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SUMMARY

An approximate level set method for three-dimensional crack propagation is presented. In this method,
the discontinuity surface in each cracked element is defined by element-local level sets (ELLSs). The local
level sets are generated by a fitting procedure that meets the fracture directionality and its continuity with
the adjacent element crack surfaces in a least-square sense. A simple iterative procedure is introduced
to improve the consistency of the generated element crack surface with those of the adjacent cracked
elements. The discrete discontinuity is treated by the phantom node method which is a simplified version
of the extended finite element method (XFEM). The ELLS method and the phantom node technology
are combined for the solution of dynamic fracture problems. Numerical examples for three-dimensional
dynamic crack propagation are provided to demonstrate the effectiveness and robustness of the proposed
method. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We present a new level set update method for three-dimensional crack propagation. In this method,
the level sets are defined locally for each element and as the crack propagates, the local signed
distance function is generated for each new cracked element by a procedure that satisfies the
fracture directionality and its continuity with the adjacent element crack surfaces in a least-square
sense. Therefore, in contrast to conventional level set methods, the method does not require a
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velocity of the crack front and is applicable to a large variety of failure criteria, such as material
instability criteria, various phenomenological criteria and strain criteria. Consequently, it facilitates
the application of such fracture criteria to both fracture dynamics and mechanics.

Prediction of material failure by fracture is of major concern in many engineering problems. In
the past decades, several types of computational methods have been developed to model fracture.
The embedded discontinuity methods [1–3] treat the crack as a band of high strain or by an
equivalent incompatible discontinuity in the element; see [4] for a comprehensive study of these
methods. The inter-element fracture methods of Xu and Needleman [5] and Ortiz and Pandolfi [6]
simulate the crack as inter-element discontinuities with cohesive forces. These methods are simple
and robust, but the direction of the crack is limited to the element edges or interfaces, i.e. the crack
paths are limited to specified directions. This drawback impairs the capability of these methods to
accurately reproduce crack paths.

The extended finite element method (XFEM) permits arbitrary discontinuities to be modeled by
finite elements without remeshing via discontinuous partitions of unity. Belytschko and Black [7]
used the discontinuous near tip field with partitions of unity enrichments to model the entire
crack for elastostatic problems. Moës et al. [8] and Dolbow et al. [9] introduced step function
enrichments for the finite element basis that can model discontinuities independent of the mesh
topology and called the method XFEM. In Belytschko et al. [10] the approach was generalized
to arbitrary discontinuities including discontinuities in derivatives and tangential components of
displacements.

Applications of XFEM to fracture dynamics have been reported by Belytschko et al. [11], Réthoré
et al. [12], Song et al. [13], and Menouillard et al. [14]. Song et al. [13] used a rearrangement of
the extended finite element basis and the nodal degrees of freedom, so that the discontinuity can
be described by superposed elements and phantom nodes; this form corresponds to the concept
proposed by Hansbo and Hansbo [15].

The conventional level set method [16] was combined with XFEM for crack propagation analysis
by Stolarska et al. [17] and Belytschko et al. [10] for 2D and Moës et al. [18] and Gravouil et al.
[19] for 3D. In this method, the discontinuity is implicitly defined by two signed distance functions:
one defines the crack surface and its intersection with the second defines the crack front. The
merit of this method is that the resulting crack surface and crack front are smooth. However, the
conventional level set method requires a knowledge of the crack front velocity. When fracture is
driven by a stress- or strain-based criteria, such as material instability criteria or phenomenological
criteria, the velocity is not well defined and usually cannot be easily computed.

Methods that do not use conventional level sets for three-dimensional crack propagation were
introduced by Areias and Belytschko [20] and Gasser and Holzapfel [21, 22]. They sought to
satisfy the continuity of the crack surface and the fracture direction criterion approximately. These
two conditions can easily be met for two-dimensional problems, because the crack front in 2D
is just a point, i.e. the crack tip. However, for three-dimensional problems the crack front is a
spatial curve, and it is generally not possible to meet continuity of the crack surface and a fracture
directionality criterion simultaneously.

Areias and Belytschko [20] addressed this difficulty by adjusting the crack plane normal to
satisfy continuity. However, this adjustment may lead to significant deviations of the propagation
direction from the direction determined by the fracture criterion. Except for this drawback, their
method produces relatively smooth discontinuity surfaces and is computationally efficient because
the algorithm is restricted to the element level. Gasser and Holzapfel [21, 22] proposed an alternative
strategy that is based on non-local averaging. The set of intersection points of the adjacent element
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discontinuities with the element edges is used to fit the crack surface for the element of interest.
This method appears to work well for curved and even kinked crack surfaces, but due to the
nonlocal averaging, inter-element jumps maybe occur in the overall crack surface representation
and the flexibility of the method is impaired. Furthermore, the fracture criterion is not included
in their averaging process which can lead to a violation of the fracture directionality. These two
methods are studied and compared by Jäger et al. [23].

Pereira et al. [24] have used triangular facet representations of cracks in three dimensions in
conjunction with the generalized finite element method of Duarte et al. [25, 26].

In this paper, we develop a method for modeling dynamic fracture in three dimensions by
combining a variant of XFEM with an element-local level set (ELLS) method. The mechanical
description of the crack is based on the phantom node method [13], which was originated by
Hansbo and Hansbo [15]; the basis functions for this method are identical to XFEM for the fully
cracked elements considered here, but the implementation is somewhat simpler for dynamics.
The method is implemented with an explicit time-integration algorithm with stabilized one-point
quadrature elements [27, 28].

The key contribution of this paper is the ELLS method which describes the crack surface.
This surface is developed element-wise so that it satisfies continuity of the crack surface between
elements and the fracture direction criterion in a least-square sense. An approximation to a smooth
surface is required because it is usually impossible to find a surface in an element that is continuous
with that of the adjacent cracked elements and is also in the direction predicted by a fracture
criterion. The description herein is limited to the propagation of a single crack, but extension to
multiple cracks should not be difficult.

This paper is organized as follows. Section 2 describes the governing equations and the cohesive
model we will use. Then we introduce the ELLS description for crack surface and the least-square
fitting procedure to determine the crack growth in Section 3. The displacement field of the phantom
node method for modeling elements with discontinuities is given in Section 4. The weak form
and the discretized equations are summarized in Section 5. Numerical studies are described in
Section 6. Concluding remarks are provided in Section 7.

2. GOVERNING EQUATIONS AND THE COHESIVE MODEL

We consider a three-dimensional dynamic problem. As shown in Figure 1, the motion is described
by x=/(X, t) which maps the initial configuration �0 to the current configuration �. X and x
denote material and spatial coordinates, respectively. The crack surface and its front in initial
domain are denoted by �0

c and �0c , respectively. Their images in current domain are �c and �c,
respectively.

The strong form of the linear momentum equation in a total Lagrangian description is

�Pji

�X j
+�0bi −�0üi =0 in �0\�0

c (1)

where P is the nominal stress tensor, �0 the initial mass density, u the displacement and b the
body force per unit mass. The boundary and interior conditions are

n0j Pji = t̄0i on �0
t (2)
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Figure 1. A three-dimensional body with a discontinuity and its representation in the
initial and the current domains.

ui = ūi on �0
u (3)

n0j P
−
j i = −n0j P

+
j i =�0ci ([[ui ]]) on �0

c (4)

where n0 is the normal to the indicated boundary, s0c the cohesive traction across the crack,

t0 the applied traction on the Neumann boundary �0
t and u the applied displacement on the

Dirichlet boundary �0
u . We have �0

u∪�0
t =�0 and �0

u∩�0
t =∅. Plus and minus superscripts refer to

the two sides of the discontinuity. Indicial notation is used for any lower-case indices and repeated
subscripts imply summations.

To illustrate the method, we will use a Kirchhoff material, which is a straightforward generali-
zation of linear elasticity to large deformations. The constitutive relation for an isotropic Kirchhoff
material may be written as

Si j =Ci jkl Ekl (5)

where Si j is the second Piola–Kirchhoff (PK2) stress tensor, Ekl the Green (Green–Lagrange)
strain tensor which is defined as

Ei j = 1

2

(
�ui
�X j

+ �u j

�Xi
+ �uk

�Xi

�uk
�X j

)
(6)

Ci jkl in Equation (5) is the fourth-order tensor of elastic moduli which is given by

Ci jkl =��i j�kl +�(�ik� jl +�il� jk) (7)

where � and � are the Lamé constants which can be expressed in terms of Young’s modulus E
and the Poisson ratio � by

�= �E

(1+�)(1−2�)
, �= E

2(1+�)
(8)

We use a strain fracture criterion with a cohesive law. In the strain criterion, the material is
considered to fracture when

max{�i }>	 f (9)
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Figure 2. Schematic of the linear cohesive law: the area under curve is the fracture energy G f .

where �i are the eigenvalues of the Green–Lagrange strain E and 	 f is the failure strain. The
normal of the failure surface Ne is assumed to be coincident with the eigenvector associated with
max{�i }. However, to avoid spurious crack path oscillations, especially for dynamic simulations,
a non-local smoothed strain is used to determine the normal Ne in element e instead of the local
strain. We first compute the eigenvalues �ei of the average strain and let

Ne=Zi (10)

where Zi is the eigenvector corresponding to the maximum eigenvalue �ei . The average strain was
computed over a domain with a radius of 3h–5h, where h is the element size. We can also use
the polarization direction as given by the material stability criterion as in [11]. Note that a single
normal is associated with the failure surface since one-point quadrature elements are used; in the
actual trilinear surface, the normal varies in the element.

A cohesive crack model [29–34] is assumed, i.e. a surface traction is applied along the crack
surface. The cohesive traction is determined by a cohesive law which relates the traction to the
jump in displacement across the discontinuity surface. In this study, the linear cohesive law shown
in Figure 2 is employed so that the energy dissipated due to the crack propagation matches the
critical fracture energy, i.e. the critical crack opening �max is calculated by

�max= 2G f

�max
(11)

where G f is the fracture energy, �max is set to the traction across the crack at the time of fracture
to ensure the time continuity for the cohesive crack model [35]. Note that a penalty force is added
to treat the crack surface overlap. In this work, we consider only the normal component of the
cohesive traction.

3. ELEMENT-LOCAL LEVEL SET (ELLS) DESCRIPTION AND ITS GENERATION
FOR CRACK GROWTH

This section describes the procedure for generating the ELLS. As indicated in the Introduction,
the objective is to generate a surface that meets continuity with the existing crack and the fracture
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directionality criterion as close as possible; in this case, we adopt this to mean in a least-square
sense.

In this procedure, element is either cracked or uncracked; partially cracked elements are not
considered. We consider a crack surface whose image in the reference configuration is �0

c with
a crack front �0c . Let S� be the set of cracked elements. The crack surface is approximated by
element crack surfaces �e0

c , so that the approximate crack surface �0h
c is given by

�0h
c = ⋃

e∈S�

�e0
c (12)

The resulting surface is generally not a continuous surface. The subset of elements in S� that are
adjacent to uncracked elements are denoted by S�.

3.1. Element-local level set (ELLS) description for element crack surface �e0
c

The crack surface in element e is implicitly defined by the element-local signed distance function
f e(X) so that f e(X)=0 gives the element discontinuity surface �e0

c . This implicit definition is
described in terms of the nodal shape functions �I (X) of element e by∑

I∈e
�I (X) f eI =0 (13)

where f eI are the nodal values of the element-local signed distance function f e(X). The normal
of the element crack surface is

ne=n( f eI )= � f e(X)

�X
=∑

I∈e
��I (X)

�X
f eI (14)

Note that for hexahedral elements the element crack surface defined by Equation (13) is generally
not a plane. However, due to the nature of bilinear interpolation, it will not deviate from a plane
too much.

3.2. Generation of ELLSs for crack growth

Let Sp be the set of elements that are intact (uncracked) and share the crack front with elements
in S�. Initially, the ELLSs in elements in Sp are not given. As the crack front propagates, some of
these elements will crack and the ELLSs for them must be generated to define the crack surfaces
in these elements.

Unlike in two dimensions, even for a single crack in 3D, there are several elements along the
crack front and several of these will be cracked in a given time step. Because we use element-wise
cracking, elements crack one by one. Here, we use the largest eigenvalue max{�i } of the Green–
Lagrange strain E as an indicator to set up the sequence, i.e. the element with the largest value of
max{�i } will be first cracked.

Let Ne be the normal to the crack in element e as given by the fracture criterion and n( f eI ) the
normal in terms of the ELLSs of element e as given by Equation (14). The nodal values of the
ELLSs for element e are determined by minimizing J ( f eI ) which is given by

J ( f eI )=
∫

�e
0

‖Ne−n( f eI )‖2 d�e
0+ ∑

I∈S0e

∫
�e
0

wI

(
f eI − f̄ I
he

)2

d�e
0 (15)
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where S0e is the set of nodes of element e which are shared with adjacent cracked elements. wI is
a weight for node I which controls the jump of the crack surface at node I . he is the characteristic
size of element e which is set to be equal to the minimum size of the element edges. f̄ I is the
average of the ELLS functions for all elements other than e that share node I , that is

f̄ I = 1

nI

nI∑
k=1

f kI (16)

where nI is the number of the adjacent cracked elements which share node I with the current
element e. Note that if the weight wI is small, moderate inter-element discontinuities will occur in
the resulting crack surface. However, it satisfies the fracture directionality better. On the contrary, if
wI is large, the discontinuities in the resulting crack surface are smaller but it impairs the satisfaction
of the fracture directionality. According to our experience, wI =1 is an appropriate value to balance
the continuity and fracture directionality. We will show this in our numerical results.

Substituting Equation (14) into Equation (15), the minimization yields the following equation:

(K+W)fe=p+ p̄ (17)

where

KI J =
∫

�e
0

��I (X)

�X
· ��J (X)

�X
d�e

0 (18)

W= diag{W1,W2, . . . ,W8} WI =

⎧⎪⎨
⎪⎩
∫

�e
0

wI

h2e
d�e

0 if I ∈ S0e

0 otherwise

(19)

fe = { f e1 , f e2 , . . . , f e8 } (20)

pI =
∫

�e
0

��I (X)

�X
·Ne d�e

0 (21)

p̄I =

⎧⎪⎨
⎪⎩
∫

�e
0

wI f̄ I
h2e

d�e
0 if I ∈ S0e

0 otherwise

(22)

2×2×2 Gauss quadrature is used to evaluate the integrals in the above equations.
We now further explain our reasons for choosing this method. As pointed out before, two

conditions should be met in each element by the crack surface. One is that the generated crack
surface should be perpendicular to the normal determined by the fracture criterion, i.e. Ne in
Equation (10); the other is that the generated crack surface should pass through the crack front,
i.e. be continuous with the existing crack. The difficulty is that these two conditions generally can
not both be met. For example, consider the situation shown in Figure 3 where the crack is planar.
Any surface through crack fronts A and B has normal A×B. If Ne �=A×B then the new crack
surface will need to be discontinuous with A and B.

Even when only a single edge of the crack is adjacent to an element that cracks next, satisfying
continuity and the fracture directionality criterion may not be possible. An example is shown in

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1520–1543
DOI: 10.1002/nme



ELEMENT-LOCAL LEVEL SETS FOR 3D CRACK 1527

Figure 3. Inconsistency of crack fronts and the fracture directionality.

Figure 4. Element-local level sets for crack propagation: node I has different local level set values
f eI and f kI for two adjacent elements.

Figure 4: the crack is propagating from element k to element e and element e is the element to
be cracked. Generally, the normal Ne is not perpendicular to the crack front A. In this case, we
cannot generate an element crack surface which can pass through A and be perpendicular to Ne

at the same time.
The fundamental idea of our method is to satisfy these two conditions approximately instead

of exactly, i.e. in a least-square sense as shown in Equation (15). In fact, the first and second
terms on the right-hand side of Equation (15), respectively, correspond to the first and second
conditions mentioned above. Owing to this approximation, the resulting crack surface, generally,
is not continuous with the crack front, i.e. f eI �= f kI in Figure 4.

If an edge of element e is already cut by the crack surface, the crack surface of element e is
required to cut this edge. This corresponds to the following condition:

f̄ I · f eI >0 ∀I (23)

However, f eI as determined by Equation (17) cannot ensure that this condition is satisfied. Therefore,
a simple iteration process is introduced: when f̄ I · f eI <0, we increase the corresponding weight wI
(generally by doubling it), reconstruct Equation (17) and solve it to get a new f eI until Equation (23)
is satisfied.
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4. PHANTOM NODES FOR 3D CRACKED ELEMENTS

In conventional XFEM, the displacement field for a completely cracked element e is of the following
form:

u(X, t)=
ne∑
I=1

�I (X){uI (t)+qI [H( f e(X))−H( f e(XI ))]} (24)

where ne is the number of nodes per element, uI and qI are, respectively, the nodal values and
additional degrees of freedom associated with the enrichment for the discontinuity. H(x) is the
Heaviside step function given by

H(x)=
{
1 if x>0

0 if x�0
(25)

In [13], Song et al. have already shown that by a rearrangement of the extended finite element
basis and the nodal degrees of freedom, the discontinuity can be described by superposed elements
and phantom nodes. Thus, the displacement field of Equation (24) can be written as

u(X, t)= ∑
I∈S1

u1I (t)�I (X)︸ ︷︷ ︸
u1(X,t)

H( f e(X))+ ∑
I∈S2

u2I (t)�I (X)︸ ︷︷ ︸
u2(X,t)

H(− f e(X)) (26)

where S1 and S2 are the index sets of the nodes of superposed element 1 and 2, respectively.
u1I and u2I are the nodal degrees of freedom of the superposed element 1 and 2, respectively, and
are defined as

u1I =
{
uI if f e(XI )>0

uI +qI if f e(XI )<0
(27)

u2I =
{
uI −qI if f e(XI )>0

uI if f e(XI )<0
(28)

As shown in Figure 5, each element contains both the original real nodes and the phantom nodes and
u1(X, t) holds for f e(X)>0 and the other u2(X, t) holds for f e(X)<0. Such recasting effectively
simplifies the implementation of XFEM, as the element force of the superposed elements can be
calculated in the same way as in the conventional finite element method. This will be further
classified in the next section.

5. WEAK FORM AND DISCRETIZED EQUATIONS

The discrete equations are constructed by the standard Galerkin procedures. The admissible space
for the displacement fields is defined as follows:

U= {u(X, t)|u(X, t)∈C0,u(X, t)= ū(t) on �0
u,u discontinuous on �0

c}
U0 = {�u(X, t)|�u(X, t)∈C0,�u(X, t)=0 on �0

u,�u discontinuous on �0
c}
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Figure 5. The decomposition of a cracked element into two elements: solid and hollow circles denote the
original nodes and the added phantom nodes, respectively.

The weak form of the momentum equation is given by: for u(X, t)∈U

�W kin=�W ext−�W int−�W coh ∀�u(X)∈U0 (29)

where �W int is the virtual internal work, �W ext the virtual external work performed by applied
loads, �W kin the virtual kinetic work performed by inertia and �W coh the virtual work performed
by the cohesive traction on the crack surface �c. They are defined by

�W kin =
∫

�0\�0
c

�u·�0üd�0 (30)

�W int =
∫

�0\�0
c

��u
�X

:Pd�0 (31)

�W ext =
∫

�0\�0
c

�u·�0bd�0+
∫

�0
t

�u· t̄0 d�0
t (32)

�W coh =
∫

�c

�[[u]]·sc d�c (33)

where sc is the cohesive traction applied on the discontinuity surface. Note that the cohesive work
is evaluated in current domain as shown in Equation (33).

By performing the spatial discretization of Equation (29), the discrete momentum equation is

fkin= fext−fint−fcoh (34)

where fint, fext and fcoh are the nodal internal force, external force and cohesive force, respectively.
They are assembled from each element nodal forces; please note that bold f are nodal forces, f the
level set. For a cracked element e, its two superposed elements nodal forces can be, respectively,
written as

fkinei =
∫

�e
0

�0U
TUH((−1)i+1 f e(X))d�e

0üe (35)

fintei =
∫

�e
0

BT
0PeH((−1)i+1 f e(X))d�e

0 (36)
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fextei =
∫

�e
0

�0U
TbH((−1)i+1 f e(X))d�e

0+
∫

�e0
t

UTt̄0H((−1)i+1 f e(X))d�e0
t (37)

fcohei = (−1)i
∫

�e
c

UT�cne d�e
c (38)

where f e(X) is the ELLS function for element e, i is 1 and 2 denote the two superposed elements
as shown in Figure 5 and B0 is the discrete strain–displacement operator with respect to the
reference coordinates, see Belytschko et al. [36]. Note that the nodal forces of element e are the
sum of the nodal forces of the two superposed elements, i.e.

fe= fe1+fe2 (39)

where fe is the element force vector of cracked element and fe1 and fe2 are the force vectors of
the superposed elements. By expanding Equations (35)–(38), fe1 and fe2 can be written as

fkin(e1/e2) = V(e1/e2)

V0

∫
�e
0

�0U
TUd�e

0ü(e1/e2) (40)

fint(e1/e2) = V(e1/e2)

V0

∫
�e
0

{BT
0P(e1/e2)+fstab(e1/e2)}d�e

0 (41)

fexte1 = Ve1
V0

∫
�e
0

�0U
Tbd�e

0+
∫

�e0
t

H( f e(X))UTt̄0 d�e0
t (42)

fexte2 = Ve2
V0

∫
�e
0

�0U
Tbd�e

0+
∫

�e0
t

H(− f e(X))UTt̄0 d�e0
t (43)

fcohe1 = −
∫

�e
c

UT�cne d�e
c (44)

fcohe2 =
∫

�e
c

UT�cne d�e
c (45)

where V0 is the total volume of the uncracked element and Ve1 and Ve2 are the activated volumes
(gray region in Figure 5) of the corresponding superposed elements which consist of regular and
phantom nodes. fstab in Equation (41) is a stabilization force to control the hourglass modes since
we adopt the one-point integration scheme to evaluate the element internal force. In this study,
we use the combined stiffness and viscous form of the Flanagan–Belytschko hourglass control,
see [27, 28] for details.

As shown in Equations (40)–(43), when we compute the force vectors for a cracked element,
we only modify them by the volume fraction. Such modification can be easily embedded into the
standard element process of the finite element method. This is a remarkable merit of the phantom
node method in comparison with the conventional XFEM.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1520–1543
DOI: 10.1002/nme



ELEMENT-LOCAL LEVEL SETS FOR 3D CRACK 1531

6. NUMERICAL EXAMPLES

6.1. Edge-cracked plate under impulsive loading

Kalthoff and Winkler [37] reported an experiment in which a plate with two edge notches is
impacted by a projectile as shown in Figure 6. The experiment showed two different failure modes
with different projectile speeds: at high impact velocities, a shear band was observed to propagate
from the tip of the notch at a negative angle of about −10◦; at lower impact velocities, a brittle
fracture mode with a propagation angle of about 70◦ was observed. Two-dimensional analysis of
this example was carried out by Belytschko et al. [11, 38, 39] for the brittle fracture mode and
Song et al. [13] for both modes. In this study, we only consider the brittle failure mode.

Owing to the symmetry, only the upper half of the plate is simulated. The boundary conditions
are: on the bottom edge of the model, the symmetry condition is applied, i.e. ū y =0 and t̄x=0; on
the left edge for 0�y�25mm, a velocity v0=16.5m/s is applied; the other edges are traction-free.
For this impulse, a brittle failure mode was observed in the experiment. The initial notch is
simulated by a discontinuity represented by XFEM [8]. The material properties are E=190GPa,
�=0.3, �=8000kg/m3 and fracture energy G f =2.217×104 J/m2. The tensile strength is

 f =844MPa which corresponds to a fracture strain 	 f =0.0044. The Courant number for the
time integration is 0.2.

Figure 6. Experimental set-up for edge-cracked plate under impulsive loading
reported by Kalthoff and Winkler [37].
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Figure 7. Comparison of final crack surface with different weights by using coarse mesh: (a) w=0.1,
�a=3.71%; (b) w=1,�a =11.55%; (c) w=10,�a =16.26%; and (d) w=100,�a =17.16%.

We studied this problem with three uniform meshes: 42×42×4,62×62×6 and 82×82×8. The
typical element size h of the three meshes are, respectively, h=2.38, 1.61 and 1.22mm. Figure 7
shows the crack surfaces of the coarse mesh with four different weights for wI in Equation (15):
wI =0.1,1,10,100. The resulting crack surfaces are similar. However, the larger the weight, the
bigger the error in the fracture directionality �a defined by

�a = 1

nc

nc∑
e=1

∫
�e
0
‖Ne−n( f eI )‖d�e

0

�e
0

(46)

where nc is the number of cracked elements. However, small weights lead to discontinuities in
the crack surfaces as shown in Figure 8. To take both the continuity and the fracture directionality
into consideration, w=1 is employed in subsequent simulations.

The crack paths for different meshes are shown in Figures 9 and 10. The two meshes give similar
crack paths, i.e. mesh dependence in terms of the shape of the crack surface is not observed. The
crack surfaces are nearly normal to the planes of the plate. The overall crack propagation angle
is about 66◦ which agrees reasonably well with the experimental value of about 70◦ and with the
previous two-dimensional results [11, 13].
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Figure 8. Close-up view of the crack surface generated by different weights:
(a) w=0.1; (b) w=1; (c) w=10; and (d) w=100.

The evolution of the crack length is plotted in Figure 11, where the crack length l(t) is defined by

l(t)= A(t)

�
(47)

where A(t) is the area of the crack surface and � is the thickness of the specimen. It is observed
that the three meshes give similar results, i.e. the crack starts to propagate at about 25�s and the
propagation speed is almost constant. The crack velocity averages about 1730m/s which agrees
well with the result from the two-dimensional analysis [11] where it was 1800m/s. However, we
observed some mesh dependence: the denser the mesh, the earlier the crack will start to propagate
and the higher the velocity. This mesh dependence probably arises because the finer mesh can
capture the high-gradient strain field ahead of the crack front more accurately than the coarse
mesh.

Time histories of the cohesive fracture energy for different mesh refinements are shown in
Figure 12. It is observed that after the crack starts to propagate, the release rate of the cohesive
fracture energy remains nearly constant during the period of propagation. Again, a little mesh
dependence is present, i.e. the denser the mesh, the earlier the cohesive fracture energy will be
dissipated with a higher release rate.

6.2. Pull-out test

This example models the pull-out of a steel anchor embedded in a concrete cylindrical block
1400mm in diameter and 600mm in thickness. Areias and Belytschko [20] and Gasser and
Holzapfel [21] simulated the same problem by quasi-static analysis. Here we model this problem
by dynamic analysis to demonstrate our method for non-planar cracking problems.

Geometrical data are shown in Figure 13. Owing to four-fold symmetry, just one quarter of the
concrete block is simulated and the symmetry conditions are applied on the surfaces x=0 and
y=0, respectively. The velocity of the dark area in Figure 13 on the top of the block is fixed in
the z direction. The effect of the steel anchor is represented by imposing a vertical velocity on the
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Figure 9. Propagation of crack surface by using coarse mesh (h=2.38mm): (a) t=40.02�s;
(b) t=54.44�s; (c) t=67.61�s; and (d) t=82.33�s.

bottom surface where the block interacts with the anchor stem (shaded area in Figure 13). The
prescribed vertical velocity is increased linearly to 0.01m/s in 5ms and then hold constant.

The material properties are E=30GPa, �=0.2, �=2400kg/m3 and fracture energy G f =
1.06×102 J/m2. The tensile fracture stress is set as 
 f =3MPa which corresponds to a fracture
strain 	 f =0.0001. Three meshes are used in simulation which consist of 9904, 30 180 and 61 792
hexahedral elements, respectively. The typical element size h of the three meshes is, respectively,
h=35.0, 23.3 and 17.5mm.

Figures 14 and 15 show the crack surface of the coarse mesh with four different weights. Again,
w=1 is a good choice to balance the continuity of the crack surface and the fracture directionality.
Only this value is used in the following results.

Figures 16–18 show the crack surface resulted by the three meshes, respectively. The crack
starts from the bottom interface of the block and propagates to the upper edge. The final surface
forms a cone. The shapes of the crack surfaces computed by the three meshes are similar and
agree well with the quasi-static results [20, 21].

The evolution of the dissipated cohesive energy is shown in Figure 19. The crack is generated
and starts to propagate at around 10ms. The propagation is accelerated at around 25ms (which
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Figure 10. Propagation of crack surface by using refined mesh (h=1.22mm):
(a) t=40.11�s; (b) t=53.76�s; (c) t=68.26�s; and (d) t=82.28�s.

corresponds to a loading displacement of about 0.23mm) and the dissipated cohesive energy
increases rapidly. This phenomenon is also observed by Gasser and Holzapfel [21]. The crack
growth slows at around t=35ms and almost stops at around t=38ms. The final dissipated cohesive
energies of the three meshes are almost identical.

Figure 20 shows the load–displacement response. The material constitutive models in this study
and Gasser and Holzapfel [21] are only elastic, while Areias and Belytschko [20] considered
damage and plastic effects. Initially, our results coincide with the quasi-static results of Gasser
and Holzapfel [21] and are oscillation-free. However, when the crack is initiated at a displacement
of 0.075mm (which corresponds to t=10ms in Figure 19), our results starts to oscillate. At a
displacement of 0.23mm (which corresponds to t=25ms in Figure 19), the load suddenly drops
due to the accelerated crack propagation which also causes the rapid increase of the dissipated
cohesive energy shown in Figure 19. After the accelerated cracking process is finished, the load is
re-increased slowly at displacement of 0.32mm which corresponds to t=35ms in Figure 19. The
phenomena of the re-increase of the load is also presented in the result of Gasser and Holzapfel
[21] while it is not observed by Areias and Belytschko [20], which is maybe caused by the effect
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Figure 11. Evolution of crack length of the edge-cracked plate under impulsive loading problem.

Figure 12. Time histories of the cohesive fracture energy for the edge-cracked plate
under impulsive loading problem.

of damage. The shape of the curves and thus the whole load–displacement response of both the
elastic results, i.e. Gasser and Holzapfel [21] and the present study, are qualitatively similar.

Figure 21 shows the final deformed configuration of the concrete block where the displacement
is magnified by a factor of 500. The shape is consistent to the result given in paper [21].

7. CONCLUSIONS

An approximate level set method for three-dimensional crack propagation has been presented. In
this method, the level sets for representing the crack surface are localized to each cracked element.
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Figure 13. Geometry of the anchorage structure (unit in millimeter).

Figure 14. Comparison of final crack surface with different weights by using coarse mesh:
(a) w=0.1,�a =2.43%; (b) w=1,�a =6.08%; (c) w=10,�a =8.09%; and (d) w=100,�a =8.78%.

We call this an element-local level set (ELLS) method. When the crack propagates, the ELLSs
are generated for the newly cracked elements by a procedure that meets fracture directionality
and continuity of the crack in a least-square sense. In contrast with the conventional level set
method, it does not require the velocity of the crack front to update the level sets. This is quite
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Figure 15. Close-up view of the crack surface generated by different weights: (a) w=0.1;
(b) w=1; (c) w=10; and (d) w=100.

Figure 16. Propagation of crack surface by using mesh 1 with typical element size h=35.0mm:
(a) t=19.32ms; (b) t=26.99ms; (c) t=33.13ms; and (d) t=42.50ms.

important, because many fracture criteria, such as phenomenological criteria, criteria based on
material instability or maximum principal strain do not provide a velocity of the crack front.
The proposed method can easily deal with these types of fracture criteria. Furthermore, unlike in
conventional level set methods, the update does not require the solution of global partial differential
equations; hence, it is quite simple and efficient.
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Figure 17. Propagation of crack surface by using mesh 2 with typical element size h=23.3mm:
(a) t=19.20ms; (b) t=27.06ms; (c) t=32.66ms; and (d) t=42.50ms.

Figure 18. Propagation of crack surface by using mesh 3 with typical element size h=17.5mm:
(a) t=19.07ms; (b) t=26.98ms; (c) t=32.85ms; and (d) t=42.50ms.
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Figure 19. Energy dissipated by cohesive force.

Figure 20. Load versus displacement of loading points.

The ELLS method has been combined with the phantom node method, which has been extended
to three dimensions; the latter is based on the paradigm for discontinuities proposed by Hansbo
and Hansbo [15] but the basis function are identical to those of XFEM. The ability of the combined
method for modeling three-dimensional planar and non-planar dynamic crack propagation has been
demonstrated by two examples: the edge-cracked plate under impulsive loading and the pull-out
test. In both cases, our results agree well with the available experimental or numerical results in
the literature. We did not observe mesh dependence in terms of the shape of the crack surface.
However, some mesh dependence of start time and the velocity of the crack propagation was
observed. This mesh dependence was probably due to the improved accuracy of the finer meshes in
computing strains and the consequent effects on the maximum principal strain fracture criterion.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1520–1543
DOI: 10.1002/nme



ELEMENT-LOCAL LEVEL SETS FOR 3D CRACK 1541

Figure 21. Final deformed body of the anchorage structure (displacement magnified by a factor of 500):
(a) mesh 1, h=35.0mm; (b) mesh 2, h=23.3mm; and (c) mesh 3, h=17.5mm.

Though the method was described in the context of 8-node hexahedra, it is applicable to a
variety of low-order elements, such as tetrahedra and pentahedra. The general concept of extending
crack surfaces by methods that respect continuity and crack direction in a least-square sense may
also be applicable to higher-order elements.

The two examples we investigated in this study both contained only one continuous crack
surface. However, these ELLS methods can be extended to describe multiple crack surfaces to
simulate problems such as three-dimensional fragmentation. These aspects will be further studied
in the future.
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