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SUMMARY

New methods for the analysis of failure by multiscale methods that invoke unit cells to obtain the subscale
response are described. These methods, called multiscale aggregating discontinuities, are based on the
concept of ‘perforated’ unit cells, which exclude subdomains that are unstable, i.e. exhibit loss of material
stability. Using this concept, it is possible to compute an equivalent discontinuity at the coarser scale,
including both the direction of the discontinuity and the magnitude of the jump. These variables are then
passed to the coarse-scale model along with the stress in the unit cell. The discontinuity is injected at the
coarser scale by the extended finite element method. Analysis of the procedure shows that the method is
consistent in power and yields a bulk stress–strain response that is stable. Applications of this procedure
to crack growth in heterogeneous materials are given. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiscale methods based on unit cells, often called FE2 methods [1, 2], are becoming of increasing
importance because of their ability to compute the effective properties of complex microstructures
on the fly. For example, the modeling of the response of composite material structures is streamlined
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considerably by such methods, since the necessity for obtaining homogenized material properties
is avoided. However, the application of these methods to problems of failure still poses major
difficulties, for the modeling of failure is inextricably interwoven with the loss of material stability
of the constitutive law in rate-independent materials; even in rate-dependent materials, failure
results in extreme localization of deformation at the macroscale, which is difficult to treat in
multiscale methods.

In this paper, we describe an FE2 multiscale method wherein the difficulties due to loss of
ellipticity are circumvented by injecting discontinuities at the coarser scales when the subscale
models predicts material instabilities. The method is quite natural: by means of special unit cells
called ‘perforated unit cells’, we develop a method for separating the deformation corresponding
to material failure from the bulk deformation. We then find an equivalent discontinuity or several
discontinuities. These discontinuities are injected into the coarser-scale model; their orientation
and magnitude are obtained from the same analysis. Because the method aggregates many dis-
continuities in the unit cell into a single discontinuity at the coarser scale, we call this method
multiscale aggregating discontinuities (MAD).

We show here that this approach guarantees the material stability of the coarser-scale model. In
other words, by extracting a discontinuity from the overall deformation of a unit cell, the remaining
bulk material, with certain stipulations, can be shown to remain stable. Thus, the coarse-scale model
remains well posed (broadly speaking) and there are no difficulties associated with mesh sensitivity.

In some works, loss of material stability has been dealt with by resorting to gradient methods
to regularize the material model, e.g. Kouznetsova et al. [3] and McVeigh et al. [4]. Interesting
studies on representative volume elements are given by Gitman [5] and Gitman et al. [6]. Oskay
and Fish [7] have treated the homogenization of failure by eigendeformation techniques that bear
a resemblance to the method proposed here.

Gradient and non-local models for regularizing loss of ellipticity were proposed almost 25
years ago by Bažant et al. [8], Triantafyllidis and Aifantis [9], and Lasry and Belytschko [10].
These developments ensued from the discovery that upon loss of ellipticity, deformation in a
body localizes to a set of measure zero [11, 12] which leads to spurious behavior in numerical
models, and to severe mesh dependence of the solution. Recently, regularization methods have
been the topic of considerable research, and improved theories, particularly methods suitable for
plasticity, have been developed, Fleck and Hutchinson [13, 14] and Gao et al. [15] are two of the
many examples. Regularization of the standard continuum mechanics formulation may be a viable
approach to circumvent loss of material stability, but it entails using non-standard finite element
programs and is often quite expensive. Furthermore, determination of the degree of regularization
from experiments and information passing to coarser scales poses difficulties for these methods.
For example, in metals, there is little evidence that gradient models give an accurate model of
plastic deformation for scales larger than the nanoscale.

The theory and application of methods for dealing with instabilities without regularization have
been addressed infrequently. Abeyaratne and Triantafyllidis [16] showed that unit elastomers with
periodic holes lose rank-one ellipticity even though the elastomer possessed rank-one ellipticity.
Geymonat et al. [17] were among the first to study the loss of stability at the microscale and its
implications. They examined the homogenization of a layered composite bar and determined the
conditions for the loss of rank-one convexity using a Bloch wave analysis. They identified what
they called short-wavelength and long-wavelength instabilities, though it should be noted that with
the loss of rank-one convexity, instability occurs at all wavelengths. Müller [18] studied the issue
of convexity of unit cells in a similar context. Miehe et al. [19] in an interesting study, developed
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MULTISCALE AGGREGATING DISCONTINUITIES 871

a theoretical framework and computational procedure that links unstable unit cells to the macroscale
in a composite.

2. PRELIMINARIES

We will use a standard continuum mechanics formulation at each scale, although at the finest scale
discrete methods such as atomistic or discrete element methods (DEMs) can be used (they are
discussed in a subsequent paper). The motion at each scale K is given by

x=/K (X, t) (1)

where x denote the spatial coordinates and X the material coordinates. The deformation gradient
FK , henceforth called simply the strain, is given locally in terms of /K by

FK = ∇⊗/K (2)

where ∇ is the gradient operator in the material coordinates.
At each scale, the motion is governed by the equations of equilibrium

DIVPK = 0 or
�PK

i j

�X j
= 0i (3)

where P is the first Piola–Kirchhoff stress, henceforth called simply the stress, and DIV is the
divergence operator; see Belytschko et al. [20] for a text-book account (in [20], the symbol P is
used for the nominal stress tensor, which is the transpose of the first Piola–Kirchhoff stress tensor).
Body forces are not treated here, although including them does not pose fundamental difficulties.
The displacements are given by

uK (X, t) =/K (X, t) − X (4)

The constitutive law is taken to be of the form

PK =PK (FK ) or PK = �W
�FK

(5)

where the second equation is applicable when the material deformation is reversible so that the
material possesses a potential W . We will sometimes need a tangent relationship for the constitutive
law, which we write as

ṖK = CK : ḞK (6)

where CK is the tangent modulus given by

CK = �2W
�FK �FK

(7)

and superposed dots denote material derivatives with respect to time or a time-like variable.
Our conception of the energy of the system requires some explanation. We assume that the

intrinsic energy of the body is independent of the scale. The scale dependence of the material
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constants arises from the resolution of the numerical method at each scale, which results in
differences in the fields FK (X, t).

The solutions reported here have been obtained by the extended finite element method (XFEM).
The displacement field at scale K is given by

uK (X, t) =uK
c (X, t) + uK

d (X, t) (8)

where uK
c is the continuous part of the displacement field and uK

d the discontinuous part. The
finite element approximations for these fields in the XFEM setting are

uK
c (X, t) = ∑

I∈S
uK
I (t)�I (X) (9)

uK
d (X, t) = ∑

I∈Sd

qK
I (t)�I (X)(H�(X) − H�(XI )) (10)

whereS is the set of nodes in the model,Sd the set of nodes of elements crossed by a discontinuity
(see, Moës et al. [21]), uK

I the nodal displacements, �I the shape functions, and H� a step
function on the discontinuity �c. The enriched variables qK

I are set by the magnitude of the
discontinuity obtained from the subscale solution. The XFEM method was developed in [21, 22];
recent developments are given in [23–29].

3. UNIT CELL AND INFORMATION TRANSFER

We consider a unit cell with sides of length l = �h, where h is the characteristic element size
where the unit cell is applied and � is a parameter close to unity. In the unit cell, neither the
geometry nor the response is assumed to be periodic. Therefore, the localization that accompanies
microcrack growth, shear band formation, and other damage modes can be treated even though
such behavior is not periodic. The role of the unit cells is to provide the stress response for
the coarse-scale model. In addition, they must provide the orientation and the magnitude of the
displacement discontinuities.

The schema for the method is shown in Figure 1. Each subdomain in the macromodel (usually
only the critical subdomains, called ‘hot spots’, are linked to unit cells), is linked with a virtual

N

0
D

0
D

l

l 2R L

other virtual
unit cells

Unit cell Virtual unit cell Macromodel

h

,K KF

Figure 1. Schema of the multiscale aggregating discontinuities method.
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Macroscale

Virtual unit cell

Unit cellUnit cell

Macroscale

deformation gradient: ,K KF

 :  boundary conditionsKF constitutive
equation

,KN U1 K 1

microscale: ( ),P X FK 1K 1

Figure 2. Flow chart of the multiscale aggregating discontinuities method.

unit cell, which in turn interrogates the actual unit cell. A point in the subdomain of the coarse-scale
model is selected to be the source and recipient of the information procured at the finer scale.
Usually, the subdomain is an element in a mesh and the linkage point is a Gauss quadrature point
of a finite element. The procedure is usually strain driven; the effective strain FK at the point in
the macroelement is applied to the unit cell as a displacement boundary condition on the edges of
the unit cell. The effective strain includes both the bulk strain FK and the effect of discontinuities.
However, displacement-driven unit cells often encounter certain difficulties in the treatment of
localization; these, along with some remedies, are described later.

From the solution of the unit cell, the following information is obtained:

(i) The stress at the coarser scale.
(ii) The orientation of the effective discontinuity (or discontinuities), and, in some cases, the

displacement jump across this discontinuity (or discontinuities).

The virtual unit cell in two dimensions is considered to be circular with radius R = l/
√

� so
that its area is equivalent to that of the unit cell. The role of the virtual unit cell is to provide
energetic consistency of the effective discontinuity. The unit cell does not provide information
on the location of the discontinuities within the associated coarse-scale subdomain, but provides
information only on the orientation of the discontinuity.

Remark
While the insertion of the macro-discontinuity is usually triggered by loss of material stability, the
technique is also applicable to situations where localization occurs due to a localized load.

We next describe the procedure and the micro/macro linkage with Figure 2 as a guide. As can
be seen, at each sampling point at the coarser scale, the effective strain FK at scale K (K�1)
is provided by the coarse-scale computation. The boundary condition is then applied to the
unit cell

/K+1(��K+1) = FK · X (11)
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Figure 3. Representation of unit cells that contain discontinuities and localization bands: (a) unit cell �K
0

at scale K , (b) perforated unit cell �̃K
0 ; cracks are also excluded from the domain; and (c) definition of

discontinuities and localization band geometries.

This is the standard way for prescribing the boundary motion of unit cell. The effective strain
FK includes both the bulk strain FK and the discontinuous/localized deformation FK

E ; the latter
can be considered as an eigenstrain and relation to the discontinuous motion is discussed later.
The effective strain is similar to a gauge strain, i.e. it is an average strain over a finite subdomain.
Discontinuities at scale K are included in the effective strain; the bulk strain FK is the continuous
deformation at scale K .

The above is called the ‘localization step’ by Feyel and Chaboche [1], but we do not call this
process ‘localization’ since we use this term for ‘localization of deformation’. It links a more
detailed subscale model with the coarse-grained model.

The response of the unit cell is then computed using the constitutive laws of the microcon-
stituents. Note that these constitutive laws can include a crack growth law or crack nucleation and
propagation laws.

The two scales are linked through averaging methods that are characteristic of unit cell methods.
The notable feature of the proposed method is that the averaging operation excludes all subdomains
in the unit cell that exhibits material instabilities; this includes both nucleating and growing cracks
and other manifestations of material instability such as shear bands. For cracks, the entire crack
is excluded. An example of such a unit cell is shown in Figure 3. We call the unit cell with
‘holes’ around domains of material instabilities a ‘perforated’ unit cell. Note that the domains
excluded around cracks are sets of measure zero, i.e. lines in two dimensions and surfaces in three
dimensions.

Consider a unit cell such as shown in Figure 3(a). It contains a discontinuity �D
0 and a localization

band �L
0 . It is assumed that the width of the localization band, denoted by wL, is small compared

with the dimensions of the cell e. The edges of the localization band are denoted by �L+
0 and �L−

0 ,

the midline by �L
0 . We denote the domain of the perforated unit cell by �̃0 = �0\(�L

0 ∪ �D
0 ). For

simplicity, we consider a single localization band and a single discontinuity in the following, but
the extension to multiple cracks and localization bands is straightforward.

The averaging operation for any function f (X) is defined by

〈 f K 〉= 1

|�̃K
0 |
∫

�̃K
0

f K d� (12)
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where | · | denotes the measure of the domain, which is the area in two dimensions and the volume
in three dimensions. Note that, in contrast to standard methods, the averaging operation is over
the perforated domain.

The average bulk strain at scale K is given by

〈FK 〉= 1

|�̃K
0 |
∫

�̃K
0

FK d� (13)

We define the bulk strain at scale K − 1 to be the average strain at scale K , hence

FK−1 ≡ 〈FK 〉 (14)

The average stress is defined similarly as

〈PK 〉 = 1

|�̃K
0 |
∫

�̃K
0

PK d�≡PK−1 (15)

and, as indicated, gives the stress at the coarser scale.
A crucial step in this theory is the determination of the discontinuity or discontinuities at scale

K − 1 emanating from the response of the unit cell at scale K . It would be desirable to establish a
single discontinuity from the difference between the effective strain at scale K −1 and the average
strain at scale K (which corresponds to the bulk strain at scale K − 1), i.e. to find a normal N̄
such that

ŪK−1 ⊗ N̄K−1 =FK−1 − 〈FK 〉 ≡ FK−1 − FK−1 (16)

where Ū is a non-dimensional displacement jump that is related to the displacement discontinuity
at scale K − 1 by

�uK−1� = �/K−1�= |�̃K
0 |
R

ŪK−1 (17)

where �/K−1� is the jump in /(X, t) at scale K − 1 at the position of the unit cell, and R is the
radius of the virtual unit cell in two dimensions. We use the following convention for defining a
jump (see Figure 3):

�/⊗N� =/+N− + /−N+ (18)

such that for a crack the jump is positive in the crack-opening mode, where N is the normal in the
reference configuration.

However, the left-hand side of Equation (16) is a rank-one tensor, whereas the right-hand side is
usually a rank-three tensor. In general, a jump ŪK−1 and a normal N̄K−1 that satisfy Equation (16)
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(b)(a)

1

2

unit cell element

Figure 4. (a) A crack path through a composite based on microstructural analysis and (b) the corresponding
dual discontinuity configuration; dark bold lines denote primary discontinuities N̄1 and dashes denote

secondary discontinuities N̄2.

cannot be found. Therefore, we find ŪK−1 and N̄K−1 by minimizing the quadratic form

(ŪK−1, N̄K−1) = arg

(
min
Ū,N̄

(Ū⊗ N̄ − FK−1 + 〈FK 〉)2
)

(19)

The above provides a single discontinuity for each coarse-scale point (i.e. a Gauss quadrature point
in finite elements). A simple procedure for solving (19) is given in Appendix B.

At times, it is desirable to introduce more than one discontinuity at each point. For example,
when a crack progresses in a composite as shown in Figure 4(a), then an appropriate crack pattern
is that in Figure 4(b). Basically, because of the complexity of the crack path in the unit cells, a
single discontinuity in each element may not suffice to adequately represent subscale behavior.
By using two discontinuities for each unit cell, a better representation of subscale behavior can be
obtained.

Multiple discontinuities are injected as follows. First, we find ŪK−1
1 and N̄K−1

1 by Equation (19).
We then construct N̄K−1

2 (and N̄K−1
3 in three dimensions) by orthogonalizing them to N̄K−1

1 (and
N̄K−1
2 ). The jumps ŪK−1

� can then be found by solving

ŪK−1
� ⊗ N̄K−1

� =FK−1 − 〈FK 〉 ≡ FK−1 − FK−1 (20)

for ŪK−1
� , where � is the number of orthogonal discontinuities; it must equal the number of space

dimensions. In the above and henceforth, the subscripted variables are summed over their range.
When Ū or N̄ appears without a subscript, it is assumed that there is only one discontinuity. Note
that the surfaces of discontinuity as defined here can rotate with time.

When the traction across the discontinuity is non-vanishing, the discontinuity is injected into
the coarser scale by prescribing the values of the enrichment variables qK−1. In our current
implementation, the discontinuity magnitude is piecewise constant in the elements, so we replace
�I (X) in Equation (10) by the indicator function �e(X), where

�e(X) =
{
1 if X corresponds to the unit cell

0 otherwise
(21)
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The jump magnitude ŪK−1 is related to qK−1
e by

qK−1
e = |�̃K

0 |
R

ŪK−1 (22)

It is easily shown from Equations (8)–(10) that in element e the jump in the displacement is
given by

�uK−1�� = |�̃K
0 |
R

ŪK−1 (23)

Once the traction across the discontinuity vanishes, the magnitude of the jump is no longer
prescribed. Instead, we switch to precisely the form given in Equation (10) and let the variables
qK−1
I be unknowns in the discrete equations. The magnitude of the discontinuity then becomes

piecewise continuously differentiable. A projection is used to pass from the piecewise constant to
the continuously differentiable discontinuity.

The MAD method introduces a length scale into the coarse-grained model, since it implicitly
provides a cohesive law by passing a stress and dislocation (for example, a crack) opening.
Cohesive laws in a continuum provide a length scale through the relation between the traction and
displacement jump magnitude.

The unit cell must be of the same size as the related coarse-scale element. The reason for this
is explained in Appendix A.

3.1. Eigenstrain method

Another method for linking the scales is to insert an eigenstrain FK−1
E into the coarser scale until

the unit cell loses all strength across an incipient discontinuity, i.e. until the traction P · N1 = 0,
and then injecting the discontinuities. The eigenstrain is defined by a variant of Equation (16):

FK−1
E =FK−1 − 〈FK 〉 (24)

The difficulty with this approach is that the injection of eigenstrains is not effective in representing
cracks or shear bands at the coarser scale. However, an effective technique can be developed as
follows. The early part of the evolution of the failure of the unit cell is treated by Equation (24).
When P · N1 = 0, we inject a discontinuity that is found by a counterpart of Equation (19):

(ŪK−1, N̄K−1) = arg

(
min
Ū,N̄

(Ū⊗ N̄ − FK−1
E )2

)
(25)

If it is desirable to insert more than one crack, the counterpart of Equation (20) is used. This
approach bypasses difficulties associated with the rotation of the normals N̄K−1

� . A simple algebraic
equation for the solution of the above is given in Appendix B.

3.2. Remarks on the unit cell

The perforated unit cell is crucial to the determination of the direction of the injected discontinuity
at the coarser scale. At the finest scale, it is desirable that the model is regularized by one of
the many models available, i.e. viscoplastic material laws, gradient models or non-local models.
Alternatively, one can use an element size regularization, where the unstable part of the constitutive
equation is modified so that it captures the correct fracture energy for the element in which it
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occurs. The treatment of cracks at the finest scale does not require regularization if the cracks are
treated as discontinuities. It should be borne in mind that the nucleation and propagation of cracks
is a manifestations of unstable material behavior. However, when a critical stress or strain criterion
is used to nucleate or propagate a crack, there is no need for a stability analysis.

Many criteria can be developed for identifying domains of unstable material behavior. We have
used the rank-one convexity criterion and the strict ellipticity criterion. The rank-one convexity
criterion is equivalent to the loss of ellipticity of the underlying PDE, so it is often called an
ellipticity condition. To determine the proximity of a material point to unstable behavior by this
measure, we evaluate

s = S(CK ) (26)

where

S(CK ) = min
g,h

(g⊗ h) : CK : (g⊗ h) (27)

When s<0, the material is unstable. All subdomains of �K
0 that meet the criterion

s�scrit (28)

are then included in the localization domain �L
0 , where s

crit is a value slightly greater than zero at
which we presume unstable behavior. Although premature injection of discontinuities is not fatal,
tardy injection is undesirable, since it leads to an unstable material model in the corresponding
coarse-grained element.

The rank-one stability criterion is expensive to check. An alternative stability criterion is the
strict ellipticity criterion, which requires that

Ḟ :CK : Ḟ>0 ∀Ḟ (29)

This condition is a stronger condition than the rank-one ellipticity condition. However, the discrep-
ancy between the two is usually quite small, so it provides a useful way to construct the perforated
unit cell. Equation (29) corresponds to the positive definiteness of C, so it can be easily checked
by computing the eigenvalues of C.

Next, we discuss some basic difficulties in the treatment of unit cells with localization and
cracking. In conventional unit cells with continuous deformation, when the unit cell is strain
driven, the displacements are prescribed on the entire periphery of the cell. However, as shown
in Figure 5, for unit cells with discontinuities, this leads to inconsistencies, when for example, a
crack or shear band intersects an edge. When a shear band intersects an edge, the displacement
tangential to the shear band must be discontinuous, for otherwise the shear band is terminated
at the boundary. Thus, the response of the unit cell is not compatible with the prescribed linear
displacements, as illustrated along the edge CD in Figure 5.

We have developed two methods for alleviating these difficulties. The first method is based on
altering the prescribed displacement procedure when a discontinuity is detected in the neighbor-
hood of a boundary. In that case, the nodes on the boundary around the anticipated path of the
discontinuity are released and a traction equal to the average traction on the remaining boundary
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(a) (b)

Shear bands

A

B

D

C

A

B

D

C

Figure 5. A perforated unit cell under pure shear with shear bands: (a) inconsistent prescribed boundary
displacements and (b) consistent boundary displacements.

is applied. Though this procedure deviates from the proofs that follow, the consistency properties
between the scales are not disrupted excessively.

An alternative is to use stress-driven unit cells. Although at first glance this is somewhat
incompatible with the character of a displacement-based finite element method, a stress-driven
approach is quite attractive when one bears in mind that

(i) The time interval over which the unstable response occurs is usually quite small compared
with the response time of the entire structure.

(ii) It is feasible to run a displacement-driven unit cell until discontinuities or localization bands
approach the boundaries, and to then switch to a stress-driven unit cell, although care must
be taken to have a smooth transition.

When we use a stress-driven unit cell, it is driven iteratively so that, for the converged value P̄K−1,
the boundary displacements match the macrostrain at the end of the procedure, i.e.

FK−1 = 〈FK 〉 + ŪK−1
� ⊗ N̄K−1

� ≡FK−1 + ŪK−1
� ⊗ N̄K−1

� (30)

which corresponds to Equation (20). This iterative procedure can be interwoven with the iterations
required in solving the K − 1 scale equilibrium equations.

Another alternative approach is to pre-compute the response of the perforated unit cell or to
train a neural network with the perforated unit cell. Recent work [30, 31] has shown that neural
networks can reproduce the constitutive response measured in experiments to a high degree of
fidelity, particularly for monotonically increasing loads. In most applications of the proposed
multiscale procedures, we envision that the loads are monotonic. The only extension that is needed
to apply these neural network methods to the perforated unit cell is to provide additional output,
namely Ū� and N̄�. This entails only a minor complication. The use of such neural network models
would tremendously speed up these multiscale analysis methods, particularly when many of the
unit cells are identical.

The treatment of boundary effects of the macromodel and the failure of adjacent unit cells also
require additional study. It goes without saying that a unit cell adjacent to a boundary behaves
differently from a unit cell in the bulk material. For example, if edge AB in Figure 5 is a free
boundary, the application of a displacement boundary condition based on FK−1 on the edge is
obviously inappropriate. Instead, such a boundary unit cell should be solved with the edge AB
free; this boundary effect has already been noted by Feyel [2].

Similarly, it may be advantageous to reflect the growth of discontinuities adjacent to a unit
cell in the unit cell computations. For example, if the cell to the left of the one in Figure 5
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undergoes discontinuous motions, then this behavior should be reflected in the treatment of edge
AB. Fortunately, failure in an adjacent cell accelerates the growth of strain in the target cell, hence
this issue may not be critical.

4. INTERSCALE RELATIONS

In this section, we derive the relations between the unit cell and the coarser-grained system. The
fine scale is denoted by K and the coarser scale is denoted by K − 1. For a two-scale analysis,
K = 1 would be the macroscale and K = 2 would be the microscale.

We assume that the discontinuities and localization bands are fixed in space after they have
nucleated. This is quite reasonable for cracks and shear bands, because after shear bands or cracks
nucleate and evolve their configurations are frozen. We also assume, without loss of generality, that
the entities �L

0 and �D
0 are independent of time and known a priori for the purposes of this analysis.

Finally, we assume that the stress is everywhere bounded and that �/K ⊗N� is a continuously
differentiable function along �L

0 ∪ �D
0 ; this assumption precludes elastic traction-free cracks.

It is assumed that for every point XL of the midline on the localization band �L
0 there exist a

pair of points XL+ and XL− on �L+
0 and �L−

0 , respectively (see Figure 3(c)), such that

XL = 1
2 (XA + XB) (31)

and that the lines AB between points XA and XB are approximately normal to �L
0 . It is also

assumed that the tractions PK · NK are approximately constant in �L
0 along the line AB so that

�PK · NK � = 0 (32)

On any discontinuity �D
0 such as a crack, it follows from equilibrium that Equation (32) holds.

From Gauss’ theorem and Equation (32), it follows that∫
�̃0

DIVP d� =
∫

�L
0∪�D

0

�P · N� d� +
∫

��0

P · N d�

=
∫

��0

P · N d� (33)

We only analyze the prescribed boundary displacement unit cell. We first show that the average
bulk strain 〈FK 〉 of the unit cell is related to the effective coarse-scale strain FK−1 (i.e. the strain
prescribed to the unit cell) by

|XK
0 |FK−1 = |X̃K

0 |〈FK 〉 +
∫

�L
0∪�D

0

�/K ⊗N� d� (34)

Note that the normal is tacitly taken to be at the same scale as the preceding variable, i.e. in (34) N
refers to NK because it is preceded by /K . The above is an extension of the average strain theorem
(see, Zohdi and Wriggers [32] or Nemat-Nasser and Hori [33]) previously given in Loehnert [34].
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The proof is as follows. From the definition of the deformation gradient FK = ∇⊗/K , it follows
that

|X̃K
0 |〈FK 〉 =

∫
�̃
K
0

∇0 ⊗/K d�0

=
∫

�L+
0 ∪�L−

0

/K ⊗N d� +
∫

��0

/K ⊗N d� +
∫

�D
0

�/K ⊗ N� d� (35)

The second equality follows from Gauss’ theorem. Since wL
h, we can replace the first integral
in the above using ∫

�L+
0 ∪�L−

0

/K ⊗N d�=
∫

�L
0

�/K ⊗N� d� (36)

In the displacement-controlled procedure

/K =FK−1 · X on �� (37)

We can then transform the second term in Equation (35) as follows:∫
��0

/K ⊗N d�=
∫

��0

(FK−1 · X) ⊗N d�= FK−1 ·
∫

��0

(X⊗N) d�= |XK
0 |FK−1 (38)

where the last equality follows from Gauss’ theorem. Substituting Equations (36) and (38) into
Equation (35), it follows that Equation (30) holds, which completes the proof.

It can be seen by comparing Equation (36) with Equation (34) that the injected discontinuity
corresponds to a mean of the discontinuities in �D and the localization band �L, i.e.

RŪK−1 ⊗ N̄K−1 =
∫

�L
0∪�D

0

�/K ⊗N� d� (39)

By combining Equations (34) and (39), it follows that

FK−1 =〈FK 〉 + ��/K−1
� ⊗N�� (40)

where

� = R

|�K
0 | (41)

Average stress: The average stress is defined by

〈PK 〉 = 1

|X̃K
0 |
∫

�̃
K
0

PK d� (42)

We define the coarse-scale stress as

PK−1 = 〈PK 〉 (43)

For a stress-driven unit cell, the equivalence is shown as follows.
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We first note that∫
�̃
K
0

DIV(X⊗PK ) d� =
∫

�̃
K
0

(X · DIVPK + DIVX · PK ) d�

=
∫

�̃
K
0

PK d� by equilibrium and DIVX= I

= |X̃K
0 |〈PK 〉 (44)

Applying Gauss’ theorem to the LHS of the above gives∫
�̃
K
0

DIV(X⊗PK ) d� =
∫

��0

(X⊗PK ) · N d�

= PK−1 :
∫

��̃0

N⊗X d�

= PK−1 ·
∫

�̃
K
0

I d�0 =PK−1|X̃K
0 | (45)

where the second equation follows from Gauss’ theorem. Comparing Equation (44) with (45),
Equation (43) follows.

Power theorem: We next show that the power at level K − 1 equals the power of the unit cell.
This theorem states that

PK−1 : ḞK−1 =〈PK : ḞK 〉 + 1

|X̃K
0 |
∫

�L
0∪�D

0

PK : �/̇K ⊗N� d� (46)

This is an extension of Hill’s theorem; Hill’s theorem only includes the first term on the right-hand
side. The proof is as follows. We note that

|X̃K
0 |〈PK : ḞK 〉 =

∫
�̃
K
0

PK : ∇/̇K d�

=
∫

�̃
K
0

[∇ · (PK · /̇K ) − /̇K · DIVPK ] d� (47)

By equilibrium, the last term vanishes and applying the divergence theorem yields

|X̃K
0 |〈PK : ḞK 〉 =

∫
��0

PK : (/̇K ⊗N) d� −
∫

�L
0∪�D

0

PK : �/̇K ⊗N� d� (48)

Evaluating the first term on the RHS of Equation (48) using Equation (37) gives∫
��0

PK : (/̇K ⊗N) d� =
∫

�̃
K
0

DIV[(PK )T · ḞK−1 · X] d�

= |X̃K
0 |PK−1 : ḞK−1 (49)
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where the last line follows from equilibrium and Equation (43). Substituting Equation (49) into
(48) and rearranging the terms gives Equation (46).

Stability: In a multiscale procedure, it is important to show that the material properties obtained
from the finer scale yield a well-posed coarser-scale model. This requirement entails that the
relation between ṖK−1 and ḞK−1 obtained from a unit cell at scale K is stable.

We show that

Ḟ : CK−1 : Ḟ>0 ∀ḞK−1 (50)

if the bulk material in the perforated unit cell �̃K
0 satisfies Equation (50) for all CK . Although this

condition is stronger than the rank-one ellipticity condition (Equations (26)–(28)) and precludes
buckling, it is adequate for our purposes because the domain of stability given by Equation (50)
usually coincides closely with that given by Equations (26)–(28). In the applications we consider,
buckling is not relevant.

The first steps in the proof are similar to those in the previous part, with PK replaced by ṖK .
Hence, following the steps used to obtain Equations (48) and (49), we obtain

|X̃K
0 |〈ṖK : ḞK 〉 = |X̃K

0 |ṖK−1 : ḞK−1 +
∫

�L
0∪�D

0

ṖK : �/̇K ⊗N� d� (51)

By rearranging these terms and using ṖK−1 = CK−1 : ḞK−1, ṖK = CK : ḞK and Equation (40),
we obtain

ḞK−1 : CK−1 : ḞK−1 = 1

|X̃K
0 |
∫

�̃
K
0

ḞK : CK : ḞK d�

−
∫

�L
0∪�D

0

ṖK : �/̇K ⊗N� d�

+�ṖK−1 : ( ˙̄U� ⊗ N̄� + Ū� ⊗ ˙̄N�) (52)

Since all material that is unstable has been excluded from �̃0, the first term on the RHS is positive.
The second and third terms represent the differences between the average and actual incremental
dissipation and generally are close to zero. We show in the Appendix that when the unit cell is
one dimensional, the bulk response is stable. Hence, when the material is stable in the perforated
unit cell (domain �̃K

0 ), the material at level K − 1 is stable.

Stability at the macrolevel, can in any case be achieved by manipulating ˙̄UK−1. If we scale
˙̄UK−1 or � in Equation (52), so that the third term exceeds the second term, strict ellipticity is
guaranteed at the macrolevel. The former corresponds to slight perturbation of the crack-opening
rate at the coarser scale.

It should be noted that the above proof does not contradict the finding of Abeyaratne and
Triantafyllidis [16] that a unit cell with holes is unstable even if the material remains stable. In
our case, we are interested in the overall stability of the bulk material. The unstable part of the
response is reflected in the discontinuity.

Note that CK , since it relates ṖK to ḞK , is the first elasticity tensor. Therefore, it is a function
of the current stress and can lose positive definiteness even when the material tangent stiffness is
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positive definite. Thus, when buckling occurs at the fine scale, CK−1 < 0 in some subdomain of

the unit cell, and it is possible that CK < 0.
Zhodi [35] has pointed out that the above theorem is related to the Hill’s comparison theorem

[32, p. 59] which was developed for bounding the stiffnesses of obtaining unit cell models with
irregular shapes. However, here it is used to show the relationship between stability at the two
scales.

5. IMPLEMENTATION

The multiscale method can be used with any non-linear solid mechanics software. The problems
we report are all two dimensional and a four-node quadrilateral with one-point quadrature element
with hourglass control [36–38], with the unit cell providing the stress at the quadrature point.

The discontinuity is placed at the centroid of the element if there are no contiguous elements
with discontinuities. If a discontinuity has already been inserted in a contiguous element, then the
new discontinuity is inserted so that the discontinuity line is continuous. After the discontinuity
has progressed several elements, situations may arise where the discontinuity is quite short. We
have not carefully examined the best way to treat this. At this time, we add a second discontinuity
in the element (maintaining consistency in energy). The discontinuity is then propagated into the
adjacent element for which the unit cell first loses material stability. Generally, this results in
unloading of adjacent elements so that only one discontinuity continues to progress.

6. NUMERICAL EXAMPLES

6.1. Computation of equivalent discontinuity

We illustrate first the application of the coarse-graining procedure to a unit cell with multiple fatigue
crack growth. As can be seen from Figure 6, when a single crack is used to coarse grain the fine-
scale solution, the crack rotates in a counterclockwise direction for the configurations shown. In
the final configuration, percolation has occurred and the coarse-grain crack is aligned with the
percolated microcracks. The crack-opening magnitudes are indicated next to the macrocrack.

In the third column, we show the result of a coarse-graining procedure for the same microcrack
configuration with two macrocracks. The evolution of the major macrocrack is unchanged. The
minor macrocrack opens substantially less.

6.2. Three-point bending

A coarse-scale model for a boron–aluminum composite is shown in Figure 7(a). The fine-scale
model is shown in Figure 7(b); its solution is hereafter referred to as the direct numerical simulation
(DNS). The center of the coarse-scale model was linked to identical unit cells, one of which is
shown in Figure 7(c). In the unit cell, we explicitly modeled the boron particles and the aluminum
matrix so that the volume fraction of the particles is 10%. The boron particles are linear elastic
isotropic: E = 413.0GPa and �= 0.20. For the aluminum matrix, a Lemaitre damage constitutive
model [39] was used: E = 67.50GPa and � = 0.36. Outside the center area in both the coarse- and
fine-scale models, the material is linear elastic with an effective elastic modulus which is computed
by conventional homogenization theory as E = 75.60GPa and � = 0.35.
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Figure 6. Growth of fatigue cracks in a unit cell (in the first column) and the corresponding coarse-grain
discontinuities obtained by Equation (19) (in the second and third columns); major and minor macrocracks

are denoted by solid and dashed lines, respectively.

The results were obtained by an explicit dynamic analysis using a sufficiently slow loading rate
so that dynamic effects are minimal. However, it should be noted that, regardless of the slowness,
snapback will not be apparent in this approach.

Figures 8(a) and (b) show the final configurations of the coarse-scale model and DNS, respec-
tively. As can be seen, the crack path in the DNS is quite irregular due to the microstructure.
However, in the coarse-scale simulation, this jaggedness is absent since the resolution of crack
path by the coarse model cannot capture these details.

The evolution of a discontinuity in a typical unit cell is shown in Figures 9(a)–(c). As can be
seen, the crack starts at the interface of the matrix material with the inclusion, and then progresses
to the edges. Neither macro boundary effects nor the effects of adjacent cracks were considered. A
typical result for the stress–strain response in terms of the effective strain is shown in Figure 9(d).
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Figure 7. Finite element discretizations for: (a) the multiscale aggregating discontinuities method; (b)
direct numerical simulation method; and (c) the unit cell model.

As can be seen, the stress monotonically increases with a decreasing slope until a strain of 1.2%.
When the crack opening becomes sufficiently large, the slope becomes negative and discontinuities
are inserted in the coarse-scale model as shown in Figure 8(a).

A comparison of the coarse-grain MAD results with DNS is shown in Figure 10. As can be
seen, the agreement is quite good; the relative error in the maximum load is 8.3%. At the end of
the simulation, a moderate discrepancy emerges. Hence, even though the jaggedness of the crack
path is not apparent in the coarse-grain results, it appears to be reflected adequately through the
coarse-grained stress–strain law.

7. DISCUSSION AND CONCLUSIONS

Although the method has here been described and implemented in the context of multiscale
continuum mechanics, it is especially promising for multiscale models involving discrete models,
such as atomistic or the discrete element method (DEM), at the finest scale. An example of such
multiscale model is illustrated in Figure 11, where the atomistic model is the finest scale.
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Figure 8. The final configuration of 3-point bending simulations: (a) effective stress plot of
the multiscale aggregating discontinuities method; the dashed line represents equivalent crack
growth path and (b) effective stress plot of direct numerical simulation; for better resolution

on crack opening, only nodal points were plotted.

Obviously, hierarchical models would encounter difficulties in passing from the atomistic scale
to the microscale when the former encounters bond breaking, such as in the nucleation of cracks or
dislocations, because the tangent stiffness matrix of the atomistic unit cell may then lose positive
definiteness. Consequently, the constitutive response that is passed from the atomistic model (this
model may be called AtC2: atomistic to continuum to continuum) is not stable, and the coarser-scale
model is not well posed.

In the MAD method, the breaking bonds are excluded from the perforated unit cell, and, as
shown in Section 4, the response of the bulk material at the coarser scale would be stable. The
effect of the unstable behavior at the atomistic scale is passed to the coarser scale by the injected
discontinuity; both the magnitude of the displacement jump at the coarser scale and the direction
of the discontinuity are provided by the unit cell. In the case of an edge dislocation, once it
is fully developed, the jump would be the Burgers vector. In the case of the nucleation of a
crack at the atomic scale, the magnitude of the jump discontinuity would be governed by coarse-
scale equilibrium once the crack is fully developed in the unit cell. The appropriateness of this
approach is readily apparent. Cracks are almost always treated as discontinuities in continuum
models. Similarly, dislocations are usually implicitly treated as discontinuities. In the image field
methods of Van der Giessen and Needleman [40], the discontinuities appear in the superimposed
closed-form solutions, whereas in the Green’s function methods of Amodeo and Ghoniem [41]
and Bulatov and Cai [42], the discontinuities are implicit in the Green’s functions solution. In the
method of Gracie et al. [43], dislocations are treated explicitly as discontinuities in the sense of
Volterra. Although cracks and dislocations can be regularized (i.e. smeared), such methods entail
far bigger models and information passing may be more difficult.
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Figure 9. The evolution of discontinuity in a typical unit cell is rotated by 90◦: (a) initial stage;
(b) intermediate stage; (c) final stages; and (d) a typical stress–strain behavior of the unit cell.

If the intermediate scale has a rich microstructure that is beyond the reach of homogenization
methods, coarse graining up to the next scale can be performed similarly. Of course, such two-
level coarse graining will require tremendous computational resources, but the imminent petaflop
computers will be able to deal with such models. Furthermore, the expense can be reduced
substantially by limiting the MAD approach to ‘hot spots’ or by using the neural networks as
described previously.

A key feature of this work is the method for extracting a single discontinuity from the unit cell to
be injected at the coarser scale. Both the orientation of the discontinuity and the displacement jump
magnitude are determined by this method. For unit cells where the cracks and localization bands
are not aligned along a predominant direction, a method for extracting additional discontinuities
has also been described.
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Figure 10. Comparison of load–deflection curve between the multiscale aggregating discontinuities method
and direct numerical simulation.

Figure 11. Potential application of the multiscale aggregating discontinuities method: atomistic
to dislocations to shear bands.

It could be argued that the proposed method offers little advantage over concurrent analy-
sis at different scales, such as in Xiao and Belytschko [44], Wagner and Liu [45] or Karpov
et al. [46], and this argument cannot be dismissed lightly. If MAD were to be used without the
various ways of reducing computational expense, such as neural networks and invocation only
at hot spots, then its advantage over concurrent analysis is not clear. However, in addition to
computational efficiencies that will accrue due to exploiting techniques such as neural networks,
several advantages over concurrent analysis are readily apparent:

(i) The conditioning of the equations is improved (the large ratio of element sizes in the macro
model to those in the unit cell would substantially impair conditioning).
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(ii) In explicit methods, subcycling is avoided.
(iii) Parallel implementations are more straightforward because little information is passed

between the scales (in concurrent methods, information for all nodes on the boundary must
be passed).

The MAD method is still quite embryonic, and many difficulties remain to be resolved. For
example, the application of boundary conditions on the unit cell and information transfer to/from
the unit cell pose several difficulties, and we have not overcome all of them to our satisfaction.
Among these, difficulties and needed developments are the following:

(i) When the unit cell localizes, prescribed linear displacements as given in the analysis are
not compatible with the discontinuities; this has been discussed in Section 3.

(ii) It would be desirable to model a discontinuity that varies linearly in the unit cell.
(iii) The effects of boundaries and adjacent discontinuities are not reflected in the method.

The first difficulty can be ameliorated by using prescribed traction boundary conditions. This
approach is also more consistent with the neural network strategy that we have discussed.
Including the effects of the environment on the unit cell, such as adjacent boundaries and
adjacent discontinuities, poses no fundamental difficulties, but it will entail additional com-
plexity in the programming and some fundamental improvements in the strategy for injecting
discontinuities.

As can be seen, the impediments to the full realization of the potentials of this method are
primarily technical, i.e. in the details. The proposed method overcomes a fundamental barrier in
the application of hierarchical multiscale methods, i.e. coarse graining, to problems of failure, for
it enables one to coarse grain the bulk response so that it remains stable. This makes possible a
numerically sound and robust treatment of failure problems by multiscale methods.

APPENDIX A

Consider a unit cell of constant area in one dimension with n cohesive cracks as shown in Figure
A1. In reality, this situation would be highly unlikely, since in a symmetric configuration such as
this, the largest imperfection would break symmetry and prevent failure at a second imperfection.
However, we examine this case since it sheds some light on the relation between element size and
unit cell size.

(a) (c)(b)

0h

0

0
D

E

F

cP

P

D

cP

P

Figure A1. Unit cell for the dimensional cracking problem showing: (a) a domain with three cracks;
(b) the stress–strain curve of the pristine material; and (c) the traction–displacement jump relation.
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The material is linear elastic with Young’s modulus E and a fracture stress Pc so that

PK (X, t) = EK FK (X, t) if P(X, t̄)<Pc ∀t̄<t (A1)

PK (X, t) = Pc − D��K (X)� if P(X, t) = Pc for some t̄<t (A2)

It is assumed that ����0. The original length of the unit cell is h0 and its original cross-sectional
area is unity.

The average strain FK is given by

h0〈FK 〉=
∫

�0\�D
0

FK dX = �K (X2) − �K (X1)︸ ︷︷ ︸
FK−1

−
n∑

J=1
��k(X J )� (A3)

The above is the counterpart of Equation (16).
In one dimension, the stress must be constant by equilibrium so that h0〈PK (X)〉= PK = Ek Fk =

PK−1. Otherwise, PK−1 = Pk = Pc − nD��K � since all cracks must open by an equal amount.
Rewriting Equation (A3) in terms of the stress gives∫

�0\�D
0

PK

EK
dX = (�2 − �1)︸ ︷︷ ︸

�

−n
Pc − PK

D
(A4)

or

PK−1
(

h0
EK

− n

D

)
= � − nPc

D
(A5)

where we have used PK = PK−1. The quantity in parentheses is the inverse of the tangent stiffness
of the unit cell. It is easy to verify that it (and the tangent stiffness) is positive when E/D>h0/n,
but otherwise it is negative and the unit cell snaps back.

It also becomes clear that the size of the unit cell must be equal to element size; otherwise
the number of cracks in the unit cell and hence the response are incorrect. In the strain-softening
branch, the tangent stiffness of the unit cell depends linearly on the number of cracks and the size
of domain.

In the post-critical regime, the bulk relationship, PK−1 vs FK−1, is obtained by subtracting the
effect of the discontinuities in Equation (A4), yielding

h0PK

EK
= FKh0 (A6)

Thus, the bulk response remains stable.
The power Ẇ at the coarse scale and fine scale are given, respectively, by

Ẇ K−1 = PK−1ḞK−1 (A7)

Ẇ K =
∫

�0\�D
0

PK ḞK dX +∑
J
PK ��(X J )� (A8)

From (A3), we can see that ḞK−1 = �̇2 − �̇1. So recalling that PK−1 = PK , it follows that

Ẇ K−1 = PK (�̇2 − �̇1) (A9)
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Since PK (X) denoted by PK , is constant, by equilibrium

Ẇ K = PK

(∫
�0\�D

0

Ḟ K dX +∑
J

��(X J )�

)

= PK (�̇2 − �̇1) (A10)

Comparing Equations (A9) and (A10), we can see that the power at the two scales is equivalent.

APPENDIX B

To compute the orientation, N̄, and the magnitude, Ū, of a coarse-grained equivalent discontinuity,
we need to solve the unconstrained multivariable minimization problem that is stated in Equation
(19). In this Appendix, we will show a simple algebraic solution for the problem, which is valid
for a two-dimensional case.

Denote by J the function J = (Ū⊗ N̄ − FE)2. To find the minimum of J , we need to find Ū
and N̄ such that

�J
�Ūi

= �J
�N̄ j

= 0 (B1)

Note that, in the two-dimensional case, N̄=[cos � sin �]T and ‖N̄‖= 1.
Writing the function J in indicial notation yields

J = (Ūi N̄ j − FE
i j )(Ūi N̄ j − FE

i j )

=
⎛
⎜⎝Ūi Ūi N̄ j N̄ j︸ ︷︷ ︸

= 1

−2Ūi N̄ j F
E
i j + FE

i j F
E
i j

⎞
⎟⎠ (B2)

By substituting Equation (B2) into (B1), we obtain a set of two equations:

�J
�Ūk

= 2Ūk − 2FE
k j N̄ j = 0 (B3)

�J
�N̄k

�N̄k

��
= FE

ikŪi
�N̄k

��
= 0 (B4)

Substituting Equation (B3) into (B4):

FE
ik F

E
i j︸ ︷︷ ︸

C jk

N̄ j
�N̄k

��
= 0 (B5)

which in two dimensions yields a single algebraic equation:

C12 cos
2 � − C21 sin

2 � − (C11 − C22) cos � sin � = 0 (B6)

From Equation (B6), we can easily compute the orientation N̄ in terms of � and then by
substituting the value into Equation (B3) we can compute the equivalent discontinuity magnitude Ū.
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Note added in proof: We just became aware of another approach to introducing discontinuities
in multiscale methods, Reference [47].
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