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A method for dynamic crack and shear band propagation
with phantom nodes
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SUMMARY

A new method for modelling of arbitrary dynamic crack and shear band propagation is presented. We
show that by a rearrangement of the extended finite element basis and the nodal degrees of freedom,
the discontinuity can be described by superposed elements and phantom nodes. Cracks are treated by
adding phantom nodes and superposing elements on the original mesh. Shear bands are treated by
adding phantom degrees of freedom. The proposed method simplifies the treatment of element-by-
element crack and shear band propagation in explicit methods. A quadrature method for 4-node
quadrilaterals is proposed based on a single quadrature point and hourglass control. The proposed
method provides consistent history variables because it does not use a subdomain integration scheme
for the discontinuous integrand. Numerical examples for dynamic crack and shear band propagation are
provided to demonstrate the effectiveness and robustness of the proposed method. Copyright � 2006
John Wiley & Sons, Ltd.
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1. INTRODUCTION

We present a new formulation for the modelling of discontinuities that is particularly suited to
explicit time integration methods. The formulation enables crack and shear band propagation to
be easily treated by low-order elements, particularly with one-point quadrature elements. The
method is based on the extended finite element method (XFEM) [1], but it uses a transformation
of the nodal variables that leads to the superposed element formalism of the method of Hansbo
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and Hansbo [2]. The advantage of this formalism is that the discontinuous element is replaced
by two elements with additional phantom nodes or phantom degrees of freedom, so that
little modification is needed in existing explicit finite element programs to implement this
formulation for elements with cracks or shear bands. The associated shape functions in a
cracked or sheared element are identical to the shape functions of an intact element, which
leads to certain simplifications of the implementation in existing codes. Within this context, we
have also developed simple quadrature rules for the elements with cracks and shear bands that
involve only a single quadrature point for each of the superposed elements.

The XFEM was first presented in References [3, 4]. The method is an application of the
local partition of unity, see References [5, 6]. In the case of elements that are completely
cracked, the local partition of unity approach in Reference [4] introduces an additional function
into the finite element basis, which consists of the product of the element shape functions with
the step function. This approach has also been used for the modelling of discontinuities such
as cracks in meshless methods [7]. Rabczuk and Belytschko [8] have developed a meshless
method called the cracked particle method wherein step functions are introduced in particles
that meet a fracture criterion.

Our motivation for introducing another method in view of the plethora of methods that have
already been developed is the need for a finite element method that has the simplicity of the
cracked particle method of Rabczuk and Belytschko [8] but greater capability in reproducing
the actual crack paths than the inter-element fracture methods of Xu and Needleman [9] and
Ortiz and Pandolfi [10]. The method is substantially less complex than the dynamic crack
propagation methods of Belytschko et al. [1]. However, the latter is able to deal with elements
that were partially cracked, so that the progression of the crack is modelled more accurately.
One of the aims of this paper is to compare the benefits provided by the capability to model
partially cracked elements, which this proposed method lacks.

An alternative formulation of dynamic XFEM for elastic fracture has recently been published
by Réthoré et al. [11]. It uses an XFEM formulation and it is capable of greater accuracy
because it employs a time integration scheme which accounts for discontinuities in time. As we
will see from the results, the increase in accuracy that accrues to including partially cracked
elements in the formulation and implementation is quite marginal for low-order elements; this
has also been noted by Areias and Belytschko [12] in three-dimensional static crack propagation
studies.

This paper is aimed at developing a highly efficient but nevertheless quite accurate formula-
tion for dynamic fracture and shear band problems based on the XFEM basis functions. As we
will show, the method is capable of handling extensive cracking, yet unlike the inter-element
crack methods [9, 10], it exhibits almost no mesh dependence once the mesh is sufficiently
refined to resolve the relevant physics of the problem. For cracks, the approach is similar to
that of Hansbo and Hansbo [2]; for shear bands, a new overlaid element formulation is devel-
oped. Mergheim et al. [13] have recently implemented the Hansbo and Hansbo [2] approach
for static crack growth.

In the description of a crack, we make use of implicit functions, i.e. level set theory, to
describe the geometry of the cracks, as proposed in References [14, 15]. This is not an intrinsic
part of the approach, although it does simplify implementations, particularly in three dimensions,
which are not considered here.

This paper is organized as follows. In Section 2, we give the displacement fields for mod-
elling elements with discontinuities. In Section 3, we briefly summarize the weak form for
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non-linear dynamic analysis and the discretization, with special emphasis on the quadrature
rules we have developed for low-order elements. Section 4 presents the constitutive models
which are used in this study and finally in Section 5, we give our numerical studies including
comparisons with other methods.

2. ENRICHED DISPLACEMENT FIELDS FOR DISCONTINUITY

Consider an initial domain �0 as shown in Figure 1. The motion is described by x = �(X, t)

where X and x denote material and spatial co-ordinates, respectively. In the current domain, the
image of the initial domain �0 is denoted by �. We allow this domain to contain discontinuities
such as cracks and shear bands.

Each discontinuous surface is implicitly defined by the signed distance function f (X) so
that f (X) = 0 gives the discontinuity surface. This implicit definition can be described in terms
of the shape functions and is then given by∑

I

fINI (X) = 0 (1)

We also define a function g(X, t) so that the discontinuity is contained within the subdomain
g(X, t) > 0. Thus, the discontinuity is defined by

X ∈ �0
c if f (X) = 0 and g(X, t) > 0 (2)

Note that the implicit functions f (X) and g(X, t) need only to be defined locally around the
discontinuity. Furthermore, for elementwise propagation of the discontinuity, we can replace
the function g(X, t) by the index set of those elements that are cracked or sheared (Figure 2).

2.1. Representation of a discontinuity with phantom nodes

In the following, we will refer specifically to a crack, although the arguments also apply to a
shear band. We first illustrate the crack modelling concept in one dimension. Consider a crack
at X = a and let the nodes of the element containing the crack be nodes 1 and 2 as shown in

0
u

0

0
t

0
c

u

( , )tx X

c

Figure 1. A two-dimensional body with a discontinuity and its representation
in the initial and the current domains.
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Figure 2. A two-dimensional discontinuity representation by two implicit functions f (X) and g(X, t).
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Figure 3. The representation of a discontinuity in a one-dimensional model
for: (a) standard XFEM; and (b) phantom node method; solid circles denote

real nodes and hollow circles denote phantom nodes.

Figure 3(a). We start with the standard XFEM description of the discontinuous displacement
field in an element

u(X, t) =
2∑

I=1
NI (X){uI (t) + qI [H(X − a) − H(XI − a)]} (3)
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where H(x) is the Heaviside step function given by

H(x) =
{

1 x > 0

0 x � 0
(4)

We will now transform this to a superposed element formulation for the specific case where
node 1 is to the left of the discontinuity as shown in Figure 3(b); the general transformation
is given subsequently. Writing out Equation (3) in abbreviated notation, we have

u = u1N1 + u2N2 + q1N1H + q2N2(H − 1) (5)

where H = H(X − a). We can rewrite the above equation as

u = (u1 + q1)N1H + u1N1(1 − H) + (u2 − q2)N2(1 − H) + u2N2H (6)

where we have used the identities N1 = N1H + N1(1 − H) and N2 = N2H + N2(1 − H). We
now define

element 1

{
u1

1 = u1

u1
2 = u2 − q2

(7)

element 2

{
u2

1 = u1 + q1

u2
2 = u2

(8)

where superscripts and subscripts denote the element and node numbers, respectively.
Equation (6) can then be rewritten as

u = u1
1N1(1 − H(X − a)) + u1

2N2(1 − H(X − a)) + u2
1N1H(X − a) + u2

2N2H(X − a) (9)

Thus, we can consider the displacement field to consist of the displacement fields of two
elements: element 1, which is only active for X < a, because of the terms (1 −H(X − a)) and
element 2, which is only active for X > a because of the terms H(X − a). The displacement
jump across the crack is

[[u]]X = a = lim
�→0

[u(X + �) − u(X − �)]X=a

= N1(a)(u2
1 − u1

1) + N2(a)(u2
2 − u1

2)

= q1N1(a) + q2N2(a) (10)

From Equation (9), we can see that the discontinuous field can be constructed by adding
an extra element, element 2 in this case, as shown in Figure 3(b). Then two phantom nodes
are added: in this case they are u1

2 and u2
1. As shown in Figure 3(b), the two parts of the

model are completely disjoint except for a cohesive law which relates the traction across the
discontinuity to the jump in the displacement.
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For a multi-node element in two or three dimensions that is completely cut by a crack as
defined by Equation (2), the two-element displacement field form can be developed similarly.
We start with the conventional XFEM displacement field

u(X, t) =
nN∑
I=1

NI (X){uI (t) + qI [H(f (X)) − H(f (XI ))]} (11)

Expanding the above as we did for the one-dimensional case by subdividing each term into
parts that are associated with f (X) < 0 and f (X) > 0, we have

u =
nN∑
I=1

[uINI (1 − H) + uINIH + qI (H − HI )NI ] (12)

where H = H(f (X)). We now further expand both fields by duplicating them with the mul-
tipliers H−

I = H(−f (XI )) and H+
I = H(f (XI )), which does not change the fields and make

use of the fact that H − HI = H − 1 when H+
I �= 0 and H − HI = H when H−

I �= 0:

u =
nN∑
I=1

[uIH
+
I NI (1 − H) + uIH

−
I NI (1 − H) + uIH

+
I NIH + uIH

−
I NIH

+ qIH
+
I NI (H − 1) + qIH

−
I NIH ] (13)

We then rewrite the above as

u =
nN∑
I=1

[(uI − qI )H
+
I NI (1 − H) + uIH

−
I NI (1 − H)

+ uIH
+
I NIH + (uI + qI )H

−
I NIH ] (14)

If we then let

u1
I =

{
uI iff (XI ) < 0

uI − qI iff (XI ) > 0
(15)

u2
I =

{
uI + qI if f (XI ) < 0

uI if f (XI ) > 0
(16)

then we can write the displacement field as

u(X, t) = ∑
I∈S1

u1
I (t)NI (X)︸ ︷︷ ︸

u1(X,t)

H(−f (X)) + ∑
I∈S2

u2
I (t)NI (X)︸ ︷︷ ︸

u2(X,t)

H(f (X)) (17)

where S1 and S2 are the index sets of the nodes of superposed element 1 and 2, respectively.
As can be seen from Figure 4, each element contains original real nodes and phantom nodes.
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element 2 element 1 

f (X) < 0 f (X) < 0

f (X) = 0

f (X) > 0

f (X) > 0
1 2

34

1 2

34

1 2

34

1 2

Figure 4. The decomposition of a cracked element with generic nodes 1–4 into two elements; solid
and hollow circles denote the original nodes and the added phantom nodes, respectively.

f (X) > 0

f (X) < 0

crack
opening

1

2

Figure 5. The representation of crack opening with the phantom nodes method; solid and hollow
circles denote the original nodes and the added phantom nodes, respectively.

Thus, the XFEM field for a completely cut element can be written as the sum of two el-
ement fields; one, u1(X, t), which holds for f (X) < 0 and the other, u2(X, t), which holds
for f (X) > 0. This form corresponds to the concept proposed by Hansbo and Hansbo [2],
though they did not present it in this form. It was previously pointed out by Areias and
Belytschko [16] that the Hansbo and Hansbo [2] formulation is another form of the XFEM
displacement field.

Note that this equivalence holds for any element, i.e. 3-node triangles, 8-node quadrilaterals,
etc. Recasting the discontinuous field in this form simplifies the implementation of the element
in existing finite element codes. It is only necessary to add an extra element (i.e. element 2
in this case) and phantom nodes and modify the element quadrature procedure (Figure 5). The
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phantom nodes are defined by

I is a phantom node in

{
element 1 if f (XI ) > 0

element 2 if f (XI ) < 0
(18)

All nodes are integrated in time by the same procedure, as will become clear subsequently.

2.2. Representation of a shear band with phantom nodes

The same procedure can be used to model shear bands by adding discontinuities in the tangential
component of the displacement in elements crossed by a shear band. Let the tangential direction
be denoted by et ; in the context of the level set formulation described here

et = �g

�X
= ∇0g (19)

where g(X, t) is a signed distance function. The standard XFEM field for a shear band is then

u(X, t) =
nN∑
I=1

NI (X){uI (t) + qI et [H(f (X)) − H(f (XI ))]} (20)

To develop the shear band element, it is necessary to express the nodal displacements in normal
and tangential components, as

u(X, t) =
nN∑
I=1

NI (X){unI (t)en + utI (t)et + qI et [H(f (X)) − H(f (XI ))]} (21)

where unI (t) and utI (t) are the normal and tangential components and en is the unit normal
to the shear band. Going through the same procedure as before, we obtain

u =
nN∑
I=1

et [(utI − qI )H
+
I NI (1 − H) + utIH

−
I NI (1 − H)

+ utIH
+
I NIH + (utI + qI )H

−
I NIH ] +

nN∑
I=1

en[unINI (1 − H) + unINIH ]

=
nN∑
I=1

{et [(utI − qI )H
+
I + utIH

−
I ] + enunI }NIH(−f (X))

+
nN∑
I=1

{et [(utI )H
+
I + (utI + qI )H

−
I ] + enunI }NIH(f (X)) (22)

We let
u1

tI = utI − qIH(f (XI )) (23)

u2
tI = utI + qIH(f (XI )) (24)

u1
nI = u2

nI = unI (25)
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34
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Figure 6. The decomposition of a shear element with generic nodes 1–4; dashed
lines indicate phantom degrees of freedom.

Then we can write the displacement field u(X, t) as the sum of two-element displacement
fields

u(X, t) = u1(X, t) + u2(X, t) (26)

u1(X, t) = ∑
I∈S1

utINIH(−f (X)) +
nN∑
I=1

unINIH(−f (X)) (27)

u2(X, t) = ∑
I∈S2

utINIH(f (X)) +
nN∑
I=1

unINIH(f (X)) (28)

In the shear band elements, phantom degrees of freedom are added only in the tangential direc-
tion; the normal components of the nodal displacements correspond to the normal components
of the original nodes and are the same in both elements. Consequently, the normal displacement
field is also identical in the two elements. The procedure is illustrated in Figure 6, where the
phantom degrees of freedom are indicated by dashed lines. The interpretation and its imple-
mentation is now somewhat different than for a crack. The construct in Figure 4 is replaced
by that shown in Figure 6 and Equations (26)–(28). However, as indicated in Reference [15],
the modelling of discontinuous tangential fields where the discontinuity is not rectilinear does
present certain difficulties. Some of these difficulties arise because we have used C0 shape
functions to describe the discontinuity surface via Equation (1).

3. WEAK FORMULATION AND DISCRETIZATION

3.1. Strong from and weak form

We consider a two-dimensional dynamic problem. The strong form of the linear momentum
equation in a total Lagrangian description is

�Pji

�Xj

+ �0bi − �0üi = 0 in �0 (29)

where P is the nominal stress tensor, �0 is the initial mass density, b is the body force vector.
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The boundary conditions are

n0
jPji = t̄0

i on �0
t (30)

ui = ūi on �0
u (31)

n0
jP

−
ji = − n0

jP
+
ji = �0c

i ([[ui]]) on �0
c (32)

where n0 is the normal to the indicated boundary, �0c is the cohesive traction across the crack,
t0 is the applied traction on the Neumann boundary �t and u is the applied displacement on
the Dirichlet boundary �0

u; �0
u ∪ �0

t = �0, �u ∩ �t = ∅. Superscript plus and minus signs refer
to the two sides of the discontinuity. Indicial notation is used for any lower case indices and
repeated subscripts imply summations.

The discrete equations are constructed by the standard Galerkin procedures. The admissible
space for the displacement fields is defined as follows:

U= {u(X, t) | u(X, t) ∈ C0, u(X, t) = ū(t) on �0
u, u discontinuous on �c}

U0 = {�u(X, t) | �u(X, t) ∈ C0, �u(X, t) = 0 on �0
u, �u discontinuous on �c}

The weak form of the momentum equation is given by: for u(X, t) ∈U

�W kin = �W int − �W ext + �W coh ∀�u(X) ∈U0 (33)

where �W int is the internal work, �W ext is the external work performed by applied loads,
�W kin is the kinetic work performed by inertia and �W coh is the work performed by the
cohesive traction on the crack surface �c. These quantities are defined as (see Reference [17]
for details)

�W kin =
∫

�0

�u · �0ü d�0 (34)

�W int =
∫

�0

��u
�X

: P d�0 (35)

�W ext =
∫

�0

�u · �0b d�0 +
∫

�0
t

�u · t̄0 d�0
t (36)

�W coh = −
∫

�c

�[[u]] · �c d�c (37)

where t̄ is the normalized traction prescribed on �0
t and �c is the cohesive traction applied on

the discontinuity surface; an updated Lagrangian form is used for (37).
The finite element discretization of Equation (33) yields the discrete form of the momentum

equation, which leads to

fkin = f int − fext + fcoh (38)
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where the internal force f int, the external force fext, and the cohesive force fcoh are assembled
from element matrices given below. Since the element matrices are standard, we give them
only for a generic pair of elements 1 and 2 crossed by a crack:

fkin
e =

∫
�e

0

�0NTNH((−1)ef (X)) d�e
0 üe (39)

f int
e =

∫
�e

0

BTPeH((−1)ef (X)) d�e
0 (40)

fext
e =

∫
�e

0

�0NTbH((−1)ef (X)) d�e
0 +

∫
�e0

t

NT t̄0H((−1)ef (X)) d�e0
t (41)

fcoh
e = (−1)e

∫
�e0

c

NT�cn0 d�e0
c (42)

where the subscript e is either 1 or 2 as shown in Figure 4 and the superscript e indicates a
domain restriction to element e; B is the discrete strain-displacement operator.

3.2. One-point integration scheme with hourglass mode control

For evaluation of the integrals Equations (39)–(41) in the elements in which the Heaviside
function appears, a modified numerical quadrature scheme such as subdomain integration is
needed [1]. In subdomain integration, the element is subdivided into several subdomains, and
each subdomain is integrated separately as shown in Figure 7(a). However, several difficulties
arise in subdomain integration methods when we consider moving discontinuities. For example,
in crack or shear band growth in non-linear materials, the historical variables stored at current
quadrature points need to be projected to the newly created quadrature points when a subdomain
integration scheme is used.

Here we adopt a one-point integration scheme in which the Gauss quadrature point is fixed.
The element uses hourglass mode control; for details on the hourglass mode control scheme,
see References [18, 19]. We assume that the stresses are constant within the element and given
by the values at the origin of the parent co-ordinate system.

(a) (b)

subdomain

Quadrature
point

element 2 element 1 

( ) 0Xf

( ) 0Xf

Figure 7. (a) Numerical integration with the subdomain integration scheme; and (b) numer-
ical integration with a one-point integration scheme; hollow circles are the added phantom

nodes and solid circles are the original nodes.
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As we can see Figure 7(b), the cracked element is replaced by two elements and the nodal
forces can be integrated separately as follows:

fe = fe1 + fe2 (43)

where fe is element force matrix of cracked element and fe1 and fe2 are the force matrices of
newly superposed elements with phantom nodes. Expanding Equations (39)–(42) yields

fkin
(e1/e2) = A(e1/e2)

A0

∫
�e

0

�0NTN d�e
0 ü(e1/e2) (44)

f int
(e1/e2) = A(e1/e2)

A0

∫
�e

0

{BTP(e1/e2) + fstab
(e1/e2)} d�e

0 (45)

fext
e1 = Ae1

A0

∫
�e

0

�0NTb d�e
0 +

∫
�e0

t

H (−f )NT t̄0 d�e0
t (46)

fext
e2 = Ae2

A0

∫
�e

0

�0NTb d�e
0 +

∫
�e0

t

H (f )NT t̄0 d�e0
t (47)

fcoh
e1 = −

∫
�e0

c

NT�cn0 d�e0
c (48)

fcoh
e2 =

∫
�e0

c

NT�cn0 d�e0
c (49)

where fstab is a stabilization force matrix to control the hourglass modes, A0 is the total
area of the uncracked element and Ae1 and Ae2 are the activated areas of the correspond-
ing superposed elements, which consist of regular and phantom nodes. As we can see from
Equations (44)–(47), when we compute the force matrix for a cracked element we only
modify it by the area fraction. This computational procedure can be easily implemented
within the context of the conventional software; it can also be applied to elements with full
quadrature.

3.3. Time integration scheme and critical time step

In this study, explicit time integration is used over the whole domain. By studying the eigen-
values �i of the one-dimensional discrete system �2

i Mdi = Kdi , we determined the variation of
the critical time step size according to the location of the discontinuity. In Figure 8, we can
see that the critical time step has a peak value when the discontinuity is at the centre of the
element; it drops to zero linearly as the discontinuity is moved to the element edge. To prevent
numerical difficulties in the explicit time integration scheme due to zero critical time step, we
add small amount of artificial mass to the cracked elements. The eigenvalues are same as for
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Figure 8. The variation of critical time step size according to the
location of the normalized discontinuity.

the conventional XFEM [1], this is not surprising since the displacement field basis is a linear
combination of the XFEM basis.

4. CONSTITUTIVE MODEL

4.1. Cohesive law

A cohesive crack model is used for the crack and shear band. In this model, a surface traction
is applied onto the surface �c. The cohesive traction is determined by a cohesive law which
relates the traction to the jump in displacement across the discontinuity surface. The cohesive
laws used in this study are shown in Figure 9.

The cohesive law is constructed so that the energy dissipated due to the crack propagation
matches the critical fracture energy. For example, for the linear cohesive model in Figure 9,
we have

�max = 2GF

�max
(50)

In this work, we considered only the normal component of the cohesive traction.

4.2. Damage model

One of the material laws used here is the damage model of Lemaitre [20]. In this model, the
scalar damage parameter D represents the extent of damage. This constitutive model was only
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Figure 9. Linear and bilinear cohesive law; the area under the cohesive law curve
is the same as the fracture energy GF.

used for small displacement problems, so the constitutive relation is given as

�ij = (1 − D)Cijkl�kl (51)

where D can have values from 0 to 1, Cijkl is the elastic modulus of the undamaged material,
and �ij and �kl are Cauchy stress and linear strain components, respectively. As can be seen
from Equation (51), an increase in damage parameter D leads to a softer material response.
The damage evolution law is given by

D(�̄) = 1 − (1 − A)�D0 �̄
−1 − Ae−B〈�̄−�D0 〉 (52)

where �̄ is the effective strain, A and B are material parameters and �D0 is the strain threshold.
The effective strain �̄ is defined as

�̄ =
√

3∑
i=1

〈�i〉2 (53)

where �i is the ith principal strain and 〈·〉 is the Macaulay bracket. Note that in Equation (53),
the compressive strain components are filtered out by the Macaulay bracket, and therefore do
not contribute to the damage.

4.3. Thermo-elasto-viscoplastic model

For shear band simulations, we used a thermo-elasto-viscoplastic constitutive model in which
heat conduction is neglected for simplicity. The rate form of the constitutive equation is
given by

∇
� = Celas : (D − Dvp − Dt ) (54)

where,
∇
� is the Jaumann rate of Kirchhoff stress, Celas is the elastic moduli tensor, Dvp is

the viscoplastic rate of deformation and Dt is the thermal rate of deformation. For the von-
Mises material with isotropic hardening condition, the viscoplastic rate of deformation, Dvp,
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is given by

Dvp = 3˙̄�
2�̄

�′ (55)

where, �′ is the deviatoric part of Kirchhoff stress and �̄ is the effective stress. ˙̄� is the effective
plastic strain rate which is characterized by the power law relation of

˙̄� = �̇0

[
�̄

g(�̄, T )

]m

(56)

where m is a power index, which indicates the rate sensitivity of the material and g(�̄, T ) is
the material hardening or softening parameter. In this study g(�̄, T ) is given by

g(�̄, T ) = �0

[
1 + �̄

�0

]N {
1 − �

[
exp

(
T − T0

k

)
− 1

]}
(57)

The details about the constitutive equation can be found in References [21–24]. The thermal
rate of deformation, Dt , is given as

Dt = �Ṫ I (58)

where � is thermal expansion coefficient. For adiabatic heating, we have

�0CpṪ = �� : Dvp (59)

where � is the fraction of plastic work converted to heat. For the explicit stress update algorithm,
we employed the rate tangent modulus algorithm given by Peirce et al. [25].

4.4. Continuum to discontinuity transition

The discontinuous crack or shear band model is initiated when the material loses stability.
In rate-independent materials, loss of stability coincides with loss of hyperbolicity and the
conditions are well known; for examples, see Reference [1].

In a rate-dependent material, hyperbolicity is not lost, so the transition to a discontinuity is
governed by material instability. Material instability can be determined as usual by examining
whether growth occurs in an initially stressed infinite body perturbed by (see, Reference [17,
p. 386])

ũ = h1 · eat · ei(bt+kh2·X) (60)

where h1 is the polarization direction, h2 is the direction of the wave, k is the wave number
and a is a real number that determines the stability of the response; if a > 0 the response
is unstable. The conditions that a > 0 coincides with the condition that there exist h1 and h2
such that

h1 ⊗ h2 : A : h1 ⊗ h2 < 0 ∀hi (61)

where A relates the rate of stress to the rate of strain. At the point that hi are found such that
Equation (61) holds, a discontinuity is introduced such that ∇f is parallel to h2. A detailed
analysis is given in Reference [26].
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5. NUMERICAL EXAMPLES

5.1. Edge-cracked plate under impulsive loading

5.1.1. Problem description. These simulations concern an experiment reported by Kalthoff and
Winkler [27] in which a plate with two initial edge notches is impacted by a projectile. The
experiment is shown in Figure 10. In the experiment, two different failure modes were observed
by modifying the projectile speed, v0; at high impact velocities, a shear band is observed to
emanate from the notch at an angle of −10◦ with respect to initial notch; at lower strain
rates, brittle failure with a crack propagation angle of about 70◦ is observed. In this study, we
consider both failure modes.

To take advantage of the twofold symmetry of the configuration, only the upper half of
the plate is modelled: at the bottom edge of the finite element model, uy = 0 and tx = 0. The
initial impact velocity is applied on the left edge on the segment 0 � y � 25 mm. We assumed
that the projectile has the same elastic impedance as the specimen, so we applied one half
of the projectile speed, 16.5 m/s for the brittle fracture mode and 32.0 m/s for the shear

75
m

m

25
m

m

10
0m

m

100mm

50mm

10
0m

m

V0
x

y

Figure 10. Experimental set-up for edge-cracked plate under impulsive loading:
dash line denotes the numerically modelled region.
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mode, to the left edge as an initial condition (see, References [28, 29]). The initial notch was
modelled by including two lines of nodes separated by 0.3 mm. The material is a maraging steel
18Ni1900 [30] and its material properties are � = 8000 kg/m3, E = 190 GPa and 	 = 0.30. The
initial Rayleigh wave speed is cR = 2799.2 m/s. We used a central difference time integration
scheme with a Courant number of 0.1. We found that a low Courant number is necessary for
the elements which contain a discontinuity.

5.1.2. Dynamic crack propagation with a damage model. We considered a Lemaitre dam-
age constitutive model [31], Equation (51) with A = 1.0, B = 200.0 and εD0 = 3.0 × 10−3. A
cohesive crack model with fracture energy GF = 2.213 × 104 N/m and �max = 5.245 × 10−5 m
in Equation (50) and a linear cohesive law was used. For the crack initiation criterion, we
used the maximum tensile stress criterion. The stresses around crack tip were smoothed by a
moving least square projection. Numerical simulations were made with two different meshes
to observe mesh sensitivity: 50 × 50 and 100 × 100 meshes.

The results for the 100 × 100 mesh and comparison of 50 × 50 and 100 × 100 meshes are
shown in Figures 11 and 12, respectively. Both simulations are concluded at around 80 �s

Figure 11. The crack path for a 100 × 100 quadrilateral mesh with a Lemaitre damage model at
different time steps: (a) t = 39.29 �s; (b) t = 42.86 �s; (c) t = 53.58 �s; and (d) t = 88.58 �s.
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Figure 12. Comparison of crack path for 50 × 50 and 100 × 100 quadrilateral meshes with a Lemaitre
damage model at t = 88.58 �s: (a) 50 × 50 quadrilateral mesh; and (b) 100 × 100 quadrilateral mesh.

when the crack tip reaches the upper boundary. Both results show very similar trajectories for
the crack. The initial crack propagation angle is around 64◦ and the average angle from the
initial crack tip to the final crack tip is about 60◦ for both meshes; the crack path is nearly
straight. This angle is 10◦ smaller than the observed angle [27] and the angle obtained by
mesh-free computations in References [11, 32, 33]. In the latter, the crack tip singularity was
included as an enrichment at the notch. Evidently, due to approximation errors of constant strain
elements, the near-tip field is not reproduced well enough to yield an accurate direction for
crack propagation. However, for most engineering purposes, the accuracy is more than adequate.
There are damaged areas in the bottom right corner of the model due to wave reflection.

The crack tip propagation speed is shown in Figure 13. The crack tip speed never exceeds the
Rayleigh wave speed 2799.2 m/s. For the 50 × 50 mesh, the crack tip speed is substantially
higher than reported in Belytschko et al. [1] for a 80 × 80 cross-triangular mesh with the
method that modelled crack progression within the element. This suggests that element-by-
element propagation of the crack introduces some errors in crack tip speed for coarse meshes,
and in particular, it appears to increase the predicted crack tip speed. However, the crack tip
speed for the 100 × 100 mesh decreases and agrees better with the computation of Belytschko
et al. [1]. Note that the crack tip speed is taken to be the average over five time steps.

5.1.3. Dynamic crack and shear band propagation with a elasto-viscoplastic model. In this
example, we simulate both brittle and shear fracture mode of Kalthoff and Winkler ex-
periment [27]. To observe dynamic shear band propagation, we employed a thermo-elasto-
viscoplastic constitutive model [22–24] with an explicit stress update algorithm [25]. The
material is a maraging steel, 18Ni1900, as in the preceding example and the material proper-
ties for the thermo-elasto-viscoplastic constitutive model can be found in References [23, 24].
For the crack and shear band criterion, as an indicator of the propagation and the direction,
the maximum tensile stress and loss of material stability condition, respectively, are employed.
Note that an elasto-viscoplastic constitutive model does not lose hyperbolicity.
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Figure 13. Crack tip propagation speed for the edge-cracked plate under impulsive loading: (a) the
crack tip propagation speed of this method and (b) the crack tip propagation speed of the previous

results in Reference [1], where a 80 × 80 cross-triangular mesh is used.
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Figure 14. The comparison of crack growth path between the simulation with the damage
model and the elasto-viscoplastic model.

At 16.5 m/s as in the preceding example, we observe dynamic crack propagation. The
comparison of the crack growth paths between the results with damage model and elasto-
viscoplastic model are shown in Figure 14. The crack growth paths of the elasto-viscoplastic
model agree better with the experimental results than those for the hypo-elastic constitutive
law with damage. The initial crack propagation angle is around 67.4◦ and the average overall
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crack propagation angle is 65.1◦. This 2–5◦ discrepancy in the angle with the experiment may
be due to the absence of a crack tip stress concentration. At the end of crack propagation,
we can observe some minor oscillations in the crack path because of a reduced moving least
square projection domain.

At 32 m/s, the effective plastic strain distribution and a comparison of the shear band path
with experimental results are shown in Figure 15. We assumed that the shear band energy
is GF = 1.0 × 102 N/m. In this study, since we adopted a strong discontinuity approach to
represent sheared elements, the localized plastic strain along the shear band is substantially
lower than that of the physical shear band. However, as we can observe from Figure 15(b),
the overall shear band propagation path agrees quite well with the experimental results [29],
though the shear band path drifted downward more than the experimental results along the last
half of the path.

5.2. Crack branching

In this example, we consider a prenotched specimen 0.1 m × 0.04 m as shown in Figure 16.
Tensile tractions, � = 1 MPa, are applied on the both of the top and the bottom edges as a step
function in time. Numerical results for this problem have been given by Belytschko et al. [1],
Rabczuk and Belytschko [8], Xu and Needleman [9] and experimental results with different
dimensions are available in References [34–38].

We used the Lemaitre damage law [31] for the continuum domain and imposed a linear
cohesive law once a discontinuity developed. The material properties are � = 2450 kg/m3,
E = 32 GPa and 	 = 0.20. We used A = 1.0, B = 7300.0 and �D0 = 8.5 × 10−5 for the Lemaitre
damage model [31]. The initial Rayleigh wave speed is cR = 2119.0 m/s. For the discretization,
we modelled the domain with 100 × 51 uniform quadrilateral elements and used explicit time
integration with a Courant number of 0.1.

To capture the crack branching phenomena, we monitored the maximum principal stress
criterion at several points around the crack tip. If this criterion is satisfied and the

(a) (b)

Experimental [29]

This method

Figure 15. Dynamic shear band propagation: (a) effective plastic strain distribution at t = 35.00 �s; and
(b) comparison of shear band path with experimental results [29].
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Figure 16. Plate with a horizontal initial notch under tensile stress.

(a)

(c)

(b)

(d)

Figure 17. Crack branching and damage evolution at different time steps: (a) t =
30.29 �s; (b) t = 46.14 �s; (c) t = 55.93 �s; and (d) a sketch of the experiment paths

reported by Ramulu and Kobayashi [34].

maximum principal stress directions show relatively different crack growth angles, we initiate
crack branches. For simplicity, we only allow the crack to branch once and set the element
stress to zero in elements in which three cracks have formed. The pattern of crack propagation
is shown in Figure 17(a–c) and the crack tip speed is shown in Figure 18. The crack begins
to propagate at 15.38 �s. From this initial phase until crack branching, the crack tip speed
increases linearly and peaks at around 20.04 �s; at this point the crack branches into two
cracks. After branching, the crack tip speed becomes almost constant at 75% of the Rayleigh
wave speed. This agrees with the results, which were reported by Belytschko et al. [1], and
Rabczuk and Belytschko [8]. The numerical simulation finishes at 55.93 �s when the crack tip
reaches the boundary of the specimen. The crack pattern is similar to the experimental results
reported in References [34–38].
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Figure 18. Crack propagation speed for the crack branching problem compared to [1].

5.3. Mixed mode crack propagation in a beam under impact loading

An experimental study of mixed mode dynamic crack propagation in concrete beams has been
reported by John and Shah [39]. The experimental configuration is shown in Figure 19(a).
In the experiment, the pattern of crack propagation depends mainly on the location of initial
notch. The location of notch is characterized by the offset parameter 
.


 = dnotch

L/2
(62)

where dnotch denotes the distance between the midspan and the notch, and L is the span
between the supports. For 
 = 0, John and Shah [39] reported pure mode I fracture, while 
 > 0
can result in either a mode I fracture at the midspan or a mixed mode fracture at the offset
notch; see, Figure 19(b–d). Numerical simulations of this experiment by the mesh-free methods
have been reported by Belytschko and Tabbara [33].

Simulations were conducted with various offset parameters to examine the different crack
growth trajectories according to 
. We discretized the 0.2286 m × 0.0762 m concrete beam with
a 30 × 91 mesh and used the following material properties: � = 2400 kg/m3, E = 31.37 GPa,
	 = 0.20; A = 1.0, B = 7300.0 and εD0 = 8.5 × 10−5 for the Lemaitre damage model in Equa-
tion (52). To represent an impact loading, we used a ramp loading instead of a direct impact
loading because of a rubber pad which is located between the beam and impact hammer (for
more details, refer to References [33, 39]). For the simulation of the midspan crack growth,
we allow a crack to initiate at the midspan. Note that the finite element model has only one
physical notch at the initial stage of the simulations.

As we can see from Figure 20(a) for 
 = 0.7, the crack propagates only from the offset
notch since the stress is released at the midspan. In this case, the crack propagates at an angle
of 52◦, which is in reasonable agreement with the experimental result of 60◦. For the offset
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Figure 19. Test configuration of concrete beam with an offset notch for a mixed mode test and
experiment crack configurations for various offset parameters, 
 [39]: (a) experiment set-up; (b) mixed

mode fracture at the initial notch; (c) transition stage; and (d) mode I fracture at the midspan.

(a) (b)

(c)

Figure 20. Final crack growth path with damage evolution for different offset parameter 
:
(a) 
 = 0.7; (b) 
 = 0.75; and (c) 
 = 0.8.

notch in the transition zone (i.e. 
 = 0.77), the crack is initiated at the midspan and both cracks
propagate simultaneously. In this simulation, the transition is observed around 
 = 0.75, which
is similar to that observed experimentally. Finally, when the offset notch is too far from the
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loading point and it cannot relax the stress at the midspan, the crack is initiated at the bottom
of the midspan and grows as shown in Figure 20(c). For all cases, the crack starts to grow at
around 620 �s.

6. CONCLUSIONS

A method for explicit dynamic crack and shear band propagation simulation has been developed.
In this method, by reinterpreting the conventional XFEM displacement field, a cracked or
sheared element is represented by two superimposed elements with a set of phantom nodes or
phantom degrees of freedom. The numerical integration of the cracked elements is simplified
with one-point quadrature and hourglass control. This facilitates the addition of this method to
existing programs.

To evaluate the applicability of the proposed method, several numerical examples for which
experimental or numerical results are available have been analysed. In the Kalthoff and Winkler
problem, the method showed a little mesh dependence. However, the crack tip speed decreases
somewhat with mesh size. We attribute this effect to the element-by-element cracking procedure,
i.e. due to the absence of a model for a partially cracked element. It is apparent that element-by-
element cracking requires finer meshes to match the accuracy of methods with partial element
cracking as in [1]. So while element-by-element progression of a crack is simple, it tends to
overestimate the crack speed. Overall crack and shear band propagation paths are in reasonable
agreement with what was obtained experimentally. In the dynamic crack branching problem,
we found that the proposed method is quite effective for these complicated crack patterns.

An attractive feature of this method is that it provides consistent history variables and low
computational cost within the context of the conventional explicit finite element method. This
allows large-scale problems with complicated crack geometries to be solved efficiently.
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