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Cracking node method for dynamic fracture with finite elements
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SUMMARY

A new method for modeling discrete cracks based on the extended finite element method is described. In
the method, the growth of the actual crack is tracked and approximated with contiguous discrete crack
segments that lie on finite element nodes and span only two adjacent elements. The method can deal with
complicated fracture patterns because it needs no explicit representation of the topology of the actual
crack path. A set of effective rules for injection of crack segments is presented so that fracture behavior
beginning from arbitrary crack nucleations to macroscopic crack propagation is seamlessly modeled.
The effectiveness of the method is demonstrated with several dynamic fracture problems that involve
complicated crack patterns such as fragmentation and crack branching. Copyright q 2008 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The ability to model discontinuities such as cracks, dislocations, and shear bands independently
of the mesh topology is a very useful capability in a finite element method (FEM). The classical
way to model discontinuities is to align the mesh so that the discontinuities are coincident with
element edges and then to introduce an additional set of nodes so that the interpolation across
the element edge is discontinuous. Such methods are called remeshing methods because the mesh
must be changed to conform to the crack geometry at every time step. Examples are found in the
works of Swenson and Ingraffea [1] and Martha et al. [2].

∗Correspondence to: Ted Belytschko, Theoretical and Applied Mechanics, Northwestern University, Evanston, IL
60208-3111, U.S.A.

†E-mail: tedbelytschko@northwestern.edu
‡Walter P. Murphy and McCormick School Professor.
§Graduate Research Assistant.

Contract/grant sponsor: Office of Naval Research; contract/grant number: N00014-06-1-0380

Copyright q 2008 John Wiley & Sons, Ltd.



CRACKING NODE METHOD FOR DYNAMIC FRACTURE 361

However, these remeshing methods [1, 2] are quite unwieldy for modeling evolving disconti-
nuities, especially dynamic crack growth, because they require remeshing and projections of field
variables from the previous mesh. The time continuity of the solution is quite important in any
numerical model, but, even with excellent projection schemes, significant errors in the velocities,
stresses, and displacements can be introduced by remeshing. Furthermore, in most dynamic frac-
ture problems, the crack advances over a large part of the mesh so that remeshing would need
to be performed many times. Even when modeling stationary discontinuities, these methods can
be quite cumbersome because the construction of a mesh that conforms to the surfaces of the
discontinuities is often awkward.

One method that avoids these difficulties is the extended finite element method (XFEM) [3, 4],
which introduces arbitrary discontinuities into the finite element approximation without mesh
dependencies. The method is based on a partition of unity approach [5] but, in the XFEM, only a
local partition of unity is used, i.e. the enrichment function spans only those element edges crossed
by the discontinuity. The location of the discontinuity is usually defined by level set functions; see
Stolarska et al. [6], Belytschko et al. [7], Ventura et al. [8, 9], and Prabel et al. [10]. The XFEM has
been developed for three-dimensional fracture problems [11], two-dimensional fracture problems
[12–14], and recently for shell fracture problems [15–17]. The method is also closely related to
the s-version of the FEM [18], where a mesh with a crack is superimposed on the original mesh.

One major drawback of the XFEM is that complicated discontinuity patterns are difficult to
resolve since the method is essentially a discontinuity tracking method; these difficulties are also
found in shock tracking methods. For example, it is necessary to employ a crack branching
algorithm to simulate crack branching [12, 14] since the method does not automatically follow
multiple crack branches. This is exacerbated in treatments of crack growth with level sets since
branching phenomena are not naturally treated within the original level set framework.

The purpose of the present study is to introduce a method that is a hybrid discontinuity
tracking-fitting method. The basic idea is to fit discontinuities with a set of discrete disconti-
nuities at nodes of the finite element mesh, which are oriented in the correct direction. One of
the major advantage of this approach is that it can deal with complicated fracture patterns that
appear to be beyond the capabilities of level set based discontinuity tracking methods. Many
fracture problems are of this type: fragmentation problems and problems that involve the growth
and branching of multiple cracks. However, the placement and the sharpness of the discontinuity
representation may be diminished because the discrete discontinuities are centered at the nodes.
Nevertheless, we show that these types of problems can be handled effectively by this method
by several representative examples. The method is especially well suited to explicit finite element
procedures [19].

The proposed method is an outgrowth of a large number of different types of methods for
modeling crack growth. We cannot review the entire literature here, but only summarize some of
the key works on the major methods. In addition to remeshing methods, the methods for crack
modeling can be classified in four groups:

(1) element interface discontinuity methods [20, 21] often called ‘cohesive zone methods’;
however, the latter name is ambiguous because cohesive zones can be used with other
numerical methods for fracture;

(2) embedded discontinuity methods [22] often called the ‘strong discontinuity methods’, (the
latter is a misleading term since many of the other methods, such as XFEM and element
interface discontinuity methods in fact model cleaner strong discontinuities);
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(3) element deletion methods, often called the ‘element erosion methods’;
(4) enrichment methods, such as XFEM [3, 4], and the generalized FEM [23–25].
Element interface discontinuity methods employ discontinuity models that are identical to those

in remeshing methods, i.e. element edges are coincident with the discontinuity and both surfaces
of the discontinuity have independent element edges and nodes. No effort is needed to track the
discontinuity with remeshing. These methods rely on dense meshes to approximately capture the
topology of the discontinuity and on cohesive surfaces to model the nucleation and evolution of
the discontinuity. Two forms have evolved: methods where separation of element edges is possible
on all element edges from the beginning of the simulation as in Xu and Needleman [20] and
methods where the cohesive surfaces are injected selectively along the cracked elements edges,
as developed by Camacho and Ortiz [21] and Ortiz and Pandolfi [26]. In the former, errors are
introduced in the bulk properties of the material and convergence is not clear. Papoulia et al.
[27, 28] have also pointed out that errors occur due to the lack of continuity when cohesive laws
are injected; this issue must also be considered in the use of XFEM with cohesive traction laws.
Overall, these methods show a significant degree of mesh sensitivity [12, 29], although Zavattieri
and Espinosa [30] and Zhou and Molinari [31] have shown that introducing a degree of randomness
in the cohesive strength ameliorates this problem.

Embedded discontinuity methods employ discontinuities in elements based on incompatible
fields. They are equivalent to introducing a band of high deformation, as introduced in Belytschko
et al. [22]. A key improvement was made by Dvorkin et al. [32], who introduced a kinematic
method to suppress locking of these methods. There has been an extensive literature on this method;
as examples we cite Simo et al. [33] and Armero and Garikipati [34]. An excellent review is given
by Jirásek [35].

Element deletion methods are one of the simplest methods to implement. The attractiveness
of the method lies in the fact that it requires no alteration of standard finite element software.
The crack is modeled through the constitutive equations in which the stress vanishes at specified
criteria. Because of their simplicity, these methods have been widely used in industry; they are
perhaps the most widely used. In these methods, it is imperative that the constitutive equation be
adjusted with respect to the element size so that the fracture energy is independent of the element
size. However, even with these modifications to the constitutive equations, the element deletion
method suffers from substantial mesh dependencies. It was shown that the element deletion method
completely fails in the prediction of crack branching for structured meshes in Song et al. [29].
These methods have recently been studied by Fan and Fish [36], who report rather good results
when element volume corrections are made to the constitutive equations.

In enrichment methods, such as XFEM [3, 4], the discontinuity is completely independent of the
mesh topology, and the results for different meshes of the same refinement yield almost identical
crack paths. The major difficulty in their implementation is that the methods are based on a
continuous crack path. This complicates the programming of these methods for situations where
extensive cracking, crack joining, and crack branching take place.

The proposed method is aimed at alleviating this disadvantage, albeit at some cost in accuracy
and fidelity in tracking the actual crack paths. The method is closely related to the XFEM; the
major difference is in the morphology of the discontinuities, i.e. it introduces discontinuous fields
only at the nodes.

A similar approach was introduced by Remmers et al. [37] and de Borst et al. [38]. The major
difference of the described method from that of Remmers et al. [37] is that each crack spans
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only two elements adjacent to the cracked node whereas in [37], the segments are identified with
elements and span three elements. Our approach simplifies the implementation and also seems
to improve the results for crack speeds. We have also introduced rules and procedures into the
algorithm that appear to be essential for dynamic fracture. The described method has also been
pursued in meshless methods under the cognomen ‘cracking particle methods’ by Rabczuk and
Belytschko [39], Rabczuk et al. [40], and Rabczuk and Samaniego [41].

2. GOVERNING EQUATIONS

The method is in principle applicable to two or three dimensions, but henceforth we describe it only
for the two-dimensional case. Consider an initial domain �0∈R2 and its boundary �0 as shown in
Figure 1; �0

t ∪�0
v =�0 and �0

t ∩�0
v =∅. We allow this domain to contain internal discontinuities �0

c .
Let �̃0 be the open set, which excludes all discontinuities, i.e. �̃0=�0\�0

c . In the current domain,
the images of the initial domain �0 and �̃0 are denoted by � and �̃, respectively, and the motion
is described by x=/(X, t), where t is the time, and X and x are material and spatial co-ordinates,
respectively. In the motion, the displacement at the material pointX is denoted by u(X, t).

The strong form of the linear momentum equation in the current configuration � can easily be
developed by changing the kinetic and kinematic quantities of the strong form in the reference
configuration �0; see Belytschko et al. [42] for a text-book account. The strong form of the linear
momentum equation in the updated Lagrangian description is given by

�� j i

�x j
+�bi =�üi in �̃ (1)

in conjunction with the boundary conditions:

n j� j i = t̄i on �t (2)

vi = v̄i on �v (3)

n+
j �+

j i = n−
k �−

ki = tci on �c (4)
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Figure 1. A two-dimensional body with a discontinuity and its representation in
the reference and the current domains.
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where r is the Cauchy stress, � is the current density, b is the body force, n+ and n− are the
normals to the relevant surfaces in the current configuration, and tc is the cohesive traction along
the crack surfaces. Equation (4) represents the cohesive traction condition.

3. REPRESENTATION OF CRACK BY CRACKING NODES

In this method, the actual crack path is approximated by a set of discrete crack segments that
are restricted to pass through the nodes of the finite element mesh. Henceforth, we will refer to
nodes that are crossed by the discrete crack segments as cracked nodes. A typical arrangement
of cracked nodes is shown in Figure 2 along with the actual crack path that is approximated. It
can be seen that the cracked node method approximates the actual crack path by a set of discrete
crack segments and an explicit representation of the continuous actual crack path is unnecessary.
It is only necessary to construct and keep track of a list of cracked nodes. This feature enables the
method to avoid the complexity of level set methods for tracking crack geometry.

Let the set of all finite element nodes be S and the set of cracked nodes be Sc; hence, Sc⊂S
and Sc∩S=Sc. When a crack segment is injected at node I , the normal to the crack surface
ntcrI must be defined with respect to the crack injection time tcr; the normal to the crack is defined
by a fracture criterion that will be discussed later. Once a crack is injected at the node, the normal
is fixed in the material coordinate system. Thus, the crack will rotate with the material in time.
The displacement approximation is given by the XFEM approach [4]:

u(X, t) = ucont(X, t)+udisc(X, t)

= ∑
I∈S

NI (X)uI (t)+ ∑
J∈Sc

NJ (X)H(�J (X))qJ (t) (5)

Cracked node

Actual crack path

Crack segment

Figure 2. Schematic of a typical arrangement of cracked nodes: hollow and solid circles denote regular
and cracked nodes, respectively, and the dashed line represents the actual crack path.
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Figure 3. Schematic of crack opening at cracked node I and its enriched finite element nodal
shape function: nI is the normal to crack surface and qI denotes extra degrees of freedom

that determine the crack opening.

where ucont(X, t) and udisc(X, t) denote continuous and discontinuous displacement fields, respec-
tively, and �J (X) defines the crack geometry by

�J (X)=n0J · X−XJ

‖X−XJ‖ (6)

and H(·) is the Heaviside step function:

H(x)=
{
1 ∀x�0

0 ∀x<0
(7)

Note that in the definition of �J (X) in Equation (6), n0 is the normal to the crack surface in the
reference configuration �0; when a crack is injected at node I with normal ntcrI , it must be pulled
back to the reference configuration �0 by Nanson’s law:

n0I = J−1ntcrI ·F(XI , tcr) (8)

where F is the deformation gradient tensor at the material pointX at time tcr and J is the determinant
of the deformation gradient tensor. The crack opening of each discrete crack segment is a wedge
function as shown in Figure 3(a). We do not account for the change in angle between the normal
and the crack surface that can occur due to large shear strains. This can easily be accounted for
by defining the crack surface in terms of the material or element coordinates.

The velocity is given by the material time derivative of the displacement approximation
(Equation (5)):

v(X, t)= ∑
I∈S

NI (X)u̇I (t)+ ∑
J∈Sc

NJ (X)H(�J (X))q̇J (t) (9)

where superposed dots denote material time derivatives. The components of the spatial gradient
of the velocity, ∇v(=L), are given by

vi, j = Li j = ∑
I∈S

NI, j (X)u̇i I (t)+ ∑
J∈Sc

NJ, j (X)H(�J (X))q̇i J (t) (10)

where a subscript comma denotes differentiation with respect to the spatial coordinates. The
derivatives of the shape function are taken with respect to the spatial variables, but this causes no
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difficulties since the shape functions are generally expressed in terms of parent element coordinates
and implicit differentiation must be used whether the derivatives are with respect to the spatial or
material coordinates.

4. WEAK FORM AND DISCRETIZATION

The weak form (principal of virtual power) of the updated Lagrangian description is given as
follows: find vi ∈V such that

�Pkin=�Pext−�Pint+�Pcoh ∀�vi ∈V0 (11)

where

�Pkin =
∫

�̃
�vi�v̇i d�̃ (12)

�Pint =
∫

�̃
�Di j�i j d�̃=

∫
�̃

�(�vi )

�x j
�i j d�̃ (13)

�Pext =
∫

�t

�vi t̄i d�+
∫

�̃
�vi�bi d�̃ (14)

�Pcoh =
∫

�c
��vi�ni tc d� (15)

where �Pkin is the kinetic power, �Pext is the external power, �Pint is the internal power, �Pcoh

is the power of the cohesive traction across the crack surface �c with the cohesive traction tc,
and �·� denotes a jump in the function. Standard indicial notation with repeated indices implying
summation is used.

The admissible spaces for the velocity fields are defined as follows:

V= {vi |vi ∈H1 in �̃,vi = v̄i on �v, and discontinuous on �c} (16)

V0 = {�vi |�vi ∈H1 in �̃,�vi =0 on �v ∪�c} (17)

The discrete equations are constructed by the standard Galerkin procedure from Equation (11)
with the trial functions (Equation (9)). The test functions are of identical form:

�v(X, t)= ∑
I∈S

NI (X)�u̇I (t)+ ∑
J∈Sc

NJ (X)H(�J (X))�q̇J (t) (18)

The discrete momentum equations are

Mi j I J v̇ j J = f exti I − f inti I + f cohi I (19)

where uppercase subscripts denote nodes and lowercase indices refer to components. The mass
matrix is given by

MI J =
[

Muu
I J Muq

I J

(Muq
I J )

T Mqq
I J

]
(20)
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and the remaining terms are defined below:

vI =
{
u̇I

q̇I

}
, f intI =

{
fu,int
I

fq,int
I

}
(21)

fextI =
{
fu,ext
I

fq,ext
I

}
, fcohI =

{
0

fq,coh
I

}
(22)

where

Muu
i j I J = �i j

∫
�̃0

�0NI NJ d�0 ∀I, J ∈S (23)

Muq
i j I J = �i j

∫
�̃0

�0NI NJ H(�J (X))d�0 ∀I ∈S, J ∈Sc or ∀J ∈S, I ∈Sc (24)

Mqq
i j I J = �i j

∫
�̃0

�0NI NJ H(�I (X))H(�J (X))d�0 ∀I, J ∈Sc (25)

fu,int
i I =

∫
�̃
NI, j� j i d� ∀I ∈S (26)

fq,int
i I =

∫
�̃
NI, j H(�I (x))� j i d� ∀I ∈Sc (27)

fu,ext
i I =

∫
�t

NI t̄i d�+
∫

�
NI bi d� ∀I ∈S (28)

fq,ext
i I =

∫
�t

NI H(�I (x))t̄i d�+
∫

�̃
NI H(�I (x))bi d� ∀I ∈Sc (29)

fq,coh
i I = 2

∫
�c

NI ni t
c d� ∀I ∈Sc (30)

Note that in Equations (23)–(25), the components of the mass matrix M have been expressed
in the reference configuration to emphasize that it is time invariant. Also note that the cohesive
forces across the crack only yield nodal forces corresponding to the degrees of freedom associated
with qI .

5. IMPLEMENTATION

The proposed cracking node method can easily be embedded within a standard explicit dynamic
finite element code by adding extra degrees of freedom to nodes as they crack. Henceforth, we
concentrate on describing the numerical implementation within an explicit dynamic finite element
code with four-node quadrilateral elements with one-point quadrature [43]. These elements are
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widely used for explicit dynamic simulation and in the same spirit as the cracking node method: fast
and efficient, but require fine meshes for accuracy. The methodology is feasible with other elements
in two or three dimensions, but we do not discuss implementations for these elements here.

5.1. Computation of element internal forces using the averaged strain

The major consideration in the implementation of the cracking node method is developing an
efficient procedure for the numerical integration of the nodal forces (Equations (26)–(27)) over the
elements that contain cracked nodes. In this study, we adopted the one-point quadrature scheme
along with the averaging procedure developed in Flanagan and Belytschko [43]. The averaged rate
of deformation for element e, D̄e, is defined in terms of the averaged velocity gradient ∇v̄e by

D̄e
i j = 1

2 (v̄
e
i, j + v̄ej,i ) (31)

where

∇v̄e= v̄ei, j =
1

Ae

∫
�̃
e
vi, j d� (32)

where Ae is the area of element e. Substituting Equation (10) into (32) and expressing the integrand
in terms of parent element coordinates n gives

v̄ei, j =
1

Ae

∫
�̃
e

{ ∑
I∈S

NI, j (n)u̇i I (t)+ ∑
J∈Sc

NJ, j (n)H(�J (n))q̇i J (t)

}
d� (33)

Note that the arguments X in Equation (10) are usually expressed in terms of parent element
coordinates n by an isoparametric mapping in standard finite element codes.

In Flanagan and Belytschko [43], it is shown that for a four-node quadrilateral element∫
�e

NI,i (n)d�= AeNI,i (0) (34)

For elements with cracked nodes we make the approximation that∫
�e

NI,i (n)H(�I (n))d�= Ae
I NI,i (0) (35)

where

Ae
I =

∫
�e

H(�I (n))d� (36)

The area Ae
I is the fractional area of the portion of element e on the nonzero side of the step

function, i.e. where H(�I )>0 as illustrated in Figure 4(a). Note that Ae
I is nonzero only for elements

that include node I . Consider the generic elements e1–e4 that contain two cracked nodes 1 and 2,
as shown in Figure 4(b). Ae1

1 has the same area as element e1, i.e. A
e1
1 = Ae1 since H(�1(X))>0

in the entire element e1; A
e1
2 is the fractional area to the left of the crack �c2 since �2(X)<0 to

the right of �c2.
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Figure 4. Areas Ae
I for (a) cracked node I and (b) generic elements e1–e4 and cracked nodes 1 and 2.

Substituting Equations (34)–(36) into (33) gives the spatial gradient of the averaged velocity,
v̄ei, j (0), for element e:

v̄ei, j (0)=
4∑

I=1
NI, j (0)u̇i I + 1

Ae

necr∑
J=1

Ae
J NJ, j (0)q̇i J (37)

where necr is the number of cracked nodes in the element e and the argument of the shape functions
is the origin of the parent element domain.

The averaged stress rate at the quadrature point is given by

�̄e∇i j =Ci jkl D̄
e
kl +rotation terms (38)

where r̄e∇ is the averaged frame invariant rate of Cauchy stress of element e and C is the tangent
modulus.

The nodal internal forces are also evaluated by the procedure given in Flanagan and Belytschko
[43]. The nodal internal forces corresponding to the regular degrees of freedom for element e are

f u,int
i I (e) =

∫
�̃e

NI, j (n)�̄
e
ji (n)d� ∀I ∈S

� AeNI, j (0)�̄eji (0)+ f stbi I (e) (39)

where f stbi I (e) denotes the hourglass stabilization forces that are needed because of one-point inte-
gration; the hourglass control method from Flanagan and Belytschko [43] with critical damping
as described in Daniel and Belytschko [44] is used. Similarly, the nodal internal forces related to
the enriched degrees of freedom are

f q,int
i I (e) =

∫
�̃e

NI, j (n)H(�I (n))�̄
e
ji (n) d�

e ∀I ∈Sc

� Ae
I NI, j (0)�̄eji (0)+ f stbi I (e)

= Ae
I

Ae
f u,int
i I (e) (40)
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e4

1

1A ( A )e e

1A ( 0.1A )e e

1A ( 0.9A )e e

(a)

Crack opening

Degenerated
crack path

(b)

Figure 5. Degeneration of the cracked node method to the element interface discontinuity method: dashed
line represents the line of degenerated interface discontinuities.

When a crack is nearly coincident with an edge as shown in Figure 5(a), the fractional area Ae
I

is modified as follows so that the crack is aligned with the element edge:

Ae
I =

{
0 if Ae

I<0.1Ae

Ae if Ae
I>0.9Ae

(41)

In the case, the proposed method degenerates to the element interface discontinuity method
[20, 21, 26] and provides a discontinuity that is coincident with the element edge as shown in
Figure 5(b).

5.2. Computation of lumped mass matrix for cracked elements

In the explicit dynamic method, a computation of nodal accelerations, which are the primary
unknowns, is accomplished without implicitly solving any equations by using a diagonalized mass
matrix, i.e. lumped mass matrix: it is one of the distinct characteristics of the explicit dynamic
method.

However, when we employ XFEM [3, 4] within the framework of the explicit dynamic method,
a construction of the lumped diagonal mass entails the following difficulties:

(1) the lumped mass for the enriched degrees of freedom can be negative, which is unphysical;
(2) the critical time step depends on the location of the crack, i.e. the critical time step is largest

when the discontinuity is located at the center of the element and decreases to zero as the
discontinuity is moved toward an element edge or node [14].

Several methods have been proposed to circumvent these difficulties: implicit (in cracked elements)–
explicit (in continuum elements) time integration [12] and modified mass lumping schemes
[39, 45, 46].

In the computations reported here, the mass for regular degrees of freedom, Muu,lump, is diag-
onalized by the conventional row sum technique:

Muu,lump
I =∑

J
Muu

I J ∀I, J ∈S (42)

where Muu
I J is the consistent mass matrix, which is defined by Equation (23). However, the lumped

mass for the enriched degrees of freedoms,Mqq,lump, is constructed by a diagonalization technique
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based on the area fractions:

Mqq,lump
I =∑

e

Ae
I

Ae
Muu,lump

I ∀I ∈Sc (43)

where e denotes the adjacent elements of cracked node I . The diagonalized mass for the whole
system is then given by

Mlump=
⎧⎨
⎩
Muu,lump

Mqq,lump

⎫⎬
⎭ (44)

6. CRACK LAW

6.1. Fracture criterion and cohesive model

The application of this method requires a criterion for crack nucleation along with a crack prop-
agation law. Since we have focused on quasi-brittle fracture, we have used a maximum principal
tensile strain criterion for the nucleation of cracks. The criterion is applied to a smoothed C0 strain
field, which is computed by a moving least square approximation; smoothing reduces spurious
crack nucleation. When a measure of maximum principal tensile strain at a node exceeds the crack
nucleation criterion, a crack segment is injected at that node with a normal so that the crack surface
is coincident with the maximum principal tensile plane. The nucleation criterion is also used as a
crack propagation criterion.

A cohesive crack model is prescribed along newly injected crack surfaces until the crack opening
is fully developed, i.e. until the cohesive traction has vanished. In this study, we prescribed only
the normal traction for the linear cohesive model since crack propagation is usually due to mode I
fracture behavior in quasi-brittle materials. A penalty force was added to prevent crack surface
overlap as shown in Figure 6.
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Figure 6. Schematic of a linear cohesive law: the area under the curve is the fracture energy, Gf.
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Figure 7. Schematic of the integration domain of the cohesive law along with the crack segments:
(a) the integration domain of the cohesive law without modification and (b) the modified integration

domain with improved fitting to the actual cohesive energy.

The cohesive model is constructed so that the dissipated energy due to the crack nucleation is
equivalent to the fracture energy:

Gf=
∫ �cmax

0
tc(�c)d�= 1

2
tcmax�

c
max (45)

where �cmax is the maximum normal crack opening displacement, Gf is the fracture energy, and �c

is the jump in the displacement normal to the crack surface �c, which is given by

�c = 1

2
n0 ·�u(X, t)�X∈�0

c

= 1

2

∑
I∈Sc

n0 ·qI NI (X)|X∈�0
c

(46)

For a material, Gf is given; tcmax is the traction computed at failure. The value of �cmax is
computed from Equation (45) based on Gf and tcmax. Note that the cohesive strength tcmax is not a
constant parameter in this method. Unless tcmax takes on the current value of the traction when a
crack segment is injected into a continuum finite element, the cohesive traction does not satisfy
time continuity and may lead to severe noise; see Papoulia et al. [27]. We compute the cohesive
strength tcmax with a moving least square scheme.

The cracking node method requires a modification of the cohesive forces for adjacent cracked
nodes; otherwise, the cohesive energy is overpredicted. Consider a typical cracking pattern shown
in Figure 7(a). Let �c

act be the actual crack path, i.e. the continuous crack path, and model it by
discrete crack segments �c

1, �c
2, and �c

3. When all of the actual crack has opened so that

�c(X)>�cmax ∀X∈�act (47)

then the total cohesive energy dissipated by fracture along the actual crack path is given by

Wcoh
act =

∫
� c
act

∫ �cmax

0
tc(�c)d�d�

= Gfl
c
act (48)
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where lcact is the length of actual crack �c
act. The total cohesive energy due to the cohesive traction

along the set of crack segments �c
1, �c

2, and �c
3 is given by

Wcoh =
3∑

I=1

∫
�c
I

∫ �cmax

0
tc(�c)d�d�

= Gf

3∑
I=1

lcI

∼= Gf 2l
c
act=2Wcoh

act (49)

where
∑

lcI
∼=2lcact is used for the last equality, which is apparent from Figure 7(a). As we can see

from Equation (49), unless we modify the integration domains of these cohesive crack segments,
the total cohesive energy will substantially exceed the actual cohesive energy.

For this reason, we compute the cohesive forces based on Voronoi cells �cI as shown in
Figure 7(b). In this scheme, we activate the cohesive forces only on a single segment �cI within
a Voronoi cell �cI . This modification gives a good approximation of the actual energy dissipation
since

∑
I lcI

∼= lcact.

6.2. Crack initiation and propagation law

The cracking node method requires a set of effective rules for injection of crack segments so that
fracture behavior, beginning from arbitrary crack nucleations to macroscopic crack propagation is
seamlessly modeled. If a crack segment is injected at any node without any restriction, spurious
crack patterns such as that shown in Figure 8(a) can develop. Such distributions of cracking nodes
are quite meaningless since they imply a crack spacing equivalent to the resolution of the finite
element model. It is obviously inappropriate to model fracture behavior that is not consistent
with the resolution of the finite element mesh. These spurious crack patterns are prevented in the
cracking node method by a set of crack injection rules that lead to more realistic crack patterns
such as shown in Figure 8(b).

A simple rule, such as prohibiting further cracking around already cracked nodes, is a tempting
way to prevent spread of parallel cracks. However, it also prevents important dynamic fracture

Parallel cracking node

Actual crack path

(a) (b)

Figure 8. Schematic of cracking node patterns: (a) an unrealistic pattern and (b) an
improved cracked node pattern.
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Figure 9. Schematic of crack propagation in general: nodes I , J , and K satisfy the fracture criterion at a
given time step and the node L is the nearest existing cracked node.

phenomena such as the branching and the joining of cracks. Hence, the structure of these rules is
somewhat delicate and must effectively deal with two issues:

(1) distinguish whether a cracked node results from crack propagation or a nucleation process and
(2) for the crack propagation case, it aims to prevent unrealistic parallel cracking patterns.

When a node satisfies the fracture criterion at a certain time step, we first distinguish whether
the node is cracked due to crack nucleation or propagation. To determine this, we search the
neighborhood within radius rcr=3he, where he is the element size, for any previously cracked
nodes. If no previously cracked nodes are found within the search domain, the node is considered to
crack due to nucleation and we inject a crack segment at the node without any further consideration.

However, if any previously cracked nodes are found within the search domain, we check whether
the node satisfies the fracture propagation criterion and apply parallel cracking prevention laws.
Consider the case shown in Figure 9 and suppose that in a given time step, nodes I , J , and K
satisfy the fracture criterion and the node L is the nearest existing cracked node within the search
domains of those nodes. We first set the parallel cracking prevention zone as shown in Figure 10.
The parallel cracking prevention zone corresponding to node L is defined by∣∣∣∣nL · X−XL

‖X−XL‖
∣∣∣∣<cos

(�

2
−�

)
(50)

where � is the half-angle of the parallel cracking prevention zone: for the simulations in this study,
we used �=2�/9.

For the case shown in Figure 10, we inject a crack segment at node I without checking for
parallel cracking because the node I is not located within the parallel cracking prevention zone.
However, for nodes J and K , which are located within the parallel cracking prevention zone, we
compute the scalar product of the normals of the existing crack nL and the new cracks nJ and nK ,
and then allow injection of a crack segment only when the scalar product is less than a specified
value. In the case shown in Figure 10, we inject a crack segment only at node K because only
node K satisfies

nL ·nK<cos(�) (51)

where � is a specified angle: we used �=�/3 for the simulations in this study.
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Figure 10. Schematic of parallel crack prevention zone.

7. NUMERICAL EXAMPLES

7.1. Edge-cracked plate under impulsive loading: Kalthoff problem

These simulations concern an experiment reported by Kalthoff and Winkler [47] in which a plate
with two initial edge notches is impacted by a projectile, as shown in Figure 11(a). In the experiment
[47], two different failures, shear and brittle failure modes, were observed by modifying the speed
of the projectile. In this study, we consider only the brittle failure mode, in which the observed
crack propagation angle was about 70◦.

Taking advantage of the twofold symmetry of the experimental specimen, only the upper half
of the plate is modeled as shown in Figure 11(b): at the bottom edge of the finite element model,
v̄y =0 and t̄x =0 are applied as symmetric boundary conditions. We used 50×70 (he=1.0mm)

and 24×36(he=2.08mm) structured meshes, which were locally refined in the subdomain through
which the crack is expected to propagate; the total number of elements for those models was 5438
and 2054, respectively. The initial impact velocity is applied on the left edge on the segment,
0�y�25mm. We assumed that the projectile has the same elastic impedance as the specimen;
hence, we applied one half of the projectile speed, 16.5m/s [48, 49]. The initial edge notch was
modeled by including two lines of nodes separated by 300.0�m. The material is a maraging
steel 18Ni1900 [50] and its material properties are Young’s modulus E=190GPa, density �=
8000kg/m3, and Poisson’s ratio 	=0.30. We used 0.5% maximum principal tensile strain as the
fracture strain with fracture energy Gf=2.0×104N/m.

A comparison of the final crack path with the two different meshes is shown in Figure 12. Both
simulations are concluded at around 90�s when the crack tip reaches the upper boundary. Both
meshes show similar trajectories for the crack path. Until the mid-stage of crack growth, the cracks
propagate with angles of about 60 and 55◦ for the fine and coarse mesh, respectively, except for
a few vertical spurts, so that the average angle from the initial crack tip to the final crack tips
is about 65◦ for both meshes. The overall crack paths are more jagged than that of continuous
crack propagation methods [12, 14, 51, 52], but smoother than most interelement crack methods
that have been reported.

A comparison of crack propagation speed with the conventional XFEM [12] is shown in
Figure 13(a). The cracks start to propagate at around 30�s for both meshes and then reach a
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Figure 11. Problem set-up for edge-cracked plate under impact loading: (a) the original experimental
set-up and (b) its numerical model.

constant speed around 2000m/s, which is 71% of the Rayleigh wave speed vR=2800m/s. Then,
as the crack nears the upper boundary, the crack propagation speed slowly decreases. The computed
crack speeds are almost identical with that of the conventional XFEM [12].

Time histories of the cohesive fracture energy for both meshes are shown in Figure 13(b). The
cohesive fracture energy increases to around 1760J and there is a little difference between the two
meshes; hence, the results appears to have converged.

7.2. Crack branching problem

Crack branching due to a dynamic instability is a common phenomenon in dynamic fracture. Several
experimental results with crack branching have been reported [53–55]; in these experiments, a
crack starts growing at an initial notch and then the crack branches into at least two cracks: some
of experiments show more extensive and repetitive minor branches [56].

However, only a few numerical results have been reported due to the difficulties of tracking
complicated crack patterns; some examples can be found in [12, 14, 20]. To circumvent these
difficulties, Belytschko et al. [12] and Song et al. [14] allowed the original crack to macroscopically
branch only once. Although the Xu and Needleman method [20] can model multiple crack branches
with the interelement cohesive crack model, the method exhibits mesh sensitivity; see Belytschko
et al. [12] and Song et al. [29].

We consider a 100mm×40mm pre-notched specimen as shown in Figure 14. Tensile tractions,
�̄=1MPa, are applied on both of the top and the bottom edges as a step function in time. The
domain is discretized with 10 802 four-node quadrilateral elements; we used a locally refined mesh
(havge =0.5mm) only where the crack is expected to propagate, i.e. ahead of the initial notch. The
material properties are Young’s modulus E=32GPa, density �=2450kg/m3, and Poisson’s ratio
	=0.20. A cohesive law was used with a cohesive fracture energy Gf=3.0N/m.

The path of the crack at different times is shown in Figure 15(a)–(c). The crack starts to propagate
at around 13.0�s and then branches into two major crack branches at around 30.2�s. Note that
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Figure 12. The crack paths with (a) and (b) locally refined 50×70 (he=1.0mm) structured mesh and
(c) and (d) locally refined 24×36 (he=2.08mm) structured mesh.

in Figure 15(d), for better resolution of the crack opening, the final deformed configuration is
magnified by a factor of 100. As can be seen from Figure 15, the major crack branches seen in
the experiment [53] are reproduced quite well. In addition, some of the minor branches along the
major crack branches are apparent as in Rabczuk and Belytschko [39].

Figure 16 shows the computed crack paths along with the experimental result of Ramulu and
Kobayashi [53]. It is noteworthy that minor branches start to appear from the major crack prior to
the major branching but only grow to small lengths; see Figure 16(b). This is completely missing
in conventional XFEM calculations, which is a level-set-based discontinuity tracking method
[12, 14]. However, the emergence of such minor crack branches before the major branching is only
approximately reproduced by our method.

A comparison of the crack propagation speed with the results of conventional XFEM [12] is
shown in Figure 17. Once the crack starts growing at around 13.0�s, its speed quickly increases
to its maximum speed 1500m/s until major crack branching occurs and then reaches a plateau
around 1200m/s, which is 56% of Rayleigh wave speed vR=2120m/s.
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Figure 13. Time histories of the crack propagation speed and cohesive fracture energy: (a) crack propagation
speeds compared with conventional XFEM [12] and (b) evolution of cohesive fracture energy.
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Figure 14. Initial set-up for crack branching problem.

The computed crack propagation speed is somewhat lower than that of conventional XFEM
[12]. The discrepancy can be explained in terms of the dissipated fracture energy. The stored
energy that drives crack propagation will decrease as a system dissipates more fracture energy to
create new crack surfaces; hence, the crack propagation speed is also decreased [29, 57–59]. The
cracking node method predicts several minor crack branches as shown in Figure 15, whereas the
conventional XFEM [12] predicts only a major crack branch without minor branches. Therefore,
the cracking node method dissipates more fracture energy than the conventional XFEM [12], which
probably explains the lower crack propagation speed.

7.3. Fragmentation of thick cylinder problem

We consider fragmentation of a thick cylinder due to an applied impulsive internal pressure. The
problem set-up is shown in Figure 18(a). The thickness of the cylinder is 70mm and its inner
and outer radii are 80 and 150mm, respectively. An exponentially decaying internal pressure with
respect to time, p= p0e−t/t0 , is applied with initial pressure p0=400MPa and decay parameter
t0=0.1ms; the time history of the applied internal pressure is shown in Figure 18(b). The material
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(a) (b)

(c) (d)

Figure 15. Crack branching at different time steps: (a) t=33.13�s; (b) t=49.21�s; (c) t=60.3�s; and
(d) the final deformed configuration (magnified by a factor of 100).

Figure 16. A comparison of crack branching phenomena: (a) zoom around major crack branches and
(b) a sketch of the experiment reported by Ramulu and Kobayashi [53].

properties are: Young’s modulus E=210GPa, density �=7850kg/m3, and Poisson’s ratio 	=
0.30. A ±5% perturbation in the elastic modulus was introduced to break the symmetry of the
model. We used a maximum principal tensile strain criterion for fracture with a fracture strain of
0.5%; the fracture energy is Gf=2.0×104N/m. We discretized the cylinder with 75 202 (havge =
1.0mm), 32 383 (havge =1.5mm), and 10 443 (havge =3.0mm) four-node quadrilateral unstructured
elements.

Figure 19 shows the final crack patterns for the different mesh refinements. The number of
fragments for the different refinements is given in Table I. Although arrested small cracks within
fragments are more frequently observed with the finer mesh, the total number of fragments for the
three meshes is almost identical. The overall fragmentation patterns are similar to that reported by
Rabczuk and Belytschko [39] and Zhou and Molinari [31].

Figure 20 shows the fragmentation process at different times for the mesh discretized with 32 383
(havge =1.5mm) elements. The fragmentation process starts at around 40�s with a large number of
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Figure 18. Problem set-up for fragmentation of thick cylinder under impulsive internal pressure.

small cracks along the inner surface. However, as the cracks grow, some of the initial cracks are
arrested and then approximately only half of the cracks grow to the outer surface. The fragmentation
process is finished at around 180�s and then the fragments move outward in the radial direction
with no further crack initiation. The overall fragmentation processes with the different meshes are
almost identical. The only difference is in the number of initial cracks and arrested cracks; fine
meshes exhibit more initial cracks.

Time histories of the cohesive fracture energy for different mesh refinements are shown in
Figure 21. At the beginning of the fragmentation, the fracture energy is dissipated very quickly
until about 60�s due to a large number of initial cracks. However, after some of the cracks are
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Figure 19. The crack paths for different unstructured mesh refinements with (a) and (b)
75 202 (havge =1.0mm) elements, (c) and (d) 32 383 (havge =1.5mm) elements, and (e) and

(f) 10 443 (havge =3.0mm) elements.

arrested, the rate of fracture energy dissipation decreases. The total dissipated fracture energies
for different meshes agree quite closely; hence, there is little mesh dependence even beyond the
coarsest mesh.
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Table I. The number of fragments for the cylinder with the
different mesh refinements.

Number of element Number of fragments

75 202 (havge =1.0mm) 20
32 383 (havge =1.5mm) 19
10 443 (havge =3.0mm) 18

(a) (b)

(c) (d)

Figure 20. The formation of fragments with 32 383 (havge =1.5mm) elements mesh at (a) 44.2�s,
(b) 63.5�s, (c) 120.1�s, and (c) 190.9�s.

8. CONCLUSIONS

A new method for modeling of crack growth by a set of discrete crack segments has been proposed.
In this method, the crack segments are restricted to pass through the nodes of the finite element
mesh and span only two adjacent elements. Each of the crack segments normals is independently
determined by the material failure laws; in the computations here, a maximum tensile principal
strain criterion was employed.
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Figure 21. Time histories of the cohesive fracture energy.

The principal attractions of this method are its simplicity and robustness:

(1) an explicit representation of the topology of the actual crack path is unnecessary because
the actual crack path is naturally approximated with contiguous crack segments,

(2) complicated dynamic fracture behaviors such as crack branching and fragmentation are
easily handled with the method, and

(3) only minor changes are needed to implement the method in a typical explicit finite element
code.

However, the use of discrete crack segments also limits the accuracy of the method somewhat
and results in some drawbacks. The major drawback is that the method needs to introduce certain
discretization rules that are difficult to substantiate mathematically. The most noteworthy of these
are the rules on spurious parallel node cracking. Without such rules, extensive patterns of spurious
parallel cracks can be developed and it provides nonphysical results. However, as mentioned in the
paper, such rules can be justified by the inability of any mesh to resolve such patterns of cracking.

The accuracy and effectiveness of the method have been demonstrated by comparisons with
previously reported experiments [47, 53] and computational results [12]. Overall crack paths and
crack propagation speeds converge quite rapidly with mesh refinement and agree well with the refer-
ence solutions. The fracture energies also converge rapidly and show almost no mesh dependence.
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