity, is frequently assumed
to be of elastic origin only, see Reference [31]).

The finite element implementation made is based on a four node quadrilateral with 4 mid-side
rotations and 4 nodes, each with 3 displacement degrees-of-freedom. Each of the constraints
C13 = 0 and C23 = 0 is enforced at two mid-side points in opposing sides and C33 = 1 is
enforced at all four mid-sides by means of transformation of the directors. A novel method was
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Figure 30. Open hemisphere: comparison of load–displacement curves with References [66, 85, 86].

developed for the mid-side director that conveniently enforces the Kirchhoff–Love constraint
and is applicable to arbitrarily large rotations. The element can be classified as a discrete
Kirchhoff type of element. We developed symmetric shape functions for the director field and
based the model on classical Naghdi shell theory [20] (neglecting the transverse shear energy
terms). Five quadrature points were employed for each element, along two lines bisecting the
parent domain, circumventing the difficulties previously associated with warped elements. We
also proposed a (simplified) calculation for identifying the mid-surface position in each element.
The performance of the element in the tests in both linear and non-linear regimes was very
good, when compared with other high performance elements available in the literature, some
of them making use of internal degrees-of-freedom (e.g. Reference [8]). In particular, mesh
distortion sensitivity was extremely low. It is worth noting that the implementation did not
make use of any significant assumptions besides the ones inherited from the proposed model.
Extensions of the model and the finite element application are being carried out to deal with
ductile fracture.
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