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Crack instabilities and the phenomenon of crack speed saturation in a brittle material
(PMMA) are studied with a meshfree cracking particle method. We reproduce the experi-
mental observation that the computed terminal crack speeds attained in PMMA specimens
are substantially lower than the Rayleigh wave speed; the computed crack speeds agree
quite well with the reported experimental results. We also replicate repetitive microcrack
branching along with the increased rate of energy dissipation after attainment of a critical
crack speed, even in the absence of microstructural defects. We show that the presence of
microdefects changes the response only a little. The computations reproduce many of the
salient features of experimental observations.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

An interesting phenomenon in dynamic crack propagation in brittle materials, first reported by Ravi-Chandar and Knauss
[1,2], is the emergence of a critical crack tip speed above which the fracture energy dissipation increases dramatically. In
subsequent studies, Sharon et al. [3] and Sharon and Fineberg [4] have attributed this saturation in crack speed to parasitic
microcracks that emerge at an angle to the main crack. Ravi-Chandar and Knauss [1,2] (see [5] for a compendium) attributed
this phenomenon to microstructural defects of the fracture zone ahead of the crack tip, in which nucleation, growth and coa-
lescence of voids take place. They proposed that the evolution of these processes and the microscopic path instabilities pro-
vide a rate- and state-dependent character to the fracture energy.

With the rapid growth of computational power and the development of powerful new methods for modeling dynamic
crack growth, it has now become possible to examine this hypothesis, at least in a rough sense, by direct numerical simu-
lations. Most previous studies of crack propagation in PMMA have avoided the issue of microcrack instability. In Grégoire
et al. [7], good agreement was obtained with experiments in PMMA without a void model at lower crack propagation speeds
at which there were no instabilities. Zhou et al. [8] have proposed a rate-dependent phenomenological model that accounts
for effects of the instabilities on crack speed, but does not explicitly model the crack branches.

In this paper, we use the cracking particle method [6]. Three other types of computational methods for dynamic fracture
are available at this time:

(i) The element deletion method, where the constitutive equation is constructed so that the stress is reduced to zero when the
fracture criterion is met. In this method, it is imperative that the dissipated energy in the descending branch of the stress–
strain curve is scaled so that the energy is equal to the fracture energy, or the method is hopelessly mesh-dependent.
. All rights reserved.
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(ii) The interelement crack models, often called cohesive zone models, where the crack path is restricted to the interele-
ment edges (or surfaces in three dimensions). In the original formulation of Xu and Needleman [9], all elements are
separated from the beginning of the simulation and the separated element edges are mechanically joined by cohesive
laws. In the Ortiz and Camacho [10] approach, however, the cohesive zones are injected along element edges only
when a fracture criterion is met or the element edges are contiguous to a crack tip.

(iii) The extended finite element method (XFEM), a methodology which can model arbitrary crack geometries without
remeshing. The XFEM was first developed in Belytschko and Black [11], and Moës et al. [12] and then combined with
level sets in Stolarska et al. [13] and Belytschko et al. [14]; recent developments are given in [15–23].

It was noted in a recent comparative study [24] that the element deletion method was not able to predict crack branching
in a structured mesh and performed poorly in modeling crack branching for an unstructured mesh. Zhang et al. [25] have
made an interesting study of the crack instability problem with the interelement crack method and achieved encouraging
results. However, Song et al. [24] showed for a different problem that the restriction of crack paths to specified angles in
the interelement crack model can result in a rather severe underestimation of the energy dissipation.

We have not chosen XFEM for this study because the algorithm relies on level set descriptions of the crack paths. For a
simulation of complicated and extensive crack patterns, the level set description is still not sufficiently robust. Instead, we
use the cracking particle method, developed in [6]. This method can be viewed as a stable and consistent form of smooth-
particle hydrodynamics (SPH). It avoids the tensile instability [26–28] which generally introduce large errors in SPH simu-
lations of tensile fracture. Furthermore, it can handle nucleation and propagation of cracks in arbitrary directions, and so
avoids one of the major shortcomings of interelement crack methods. It is an extension of the meshfree methods [29,30]
for dynamic crack propagation [31–33].

In this paper, we examine the effects of material imperfections on crack speed in brittle materials with the cracking par-
ticle method. We show that even in the absence of imperfections, the crack speed often reaches a saturation speed and
exhibits instabilities in the form of branches. Thus, while microvoids and other imperfections may play some role in the tran-
sition of crack propagation to an unsteady phenomenon with considerable branching, it appears that it is not a critical caus-
ative effect. Instead, it appears that even for relatively homogeneous materials, extensive crack branching and the
attainment of a critical speed for below the Rayleigh wave speed are quite intrinsic to crack propagation in brittle materials.

The paper is organized as follows. In Section 2, we will briefly review the meshfree cracking particle method and in Sec-
tion 3, simulations of dynamic crack propagation in a brittle material are reported. We conclude this section by nothing that
the relations between microcrack branching terminal crack speed and increased rate of energy dissipation. Section 4 gives
our conclusions.

2. Review of the cracking particles method

The cracking particle method can easily and naturally handle complicated patterns of microcrack evolution since the
crack geometry is described by a set of cracked particles; we do not need to provide a representation of the crack geometry.
The crack is modeled by a set of discrete cracks as shown in Fig. 1b, which compares it to a pattern of microcrack branching
observed in [34]. Note that the discrete cracks are restricted to be centered on the particles, i.e. each crack plane always
passes through a particle.

The basic idea of the cracking particle method is based on a decomposition of the displacement field into continuous and
discontinuous parts:
Fig. 1.
crackin
uðX; tÞ ¼ ucontðX; tÞ þ uenrðX; tÞ ð1Þ
where X are the material coordinates, t is the time, and ucont and uenr denote the continuous and the discontinuous parts of
the displacement field; the latter is also called the enrichment.
A schematic representation of cracking particle method: (a) a typical pattern of microcrack branching [34] and (b) an equivalent crack path with the
g particle method; solid circles denote cracking particles.



Fig. 2. Schematic representation of an initial domain with a cracking particle: solid and hollow circles denote cracking and continuous particles,
respectively.
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Consider a domain, X0, which contains a typical crack surface, Cc
0, as shown in Fig. 2. Let N be the total set of nodes in the

discrete model and Nc be the set of cracked nodes. To model the discontinuous displacement fields, the test and trial func-
tions are enriched with the sign function, SðnÞ, which is parametrized by qI . Note that only cracked nodes are enriched. The
approximation of the displacement field then is given by the discrete form of (1):
uhðX; tÞ ¼
X
I2N

UIðXÞuIðtÞ þ
X
I2Nc

WIðXÞSðfIðXÞÞqIðtÞ ð2Þ
where UIðXÞ and WIðXÞ are shape functions for the continuous and the discontinuous parts, respectively, and fIðXÞ is given by
fIðXÞ ¼ n0 � ðX� XIÞ ð3Þ
where n0 is the normal to the crack in the reference configuration. The sign function SðnÞ is defined as:
SðnÞ ¼
1 8n > 0
�1 8n < 0

�
ð4Þ
In addition to the jump discontinuity function, we applied the visibility criterion with CCI
0 as opaque discs in the

computation.
The discrete momentum equation is given by (see [35])
MIJ � €dJ ¼ fext
I � f int

I ð5Þ
where dJ is the nodal displacement which is given by dJ ¼ ½uJ;qJ�
T, and MIJ is the consistent mass matrix. The mass matrix is

diagonalized by a row-sum technique except for the mass terms associated with the cracking particles; for the cracking par-
ticles, we used block diagonal mass matrices. The vector fext

I is the external nodal force vector and given by
fext
I ¼

fu;ext
I

fq;ext
I

( )
ð6Þ

fu;ext
I ¼

Z
X0nCc

0

.0bUIðXÞdX0 þ
Z

Ct
0

�t0UIðXÞdC0

fq;ext
I ¼

Z
Cc

2WIðXÞ � nðsc þ an � _qIÞdCþ
Z

X0nCc
0

.0bWIðXÞSðfIðXÞÞdX0 þ
Z

Ct
0

�t0WIðXÞSðfIðXÞÞdC0 ð7Þ
where .0 is the initial mass density, b are body forces, n is the crack normal vector, and sc and a are cohesive traction and
damping factor, respectively. Note that the cohesive traction across the crack is treated in the RHS first term of fq;ext

I . The
vector f int

I is the internal nodal force vector and given by
f int
I ¼

fu;int
I

fq;int
I

( )
ð8Þ

fu;int
I ¼

Z
X0nCc

0

r0UIðXÞ � PðXÞdX0

fq;int
I ¼

Z
X0nCc

0

r0WIðXÞ � PðXÞSðfIðXÞÞdX0 ð9Þ
The Rankine criterion is used to determine the onset of fracture. Subsequent to nucleation of a crack, the motion at a cracked
particle is governed by a cohesive model. In this study, a linear cohesive crack model is used as shown in Fig. 3. The cohesive
model is constructed so that the energy dissipated due to the crack propagation equals the fracture energy:



Fig. 3. Schematic of the cohesive law: the area under curve is the fracture energy, Gf . Note that the penalty can be omitted when crack deactivation is used.

Fig. 4.
380� 2
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Gf ¼
Z dmax

0
scðdnÞdd ¼ 1

2
smaxdmax ð10Þ
where Gf is the fracture energy, smax is the traction across the crack at fracture, dmax is the crack opening displacement at
which the cohesive traction vanishes, and dn is the jump in the displacement normal to the crack:
dn ¼ n � suðxÞtx2Cc ð11Þ
In this method, smax and dmax are not fixed parameters. smax is set to the traction across the crack at the time of fracture and
dmax is computed from Eq. (10) based on a given fracture energy Gf and the computed smax at failure. Unless smax is equal to
the traction at failure, the cohesive traction does not satisfy time continuity and may lead to substantial noise; see [36].

As shown in Fig. 3, a penalty force was added when the crack opening is negative, i.e. when the crack surfaces overlap. The
penalty parameter k is two to three order magnitudes greater than the product of Young’s modulus and particle spacing. An
alternative to the penalty is to simply deactivate the extra degrees of freedom at the cracking particle if the crack opening at
the particle becomes negative; this is easily implemented.

3. Simulations of dynamic fracture instabilities

A series of computations were made with different sizes of PMMA specimens with an initial notch centered on the left
vertical boundary as shown in Fig. 4; descriptions of the experiments can be found in [37,38,34,3,39,4,40]. In this study,
we considered 380� 440 mm and 380� 220 mm PMMA specimens; henceforth, we call the 380� 440 mm and the
380� 220 mm specimens the large and the small specimen, respectively.
a b

Problem set-up for edge-cracked PMMA specimens under quasi-static displacement control: (a) a 380� 440 mm PMMA specimen and (b) a
20 mm PMMA specimen.
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In the experiments, the specimens were loaded by very slowly increasing the displacements of the top and the bottom
surfaces [4]; the displacements were increased every 10–20 s so that the elastic waves can be neglected and the stress
states inside the specimen are in equilibrium in this stage. To mimic this procedure in the simulations, we prescribed an
initial equilibrium stress state, which is just below the state needed to trigger crack propagation, by means of a static
simulation. Then we switched to a dynamic explicit analysis and added another displacement increment to trigger crack
propagation. In the final step of the static analysis, the crack tip stress almost reaches the fracture stress and is in
equilibrium.

Based on their experiments, Sharon and Fineberg [4] concluded that there are two distinct stages in the evolution of the
crack. The first stage is below the critical crack speed of about 0:4vR, where vR is the Rayleigh wave speed; for the PMMA
material, the Rayleigh wave speed is 930 m/s. In this stage, only one main crack is formed and crack speed oscillations rarely
occur. In the second stage, after the critical speed is attained, many parasitic microcracks are formed around the main crack
and the crack speed manifests severe oscillations. However, the average crack speed seems to reach a stable plateau, i.e. the
average crack speed saturates.

The typical pattern of microcrack branching varies with the crack speed as shown in Fig. 5. According to the exper-
imental observations in [34], if the crack speed is lower than the critical speed, there are no apparent microcrack
branches as shown in Fig. 5a, but as the crack speed increases, the number of parasitic microcracks also increases;
see Figs. 5b and c.

The material properties we used in our simulations of PMMA are: density . ¼ 1190:0 kg=m3, Young’s modulus
E ¼ 3:240 GPa and Poisson’s ratio m ¼ 0:350. We assumed that the fracture strain is 0.02 and the fracture energy
Gf ¼ 500 J=m2; in a quasi-static problem, the size of cohesive zone is around 0.3 mm. For the explicit dynamic simulations,
we used a central difference time integration scheme with a Courant number of 0.1 for all simulations; these small time
steps appear to be necessary in the original versions of our software, but later versions can use larger time steps. Plane-stress
conditions are assumed.

In the numerical model, both uniform and non-uniform particle distributions were considered. In this paper, however, we
only show results for unstructured particle arrangements where the distances between the particles around the fracture
zone are on average given by hp ¼ 0:025;0:1;0:2 and 0:4 mm. In order to save computation time, we used the finer particle
distribution only where the crack is expected to propagate. The total number of particles for the four models were
12,000,000, 900,000, 240,000, and 770,000, respectively; such a fine resolution is necessary in order to capture microcrack
branching. In the computations considered here, we described the initial notch as a traction free surface: i.e. it is explicitly
modeled by separating particles by 100 lm.

In order to break the symmetry of the model (which is needed to trigger instability), we introduced a slight scatter in the
failure strength of the bulk material. The failure strength at every material point in the PMMA specimen is randomly per-
turbed by factors of less than 5.0%: the perturbation factor at each particle is obtained from a log-normal distribution around
the mean value of the strength, with a standard deviation of 2.0%. We also considered smaller scatter (between 1% and 3%)
and found that the results are almost identical.

The crack propagation speed in the cracking particle method was computed as follows. The location of the crack tip is
taken to be the cracked particle farthest from the notch along the horizontal axis. The advancement of the crack tip is mea-
sured every 4 ls (or 2 ls for hp ¼ 0:025 and 0:1 mm). This may cause a loss of resolution in the computed crack speed, so we
do not expect to be able to reproduce high frequency oscillations observed in the experiment.

3.1. Observation of microcrack branching patterns

We first compare typical computed microcrack patterns to experimental observations [34,4]. In these studies, the issues
we examined are whether:
Fig. 5. A typical pattern of parasitic microcrack branching [34]: (a) crack speed, v is lower than the critical crack speed vc; v < vc (b) v ’ vc and (c) v > vc; for
a PMMA material, vc ’ 372 m=s.
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(i) the numerical method can capture the parasitic microcracks,
(ii) the number of parasitic microcrack branches are increased as the crack propagation speed increases.

A typical pattern of the computed microcracks is shown in Fig. 6. In Fig. 6, only a subdomain of the specimen is shown; a
scale is shown to indicate the size of the subdomain. As we can see in Fig. 6, the computations capture microcrack branching
quite well and the microcrack branching is resolved better with the finer discretization. The length of the microcracks range
from 0.1 to 1.0 mm. Note that even with a particle separation hp ¼ 0:4 mm, microcrack branching is clearly evident; in this
case, the discretization is order of 10�3 of the specimen size. However, the computed pattern does not reproduce the density
of cracks observed.

A straight crack growth without any microcrack branches was observed in the experiments [4] when the crack propaga-
tion speed is below the critical crack speed; i.e. when the crack just starts to propagate. The numerical simulations cannot
capture this: the total length of initial stable crack growth is less than 0.5 cm. However, as can be seen from Fig. 7, microcrack
branching in the initial stage of the crack propagation is minor. After the crack has propagated further and the crack speed
exceeds the critical speed, more and longer microcracks are formed. However, we did not get a region of no branching. We
surmise that in the experiment, very small branches also occurred because, as we will see, the crack speed is reproduced
quite well.
a

b

c

Fig. 6. The computed microcrack branching patterns in the large PMMA specimen (380� 440 mm) with different particle separations: (a) hp ¼ 0:025 mm,
(b) hp ¼ 0:1 mm, and (c) hp ¼ 0:2 mm.

Fig. 7. The relation between the computed crack propagation speed and the computed microcrack branching in the large PMMA specimen (380� 440 mm)
with particle separation hp ¼ 0:1 mm; as the crack speed increases, parasitic microcracks are formed more frequently and they grow to larger length.



Fig. 8. The computed microcrack branching patterns in the small PMMA specimen (380� 220 mm) with particle separation hp ¼ 0:1 mm; the terminal
crack speed v ’ 450 m=s.
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This transition can be seen more clearly in Fig. 8. As can be seen from Fig. 8, the crack in the small specimen is initially
almost straight with few branches and in the later stages of the simulation, continues this way. The terminal crack speed,
v ’ 450 m=s, is substantially lower than the crack speed of the large specimen, v ’ 600 m=s, because less elastic energy is
stored in the small specimen prior to fracture.

3.2. Comparisons of crack propagation speed

We next compare the computed crack tip propagation speed and experimental results [3,4]. According to Sharon et al. [3],
when the height of the specimen is decreased, the crack speed is also decreased. This is due to the fact that the stored energy
in the specimen, G ¼ E�u2=2L, is inversely proportional to the specimen height, L, and the stored energy drives the crack in the
displacement control setting of the experiment. In this study, we examined this by studying crack speeds in the large and the
small PMMA specimens. We investigated whether:

(i) the numerical method can capture the two distinct stages in the evolution of crack speed [4],
(ii) the crack speed is reduced when the stored elastic energy is decreased [3].

The evolution of crack propagation speed as a function of time and crack length are shown in Fig. 9a and b, respectively.
As we can see from Fig. 9b, the experimental crack speed increases to the critical speed quite smoothly. After the critical
speed is attained, the crack speed manifests severe oscillations about a stable plateau. The computed crack speed also
smoothly increases. The computed oscillations are much less severe; however, they increase as the model is refined. Note
that longer microcrack branches are observed with the finer grids, hp ¼ 0:025 and 0:1 mm (see, Fig. 6), but the frequency
of the oscillations are still much lower than those in the experiment.

In these numerical simulations, the saturation of crack speed results automatically from the evolving parasitic micro-
cracks. In previous work by Song et al. [24] in which only a single continuous crack propagation was considered, a speed
dependence was added to the fracture energy to decrease the crack speed and fit to the experimental results.

Fig. 10 compares the computed crack propagation speeds of the large and the small specimens. For the small specimen,
the crack speed does not clearly reach a saturation speed as observed experimentally, but the terminal crack speed is sub-
stantially lower than the crack speed of the large specimen.
a b

Fig. 9. Comparisons of the computed crack propagation speed with the experimental results [4] for the large PMMA specimen (380� 440 mm): plot of the
crack speed as a function of (a) the simulation time and (b) the crack length.



Fig. 10. Computed crack propagation speeds for the large (380� 440 mm) and the small (380� 220 mm) PMMA specimens.

a b

Fig. 11. (a) Problem set-up for model with a weak zone in a large PMMA specimen (380� 440 mm) and (b) the computed crack propagation speed.
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It is of interest to examine the performance of our method when the crack is confined to a straight line. We did this by
reducing the thickness by 10% along a straight line ahead of the initial notch; see Fig. 11a. The computed crack speed is
shown in Fig. 11b; as we expected in this simulation, the crack did not form microcrack branches. The crack speed rapidly
increases up to the Rayleigh wave speed and oscillates above the Rayleigh wave speed; note that the peak crack speed is
about 30% higher than the Rayleigh wave speed. This has also been observed in experiments by Needleman and Rosakis [41].

3.3. Dissipated fracture energy due to instability

The time-history of the dissipated fracture energy of the large specimen is shown in Fig. 12. As can be seen from Fig. 12a,
the rate of energy dissipation suddenly increases at 36 ls. This is due to the increased microcrack branching since more par-
ticles are cracked and consequently more energy is dissipated. Note that the crack starts to propagate around 12 ls.

The relationship between crack speed and rate of energy dissipation can be more clearly observed by comparing the evo-
lution of the dissipated fracture energy with the crack speed as shown in Fig. 12b. Once the crack speed exceeds the critical
speed, many microcracks are formed and dissipate more energy, which slows down the crack.

As can be seen from Fig. 13, the small specimen shows a substantially lower energy dissipation due to lack of parasitic
microcracks.



a b

Fig. 12. Computed dissipated energy of the large PMMA specimen (380� 440 mm): (a) plot of the dissipated energy as a function of time for three different
refinements and (b) plot of the dissipated energy and the crack propagation speed as a function of time for particle separation hp ¼ 0:1 mm.

Fig. 13. Comparison of the computed dissipated fracture energy for the large (380� 440 mm) and the small (380� 220 mm) PMMA specimens.
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3.4. Influence of microstructural defects on crack speed

In order to study the influence of microstructural defects as proposed by Ravi-Chandar and Knauss [1], we explicitly mod-
eled pre-existing microvoids in the expected fracture zone. In every square unit cell, denoted by dashed squares in Fig. 14b,
we randomly chose two particles and set the material strength equal to zero. We did this only in the domain through which
we expected the crack to pass, and only particles within a certain radius of the crack tip were allowed to crack.

The crack speeds for hp ¼ 0:1 and 0:4 mm are shown in Fig. 15. The results exhibit a moderate sensitivity with respect to
size and placement of the explicitly modeled microvoids, but the evolution of crack speed is almost identical to that without
microvoids. The crack speeds in these models are about 13% higher than in the previous simulations without voids, and
somewhat greater than the experimental crack speed. One of the notable findings is that sometimes a crack starts in front
of the crack tip at the microvoids and then connects to the pre-existing main crack tip: this might also be an explanation for
the oscillations of the crack speed.

4. Conclusions

We have studied unstable crack propagation in brittle materials with a meshfree cracking particle method with an
emphasis on replicating the experimentally observed saturation in crack speed and microcrack branching. Such terminal
crack speeds have been observed by Ravi-Chandar and Knauss [1,2] and Sharon and Fineberg [4]. Although the resolution



a b

Fig. 14. (a) Problem set-up to consider microstructural defects on dynamic instabilities and (b) zoom around ahead of the crack tip in which randomly
distributed microvoids are considered.

a b

Fig. 15. Comparisons of the computed crack propagation speed with the experimental results [4]: plot of the crack speed as a function of (a) time and (b)
the crack length. In the computation, randomly distributed pre-existing microvoids are considered.
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of our models is not sufficient to replicate the details of the crack patterns reported by Sharon et al. [3], many of the salient
features of the experiment are reproduced:

(i) the existence of critical crack speed at which extensive microcrack branching starts,
(ii) the attainment of a terminal crack speed significantly lower than the Rayleigh wave speed,

(iii) the proliferation of crack branching at the higher crack speed,
(iv) the increased rate of energy dissipation due to fracture once the terminal crack speed is attained.

The phenomenon of extensive microcrack branching occurs regardless of whether voids are included in the model (see,
Figs. 6 and 16). Adding voids to the model increases the crack speed, and seems to increase the discrepancy between com-
putation and experiment. Thus, though it cannot be conclusively established whether voids play an important role, it is
apparent that a model without voids replicates most of the features observed in experiment.



a

b

c

Fig. 16. The computed pattern of microcrack branching in the large PMMA specimen (380� 440 mm) with different particle separations: (a)
hp ¼ 0:025 mm, (b) hp ¼ 0:1 mm, and (c) hp ¼ 0:2 mm; note that in this simulation, microvoids in the fracture process zone are considered.
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