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The application of a multiscale method, called the multiscale aggregating discontinuities (MAD) method,
to the failure analysis of composites is described. Two distinct features of the MAD method are the use of
perforated unit cells, and the extraction of coarse-grained failure information. In the perforated unit cell,
all subdomains of the unit cell that are not strictly elliptic are excluded, which enables the decomposition
of its stable and unstable material. By means of these concepts, it is possible to compute an equivalent
discontinuity at the macroscale, including both the direction and the magnitude of the discontinuity. This
equivalent discontinuity is then passed to the macroscale along with the computed stress from the unit
cell. The macroscale discontinuity is injected into the macro model by the extended finite element
method (XFEM) procedure. In this paper, the method is improved by adding hourglass modes to the unit
cell deformations, which better model growing cracks. Several examples comparing the MAD method
with direct numerical simulations are presented.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The modeling of failure in composites is one of the most chal-
lenging multiscale problems currently confronting the computa-
tional mechanics community. In the failure of composites,
subscale failure can occur at several scales. For example, fiber–ma-
trix separation and cracks in the matrix occur at much smaller
scales than failure of the structure. In many cases, fibers are com-
posed of fiber bundles, and the explication and quantification of
their behavior requires an analysis at even smaller scales. Model-
ing of these various scales of response requires coarse-graining
methods, for otherwise they are too expensive. Even in nanocom-
posites, where failure can be reduced to the atomistic scale as bond
breaking, atomistic models cannot be used for modeling complete
nanocomposite components. To treat these problems, it is neces-
sary to have at hand computational multiscale methods which cor-
rectly coarse-grain failure so that this behavior can be incorporated
in more efficient models.

The pre-failure behavior of composites has been treated quite
effectively by classical homogenization techniques [1,2]. In these
methods, the material behavior, i.e. the constitutive equation for
the coarser scales, is obtained by solving a boundary value problem
for a representative volume element (RVE). The RVE can be solved
before undertaking the coarse scale analysis or concurrently with
the macroscale model, as in the FE2 [3,4]. Generally, these methods
ll rights reserved.

ong).
take advantage of a separation of scales between the scales of the
RVE and the macro model.

In extending these methods to failure behavior, it is common to
use damage theories in which the effect of microcracks is repre-
sented by damage parameters that represent the degradation of
the material. When the damage variables become sufficiently large
to cause one of the stress components to vanish, the material is
considered to have failed. Such damage models are used both at
the macroscale and subscales.

However, there are several theoretical shortcomings of these
methods that call into question their viability. The main one is that
once the stress–strain response of the RVE is no longer stable, the
associated macro model is no longer well-posed. Stability is here
meant in the sense of Hadamard and Hill (the equations are given
later). Suffice it to say, that when the stress does not increase with
increasing strain, e.g. in the presence of strain softening, material
stability is often lost, and it is definitely lost in damage laws before
one of the stress components goes to zero. The question of how to
deal with this was a topic of great interest in the 1980s, when Ba-
žant and Belytschko [5] showed that in a strain softening material,
the strain vanishes on a set of measure zero and becomes infinite
there. Many methods were proposed for dealing with this pathol-
ogy: Bažant et al. [6] proposed a nonlocal model, Lasry and Bely-
tschko [7] proposed gradient theories and studied their effects on
the Liapunov coefficients, Chen and Schreyer [8] developed a non-
local form of plasticity.

As a consequence, the multiscale modeling of failure requires
a major revision of the homogenization approach. Once the

mailto:j-song2@northwestern.edu
http://www.sciencedirect.com/science/journal/13598368
http://www.elsevier.com/locate/compositesb


418 J.-H. Song, T. Belytschko / Composites: Part B 40 (2009) 417–426
material at the subscale has failed enough for the macroscale law
to lose stability, it is no longer appropriate to simply pass the
stress to the macroscale. Several investigators have already rec-
ognized this: Kouznetsova et al. [9] and Vernerey et al. [10,11]
have used gradient theories. Oskay and Fish [12] have used the
concept of eigendeformation to model cracks at various scales
within the framework proposed in Fish and Yuan [13]. Other rel-
evant works can be found in Raghavan and Ghosh [14] and
Ghosh et al. [15].

In this paper, we further develop an alternative strategy based
on aggregating discontinuities at the finer scales and passing these
to the coarser scale. This method was first proposed in Belytschko
et al. [16]. Its key features were the development of a perforated
unit cell which excludes all subdomains of unstable material
Fig. 1. Schematic of macro–micro

Fig. 2. Schematic of a perforated unit
behavior such as cracking. It was shown that the resulting method-
ology insures the material stability at the coarser scale, and hence
the well-posedness of the coarse scale problem. In addition, meth-
ods for extracting an equivalent discontinuity from the unit cell re-
sponse were developed.

However, it was found that the conventional boundary condi-
tions based on a constant deformation gradient were not effective
in modeling the growth of a crack at the fine scale. Therefore in this
paper, we further study an enhancement of the theory proposed in
[17]; it consists of adding a so-called hourglass mode. It is shown
that this mode fits well with the structure of four-node quadrilat-
erals with one-point quadrature and stabilization. We also shown
how this method can be extended to atomistic models to probe
nanoscale behavior.
linkages of the MAD method.

cell in a continuum scale model.



Fig. 3. Schematic of a perforated unit cell in an atomistic scale model.

Fig. 5. Schematic illustrating how crack opening is dominated by the hourglass
mode.
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2. Coarse-graining method

A schematic of a typical macro–micro model for the MAD
method is shown in Fig. 1. In the macro model which is modeled
with coarse scale, so-called hot spots are linked with micro mod-
els; the micro models have fine-scale resolution and are calcu-
lated at the same time as the macro model as in the FE2

method of Feyel and Chaboche [3] and Feyel [4]. The micro mod-
els can either be continuum models or atomistic models. For
example, in Fig. 1, hot spots 1–6 in the macro model are linked
with the unit cells. The macro model passes a measure of defor-
mation to the linked unit cell, and then receives the computed
stress and a description of the aggregated discontinuity from
the unit cell; in our notation, superscript M refers to the macro-
scale, and m refers to the microscale. Note that cells 3 and 4 con-
tain strong discontinuities, so the coarse-grained failure
information within those unit cells is provided to the associated
hot spots in the macro model; we will discuss this coarse-grain-
ing procedure subsequently.

The MAD method can be implemented in any conventional fi-
nite element software. In principle, the method is applicable to
any elements, but, for the computations reported here, we used a
one-point quadrature four-node quadrilateral element with hour-
Fig. 4. Relation of cracks at the
glass control [18–20]. For the representation of strong discontinu-
ities in macro and micro continuum models, we used the XFEM
approach [21–23].

We employ two key concepts for coarse-graining failure phe-
nomena [16]:

(1) all averaging operations are performed over a ‘‘perforated”
unit cell that excludes all subdomains where the material
loses strict ellipticity (these usually correspond to areas of
material instability, including cracks),

(2) a single equivalent discontinuity, i.e. a coarse-grained dis-
continuity, is extracted from the discontinuous localized
deformation and passed to the macroscale.

To clarify the first statement, we define material stability (ellip-
ticity) and strict ellipticity. We make this definition in terms of the
first Piola–Kirchhoff stress P and the deformation gradient F. Con-
sider a tangent matrix C which relates _P and _F (superposed dots
denote material derivatives) by

_P ¼ C : _F ð1Þ

Then the material is strictly elliptic if

A : C : A > 0 8A ð2Þ

Note that Eq. (2) also corresponds to the positive definiteness of C.
A material is stable (often called rank-1 stable), and the govern-

ing equations are elliptic if
microscale and macroscale.



Fig. 6. Schematic of the hourglass modes: (a) x-direction hourglass mode, and (b) y-
direction hourglass mode.

Table 1
Material properties of the aluminum–boron composite material.

Material Young’s modulus
(GPa)

Poisson’s
ratio

Density
(kg/m3)

Aluminum 67.5 0.36 2700.0
Boron 413.0 0.20 2340.0
Homogenized material 75.6 0.35 2500.0

1 µm

Boron

Aluminum

v

(a)

µ
µ

µ

µ

Fig. 7. Initial setups for one dimensional tests. Problem definitions for
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g � h : C : g � h > 0 8g and h ð3Þ

Note that Eq. (3) implies Eq. (2) when C is symmetric, i.e. that if a
material is strictly elliptic, it is also stable and elliptic. Therefore,
our perforated unit cell excludes some stable material. However,
this does not appear to impair the performance of this method.

2.1. The perforated unit cell

We denote the reference domain for a unit cell of the micro-
structure at a point X by Xm

0 ðXÞ (usually the X will be dropped)
and its boundary by @Xm

0 . The reference domain of the macrostruc-
ture is denoted by XM

0 and its boundary by @XM
0 . A perforated unit

cell that contains a crack CD
0 and a localization band XL

0 is shown in
Fig. 2(a). The perforated unit cell is denoted by eXm

0 soeXm
0 ¼ Xm

0 =X
uns
0 ð4Þ

where Xuns
0 is the subdomain of the unit cell where the material

loses strict ellipticity; i.e. Xuns
0 ¼ CD

0 [XL
0.

A key attribute of this theory is that all averaging operations are
performed over the perforated unit cell, so denoting the averaging
operation by h�i, we have for any function f ðXÞ:

hf ðXÞi ¼ 1eXm
0

��� ���
Z
eXm

0

f ðXÞdX ð5Þ

where j � j denotes the measure of the domain, such as the area in
two dimensions or the volume in three dimensions. Thus, for the
v
0.5v

1.5v

(b)

µ
µ

µ

µ

µ

: (a) uniformly loaded rod, (b) rod with linearly varying velocity.



Fig. 8. Finite element discretizations for: (a) the direct numerical simulation, (b) the coarse-grained model and unit cell models for the MAD method.

Fig. 9. The comparison of load–deflection curves between the DNS and the MAD
method with and without the hourglass mode.
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deformation gradient Fm and first Piola–Kirchhoff stress Pm, we
have

hFmi ¼ 1eXm
0

��� ���
Z
eXm

0

FmdX ð6Þ

hPmi ¼ 1eXm
0

��� ���
Z
eXm

0

PmdX ð7Þ

For atomistic models, the averaged strain is computed by first
fitting the displacements with a moving least square (MLS) approx-
imation [24]. Let uI be the atomistic displacements. The MLS
approximation is then given

ui ¼
X

I

NMLS
I ðXÞuiI ð8Þ

where NMLS
I ðXÞ is the MLS shape function. The deformation gradient

at the atomistic scale is then given by

Fm
ij ¼ dij þ

X
I

@NI

@Xj
uiI ð9Þ

To compute the stress, we use the virial stresses at the centers
of the bonds

PmðXIÞ ¼ FTððXI � XJÞ � f IJÞ ð10Þ

where f IJ is the force in the bond connecting atoms I and J, and XI

and XJ are the coordinates of atom I and J, respectively. Then, com-
pute the stress field by a MLS approximation

PðXÞ ¼
X

I

NMLS
I ðXÞPðXIÞ ð11Þ

The bonds in which the force-field is such that bond force decreases
with increasing elongation, and are therefore unstable, constitute
the domain Xuns

0 . For example, consider the model shown in Fig. 3.
For the stage in crack growth where the bonds shown in red are
unstable, the domain Xuns

0 encompasses all of these bonds. The do-
main X0=X

uns
0 is the remainder of the domain and is used in the cal-

culation of the average stress hPmi.
The macrocrack can be an approximation to either a single crack
or a group of cracks at the microscale. However, in this paper, we
only consider a single crack at the microscale, so it can be de-
scribed by

f mðXÞ ¼ 0 and gmðXÞ > 0 ð12Þ

where f mðXÞ ¼ 0 is a level set that describes the surface of the crack
and gmðXÞ > 0 describes its extent. The crack path at the microscale
may be jagged, but it is assumed that the crack path penetrates the
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walls of the unit cell at no more than two points. The crack front is
given by

f mðXÞ ¼ gmðXÞ ¼ 0 ð13Þ

A typical crack at the microscale and its macroscale equivalent is
shown in Fig. 4. The geometry of the equivalent macrocrack in a
neighborhood corresponding to the unit cell is described by an af-
fine level set function

f MðXÞ ¼ a0 þ abXb ¼ 0 ð14Þ

where a0 and ab are arbitrary parameters.
The motion /mðXÞ on the outside surfaces of the unit cell given

by

/mðXÞ ¼FM � X þ qXY on X 2 Cm ð15Þ

where in two dimensions qT ¼ ½qx qy�. The last term in Eq. (15) ac-
counts for the hourglass modes; q is obtained from the macroscale
deformation as described later. This last term is one of the key dif-
ferences from the previously presented MAD method [16]. How-
ever, this term has no effect on the discontinuity. Therefore, as in
[16], we can obtain the approximate discontinuity by

ðU;NÞ ¼ arg min
U;N

U� N�FM þ hFmi
� �2

 !
ð16Þ

where the jump in the displacement at the macroscale is given by

s/M
t ¼

eXm
0

��� ���
R

U ð17Þ

where R is a characteristic dimension of the unit cell.
Fig. 10. The evolution of stress and displacement fields, and the path of the cra
2.2. Representation of crack opening in unit cells

When a crack opens and grows in a unit cell, the unit cell under-
goes deformations such as that shown in Fig. 5. This mode of defor-
mation cannot be effectively represented by a constant
deformation gradient. In crack opening, the deformation of the
boundaries of the unit cell are bilinear, often called an hourglass
mode in the finite element literature. Effective modeling of crack
growth requires that the hourglass mode be included in the defor-
mation of the unit cell.

Here, we will briefly describe a numerical scheme which allows
us to extract the hourglass mode from the coarse scale model that
is discretized with four-node quadrilateral elements; the hourglass
modes for a four-node quadrilateral element are shown in Fig. 6.
These schemes are based on Flanagan and Belytschko [18], and
Belytschko and Bachrach [20].

The hourglass mode displacement at the center of four-node
quadrilateral element can be computed by

q ¼ uIcI ð18Þ

where uI is the nodal displacement of the finite element, and cI is
the hourglass mode projection operator. The hourglass mode pro-
jection operator is defined by

cI ¼
1
4
ðhI � ðhJxJÞbxI � ðhJxJÞbyIÞ ð19Þ

where xI is the current nodal coordinates of the finite element, and
h and b are defined, respectively, as
ck in: (a) the DNS and (b) the MAD with and without the hourglass mode.



Fig. 11. The comparison of load–deflection curves between the DNS and the MAD
with and without the hourglass mode.
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hT ¼ ½1 � 1 1 � 1� ð20Þ
bxI

byI

� �
¼

@NIð0Þ=@x
@NIð0Þ=@y

� �
ð21Þ

The macro stresses are linked to the unit cell as follows. We use
the Hill–Mandel energetic relations

dFM : PM þ dq : Q ¼
Z
eXm

0

Fm : PmdX ð22Þ

Substituting the displacement field in Eq. (15) into the above Eq.
(22) and assuming that Pm is an equilibrium field, we obtain the fol-
lowing expressions for the macro stresses

PM ¼ 1eXm
0

��� ���
Z

Cm
0

Pm �N� XdC ð23Þ
Fig. 12. Initial setup for failure of aluminum–boron
Q ¼ 1eXm
0

��� ���
Z

Cm
0

XYPm � NdC ð24Þ

The expressions for the nodal forces of a four-node quadrilateral
element with one-point quadrature and consistent stabilization
[18] are then

f int
iI ¼

Z
XM

0

@NI

@Xj
PM

ij dXþ f HG
iI ð25Þ

where the hourglass stabilization nodal forces are

f HG
iI ¼ Q icI ð26Þ
3. Numerical examples

Here, we consider an aluminum–boron composite material to
examine the effectiveness of the MAD method. The basic unit cell
consists of a boron particle and its surrounding aluminum matrix
so that the volume ratio of the boron particles to the aluminum
matrix is 10%. We then use the model as a repetitive unit cell for
simplicity. The material properties of the aluminum and the boron
along with their homogenized material are given in Table 1; for the
calculation of the homogenized material properties away from the
hot spots, we used a conventional homogenization theory.

3.1. Tests of cell failure modes

The numerical test reported here are quite simplistic since we
felt that the only way to evaluate the method was by comparison
to direct numerical simulations of models that incorporated the
fine-scale features. While it would be desirable to evaluate the
method also by comparison to experiments, at this time, data for
fine-scale properties, such as fiber–matrix cohesive laws, are quite
scarce, so the failure of a computation to agree with experiment
would not determine whether it was a shortcoming in the method
or the data. Therefore, in the following, the problems all involve
comparisons with direct numerical simulations.

The first examples are quasi one dimensional: a long specimen
is subjected to an tensile loading but a crack is modeled to grow
normal to the loading direction. One objective was to show effec-
tiveness of adding the hourglass mode to unit cell boundary condi-
tions. The models are shown in Fig. 7. A boron particle and
aluminum matrix at the center of each specimen is considered.
composite lamina due to three-point bending.



Fig. 13. Finite element discretizations for: (a) the DNS and (b) the coarse model and
unit cell models for the MAD method.
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The bottom of each specimen is clamped, and at the top of the
specimen, we applied two different boundary conditions so that
those boundary conditions drive two different failure modes:

(1) in Fig. 7(a), uniform constant velocity is prescribed at the top
boundary nodes so that the deformation of the unit cell is
almost constant, whereas

(2) in Fig. 7(b), linearly varying velocity is prescribed at the
top boundary nodes so that the deformation of the unit
cell undergoes bilinear deformation; i.e. the hourglass
mode.
Fig. 14. The path of the crack in the DNS; defo
In both cases, the prescribed velocities are constant in time.
An initial crack is located at the right edge of the specimen, and

it then propagates toward the left edge. For the fracture criterion,
we used 3.0% maximum principal tensile strain criterion along
with the fracture energy Gf ¼ 6:0� 104 N=m. The discretized
fine-scale model for the reference solution by direct numerical
simulation (DNS) is shown in Fig. 8(a); its solution is henceforth re-
ferred to as the DNS result. The coarse scale model and its linked
unit cell model for the MAD method are shown in Fig. 8(b); each
finite element is linked with a unit cell.

The load–deflection curves for the prescribed uniform constant
velocity boundary condition are shown in Fig. 9; the result for the
MAD method with the hourglass mode is shown along with that
without the hourglass mode. As can be seen from Fig. 9, the effect
of the hourglass mode in this case is minimal. The results for the
MAD methods with and without the hourglass boundary condi-
tions are almost the same. Both results agree with the DNS very
closely.

However, when the deformation is such that the bilinear mode
is activated in the unit cell boundary conditions, the role of the
hourglass mode has a substantial effect. This can be seen from
Fig. 10; Fig. 10(a) shows the results for the DNS simulation, and
Fig. 10(b) shows the results for the MAD method with and without
the hourglass mode. As shown in Fig. 10(a), the displacement field
of the DNS exhibits a bilinear mode, i.e. the hourglass mode, and
this bilinear mode is only reproduced in the unit cell when the
hourglass mode is considered; see Fig. 10(b). When the hourglass
mode is not passed to the finer scale, the fine-scale behavior does
not well reproduce the behavior of the DNS model. Without the
hourglass mode linkage, the macro model over-predicts the peak
load substantially; see Fig. 11.

3.2. Three-point bending beam problem

A second problem we considered, which has substantially more
complexity, is the failure of an aluminum–boron lamina in a bend-
ing field. We sometimes call this a composite ‘‘beam” in three-
point bending. We hesitate to use the word ‘‘beam” since it does
not represent any real composite beam; again, it is toy problem
to test the basic methodology by comparison to DNS. The model
is shown in Fig. 12. An initial notch is introduced at the center of
the bottom surface; the crack propagation at the midspan is mainly
in mode I.

For the DNS model, we discretized the beam with 9634 four-
node quadrilateral elements as shown in Fig. 13(a). The fine-scale
meshing was limited to the center where the failure was expected
to progress. The modeling of the center of the beam is quite de-
tailed and requires most of the finite elements for its resolution.
For the MAD model, the entire beam was discretized with coarse
scale mesh, and the 5 � 3 elements at the center of the beam are
linked to unit cells as shown in Fig. 13(b). Note that the outside
rmations are magnified by factor of two.



Fig. 15. The result for the MAD method; deformations are magnified by factor of two.
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of the center area in both the DNS and the MAD models, we consid-
ered a homogeneous material with an effective elastic modulus
which is computed by conventional homogenization theory. The
material properties are shown in Table 1, and we used a maximum
principal tensile strain criterion for fracture of the matrix with a
fracture strain of 3.0%; the fracture energy is Gf ¼ 6:0� 104 N=m.
The interface stress between the boron fibers were treated by a
cohesive law.
Fig. 16. The comparison of load–deflection curves between the DNS and the MAD
with and without the hourglass mode.
Fig. 14 shows the intermediate stage of the crack propagation in
the DNS model; in Fig. 14(b). As can be seen from Fig. 14(b), the
crack path is quite jagged due to the microstructure; i.e. boron
particles.

In the MAD method, such jagged crack paths are only repro-
duced within the unit cells; equivalent coarse-grained straight
cracks are injected to the macro model; see Fig. 15. This is a dis-
tinct feature of the coarse graining of the microcracks with the
MAD method.

The adequacy of the multiscale solution can be judged from
Fig. 16, which compares the load–deflection curves for the MAD
to that for the DNS. As can be seen from Fig. 16, there are only some
minor discrepancies due in the force–deflection curves computed
by the DNS and the MAD methods. However, the overall responses
are very similar, and the error in the prediction of the peak load is
less than 1%, which is probably fortuitous, since such high accuracy
is not expected for coarse-grained models. The coarse-grained
model required only 3% of the running time of the DNS model.

4. Conclusions

A study of improved version of the MAD method, a multiscale
method for failure analysis, has been presented. This improvement
consists of adding an ‘‘hourglass mode” to the prescribed displace-
ments of a unit cell. This appears to be particularly advantageous
when a unit cell fails by progression of a crack from one edge to
the other, which is often the case.

In the MAD method, the microcracking at finer scales is repre-
sented by an aggregate, equivalent crack at the coarse scale. The for-
mula for extracting the magnitude and the normal to the equivalent
discontinuity at the macroscale is not changed by the addition of the
hourglass mode. However additional general stresses and strains
are needed at the macroscale. In this paper, we have treated these
additional generalized stresses as hourglass forces in the four-node
quadrilateral. These can also be incorporated in other elements by
adding the bilinear term to the displacement field through meshfree
approximations. Another approach we are considering for treating



426 J.-H. Song, T. Belytschko / Composites: Part B 40 (2009) 417–426
this mode is a micropolar continuum. However, using classical con-
tinuum mechanics for the macroscale bestows significant benefits,
so we are inclined to continuing that approach.

As for the original MAD method, the noteworthy features of this
improved method are

(1) the decomposition of stable and unstable responses of unit
cells by constructing perforated unit cells,

(2) the extraction of a single coarse-grained macro discontinuity
from the unstable behavior of the unit cell.

The first feature enables the method to maintain stability of the
bulk material. Consequently, the macro material law is stable and
remains well-posed. Thus the method should be able to treat fail-
ure phenomena by multiscale methods consistently.

The potential and effectiveness of the MAD method have been
demonstrated by comparing the results for the MAD method with
direct numerical simulations of full fine-scale models of some sim-
ple problems. Overall crack paths and predicted peak loads from
the MAD method agree quite well with those from the direct
numerical simulations, which is encouraging. The running times
of the coarse scale models are about 30 times as fast. We are
now extending the computer implementations to three dimen-
sions so some comparisons with experiments can be made. The
ultimate goal of this work is to apply these methods to three-scale
analysis where the finest scale model is atomistic. The material
properties, especially the fracture behavior, will then be computed
by first principles models.
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