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SUMMARY

A method for treating fluid–structure interaction of fracturing structures under impulsive loads is described.
The coupling method is simple and does not require any modifications when the structure fails and allows
fluid to flow through openings between crack surfaces. Both the fluid and the structure are treated by
meshfree methods. For the structure, a Kirchhoff–Love shell theory is adopted and the cracks are treated
by introducing either discrete (cracking particle method) or continuous (partition of unity-based method)
discontinuities into the approximation. Coupling is realized by a master–slave scheme where the structure
is slave to the fluid. The method is aimed at problems with high-pressure and low-velocity fluids, and is
illustrated by the simulation of three problems involving fracturing cylindrical shells coupled with fluids.
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1. INTRODUCTION

An important class of problems in safety and security is that of structures impulsively loaded
with sufficiently high pressures so that fracture occurs. Such structures may be either loaded by a
gas or immersed in a fluid. Here, we develop a method for the modeling of fracturing structures
immersed in a fluid or containing a fluid.

The paper is called an immersed particle method because it treats both the fluid and the
structure by meshfree particle methods, although extension to finite element models of the struc-
ture should be straightforward. The method is a Lagrangian method, although because of the
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PARTICLE METHOD FOR FLUID–STRUCTURE INTERACTION 49

capability of meshfree methods to handle large deformations, it can handle problems with very
large deformations and large motions of the fluid.

The key attraction of the meshfree method for the fluid is that it naturally treats the motion
of fluid through openings that develop with the nucleation and propagation of cracks. In the
immersed finite element method and other methods with Eulerian treatments of the fluid, flow
through the opening crack requires that the shape of the opening be defined and passed to the fluid.
Furthermore, the interaction of the flow and the structure at the crack introduces some difficult
issues. In contrast, the method described here requires no modifications of the algorithm to treat the
flow of fluid through the opening cracks. Thus, fluid–structure interaction (FSI) with and without
cracks is handled in exactly the same manner.

FSI for particle methods was previously described by Swegle and Attaway [1]. Methods for fluid
interaction with large motion of rigid bodies have been proposed by Monaghan and Gingold [2, 3]
using a smooth particle hydrodynamics (SPH) method. Combescure et al. [4] have developed an FSI
method in the SPH framework using a SPH shell formulation described in Maurel and Combescure
[5]. The related work of Oñate and Idelsohn should also be mentioned [6, 7], where structures
are linked to nearly incompressible fluids modeled by particle finite elements. The method has
been used primarily for low-pressure events where pressure waves are not of importance. Arbitrary
Lagrangian–Eulerian methods for compressible fluid–structure problems have been developed by
Farhat et al. [8]. A method that has treated problems more similar to the ones treated here is that
of Cirak and Cummings [9] and Deiterding et al. [10].

The immersed particle method differs from the immersed finite element method in that the fluid
model is Lagrangian, but by virtue of a particle discretization [11–13], it can still model substantial
motions. In some cases, reinitialization of the particles is necessary; this leads to some violation
of energy conservation, but in most cases it is less than 1%.

FSI within finite element models is often implemented using a node-to-surface contact algorithm.
This standard FSI algorithm consists of three steps: first, the surfaces and their normals are
computed; second, a contact search for fluid nodes that may come into contact with the surface is
conducted; lastly, penalty forces are applied to the fluid nodes to prevent penetration of the fluid
through the surfaces. Details on the implementation can be found in almost any finite element
manual [14, 15] and book [16]. This algorithm requires modifications (often in the form of a set
of rules) when the structure is allowed to fracture.

The method described here is intended for the simulation of the effects of high-pressure waves
on structures, including crack nucleation and propagation. Therefore, the method is formulated for
explicit time-integration techniques. Some of the techniques could be adapted to incompressible
flows with a change in the treatment of the fluid. The method uses a Lagrangian formulation for
the fluid [17] that has been shown to be stable and does not suffer from the tensile instability noted
in [18–20]. The method is very simple and can treat problems of fracturing solids in contact with
fluids. These are very difficult problems and have been attempted only a few times heretofore.
There are some difficulties that arise in the coupling due to the fact that the domain of influence
of the fluid particles is quite indistinct, but simplified treatments described here are quite effective.
In these methods, the constraints between the motion of the fluid and solid are imposed in a
least-square sense.

The paper is organized as follows. In the next section we describe how the fluid and structure
are coupled. In Section 3 the approximations for the motion of the fluid and the structure are
defined. The derivation of the governing equations is given in Section 5. In Section 6 we give
several numerical examples and in Section 7 we give our conclusions.
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2. FSI CONCEPT

We will consider FSI of thin-shell structures immersed in fluids. Initially, the fluid may be on
one or both sides of the structure. The structural domain is a thin shell and is denoted by �S;
its reference configuration is denoted by �S

0. The subscript ‘0’ denotes a reference state, which is
here considered to be the initial states for any variable. The fluid domain is denoted by �F. The
superscripts ‘S’ and ‘F’ will be used to denote quantities related to the structure and the fluid,
respectively. The boundaries of the structure and fluid are denoted by �S and �F, respectively. They
are decomposed into two mutually exclusive sets: �u where displacement boundary conditions ū
are prescribed and �t where tractions t̄ are applied. The structure contains cracks �c with cohesive
tractions tcoh. Both the fluid and the structure are subject to a body load b. We will denote by PF

and PS the nominal stresses of the fluid and structure, respectively. The densities of the fluid and
structure are denoted by �F and �S, respectively.

Both the fluid and the structure are discretized by the sets SS and SF of meshfree particles.
The FSI constraint to be enforced is a pointwise version of the constraint

uS(X)=uF(X) ∀X∈�S
0 (1)

where uS and uF are the displacement fields of the structure and the fluid, respectively. Constraint
(1) enforces the no-slip condition.

The no-slip constraint (1) is illustrated in Figure 1. In the model shown, fluid particles have been
placed at the locations of the structural particles—this is done for illustration purposes only and is
not a requirement of the model. In the method described here, the fluid is allowed to flow between
the surfaces of a crack. Initially, the structure is unfractured, as shown in Figure 1(a). Suppose that
the structure deforms and fractures (e.g. between structure particles P and Q). Once the structure
has failed, fluid particles (e.g. fluid particles A−C) can flow between the crack surfaces, as shown
in Figure 1(b). Also, we allow the fluid particles to move along the shell; for clarity, this aspect
is not included in the description of the method.

(a) (b)

Figure 1. Illustration of the meshfree FSI model of a thin-shell structure immersed within a fluid: (a)
shows the initial undeformed configuration where fluid particles have been placed at the locations of all
structure particles and (b) shows the configuration of the fluid and structure particles after the structure

has fractured. Fluid particles are shown to flow through the crack.
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Most FSI methods are designed for the interactions with unfractured structures and require
modification to deal effectively with the case of fluid flow through a crack. The FSI method
described here treats FSI within a single framework for fractured and unfractured structures alike.
The details of our FSI method are given in the following sections.

3. SHELL AND FLUID DISCRETIZATION

We will consider shell structures described by a Kirchhoff–Love theory. Let the mid-surface of
the structure be parameterized by two independent variables h=(�1,�2); the structure in the
reference (initial) configuration is described by /0(h), /0∈�3. The material points in the reference
configuration are given by

XS(h)=/S0(h)+�3
d

2
nS0(h) (2)

where −1��3�1, d is the thickness of the shell, and nS0 is the normal to the shell at the mid-surface
in the reference configuration. Latin and Greek superscripts range from 1 to 3 and from 1 to 2,
respectively, and refer to quantities in the Cartesian or curvilinear coordinate systems. The current
configuration is given by

xS(h, t)=/S(h, t)+�3
d

2
nS (h, t) (3)

where t is the time, nS is the director field and /S is a point on the mid-surface in the current
configuration. The Kirchhoff–Love hypothesis is imposed by requiring that nS is perpendicular to
/,� ,�=1,2:

nS= /S,1×/S,2
‖/S,1×/S,2‖

(4)

The displacement of the mid-surface is given by

uS(h, t)=xS(h, t)−XS(h, t) (5)

We will consider fracturing structures and will model the geometry of the cracks using two
level sets f (h) and g(h), which are defined in the tangent space of the shell structure. Level sets
were first used to describe cracks in Belytschko et al. [21] and Stolarska et al. [22]. The definition
of a crack by f (h) and g(h) is illustrated in Figure 2. The crack surface is defined by f (h)=0
and g(h)<0.

The discontinuities due to the cracks are introduced into the structure through the displacement
approximation using the PU-based method of Ventura et al. [23] and Rabczuk et al. [24]. The
PU-based method is the mesh-free implementation of the extended finite element method [25–27].
Let the displacement field of the shell be decomposed into a continuous part uS,C and discontinuous
part uS,D

uS(h, t)=uS,C(h, t)+uS,D(h, t) (6)
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Figure 2. Description of a crack in a shell structure using level sets f (h) and g(h).

and

uS,C(h, t) = ∑
I∈SS

NS
I (h) uSI (t) (7)

uS,D(h, t) = ∑
I∈SS

pum

NS
I (h) H( f (h)) qSI (t) (8)

where NS
I (h) is the meshfree moving least squares (MLS) shape function of shell particle I [28, 29],

SS
pum is the set of particles with supports cut by the crack, H(·) is the Heaviside step function

and uSI and qSI are the standard and enriched meshfree degrees of freedom associated with particle
I , respectively.
We choose a quartic B-spline kernel function for the EFG shape functions, which leads to a C2

approximation. The advantage of using a higher-order mesh-free approximation is that we can use
a Kirchhoff–Love theory and only need to discretize �S.

We will adopt a compressible fluid model. The fluid is assumed to be inviscid, since we are
concerned with high pressure, impulsive loadings where viscous effects are insignificant; it is
considered to be compressible and it is described via an equation of state (EOS). We assume that
the shell structure is completely immersed in the fluid and has zero thickness. Hence, when the
no-slip constraint (1) is imposed, the fluid displacement field is continuous through the thickness
of the shell. The displacement field of the fluid is approximated by

uF(X, t)= ∑
I∈SF

NF
I (X) uFI (t) (9)

where NF
I (X) and uFI are the meshfree MLS shape function and degrees of freedom associated

with fluid particle I , respectively.

4. CONSTITUTIVE MODEL

We used the contravariant components of the Kirchhoff stress tensor (which are identical to the
components of the second Piola–Kirchhoff stress tensor in the material basis) to establish the weak
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form of the equilibrium equations for the shell model. Our shell model corresponds to a 2D theory,
yielding computational savings in non-linear inelastic analysis. To take advantage of the simplicity
of our previous derivations, we retain the curvilinear coordinates in the inelastic range. We use a
2D model for the radial return and rotate so that the 3-3 component corresponds to the normal.
More details are given, in [24, 30, 31].

We use the Rankine criterion and a strain-based fracture criteria, see [32] for details. Therefore,
cracks are initiated or propagated once the maximum principal stress or the effective plastic strain
exceeds a certain threshold. Note that the corresponding quantities are averaged. We employ initially
rigid linear and exponential cohesive laws [32, 33]. The exponential cohesive law is given by

�n = �max

�
exp

(
−�max

Gf
�

)
un (10)

where �max is the maximum cohesive stress, Gf is the fracture energy and �= max︸︷︷︸
history

un denotes an

internal variable. A penalty term is employed to attenuate crack face interpenetration.

5. EQUATIONS OF COUPLED SYSTEM

The discrete equations governing the FSI model are obtain from the principle of virtual work: find
uF∈UF and xS∈US such that∫

�F
0

�uFi, j P
F
j i d�

F
0+
∫

�F
0

�uFi �
F
0 ü

F
i d�

F
0−
∫

�F
0t

�uFi t̄
F d�F

0

+
∫

�S
0

�FS
i j P

S
j i d�

S
0+
∫

�S
0

�xSi �S0 ü
S
i d�

S
0−
∫

�S
0t

�xSi t̄
S
i d�

S
0

−
∫

�0c

�xSi t
coh
i d�0c=0 ∀�uSi ∈US

0 ∀�uFi ∈UF
0 (11)

subject to the condition (1), where

UF = {u|u∈H1(�F),u= ūFon �F
0u} (12)

UF
0 = {�u|�u∈H1(�F),�u=0 on �F

0u} (13)

US = {u|u∈H2(�S),u is discontinuous on �0c, u= ūS on �S
0u} (14)

US
0 = {�u|�u∈H2(�S),�u is discontinuous on �0c, �u=0 on �S

0u} (15)

Note that these definitions are consistent, i.e. the fluid flow can be continuous in the presence
of the discontinuity in the structural motion, as can be seen approximately in the flow shown in
Figure 1.

We desired to satisfy (11) under the constraint (1) using a master–slave coupling technique. In
our model the structure particles are slaves to the fluid particles. This means that the displacement
of the structure will be driven by the motion of the fluid particles. The structure will then in turn
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contribute to the internal, external and kinematic forces of the fluid. It is therefore necessary to
express the degrees of freedom of the structure in terms to those of the fluid.

The imposition of the constraint (1) is somewhat awkward because the MLS shape functions
are not interpolatory, i.e. they do not satisfy the Kronecker delta property. A good approximation
to the constraint (1) can be obtained by minimizing the following norm � with respect to uSJ
and qSK :

� = 1

2

∑
I∈SS

(uS(hSI )−uF(XS(hSI )))
2

= 1

2

∑
I∈SS

⎛
⎝ ∑

J∈SS

NS
J Iu

S
J + ∑

K∈SS
pum

NS
K I HIqSK − ∑

L∈SFSI

NF
L Iu

F
L

⎞
⎠2

(16)

where hSI is the curvilinear coordinate of the structural particle I ,S
FSI is the set of all fluid particles

with shape function supports containing at least one structural particle in �S
0, NS

J I =NS
J (h

S
I ),

NF
J I =NF

J (X
S(hSI )) and HI =H( f (hSI )).

Minimization of � with respect to uSJ and qSK leads to the following system of equations:[
Auu Auq

Auq� Aqq

]{
dSu

dSq

}
=
[
Du

Dq

]{
dFSI

}
(17)

where dSu
� ={uS1,uS2,uSnS}, dSq

� ={qS1,qS2,qSmS} and nS and mS are the number of particles in the

sets SS and SS
pum, respectively. The vector dFSI is the vector of the degrees of freedom of the

fluid particles in SFSI. The matrices are

Auu
J jKk = ∑

I∈SS

NS
J I N

S
K I� jk, J,K ∈SS (18)

Auq
J jKk = ∑

I∈SS

NS
J I N

S
K I HI� jk, J ∈SS, K ∈SS

pum (19)

Aqq
J jKk = ∑

I∈SS

NS
J I N

S
K I HI� jk, J,K ∈SS

pum (20)

Du
J jKk = ∑

I∈SS

NS
J I N

F
K I� jk, J ∈SS, K ∈SFSI (21)

Dq
J jKk = ∑

I∈SS

NS
J I HI N

F
K I� jk, J ∈SS

pum, K ∈SFSI (22)

By solving Equation (17), we can drive the displacements of the structure in terms of those of
the fluid, i.e.

dS=A−1DdFSI=TdFSI (23)
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where dS
� ={dSu,dSq}, T=A−1D is the coupling matrix,

A=
[

Auu Auq

Auq� Aqq

]
and D=

[
Du

Dq

]
(24)

For convenience we decompose T as{
dSu

dSq

}
=
[
Tu

Tq

]
{dFSI} (25)

Each of the submatrices can be diagonalized by the row–sum technique without much loss of
accuracy, so this is done here. The time derivatives of dS and dF are related by the same matrix T, i.e.

ḋS =TḋFSI (26)

d̈S =Td̈FSI (27)

The discrete equations are obtained by substituting the displacement approximations (6)–(9)
into (11) along with the corresponding test functions

�uF(X) = ∑
I∈SF

NF
I (X)�uF (28)

�xS(h) = ∑
I∈SS

NS
I (h) �uSI +

∑
I∈SS

pum

NS
I (h) H( f (h)) �qSI +�3

d

2
�n(�uSI ,�q

S
I ) (29)

The above is the PU-based representation of a crack. We also used the cracking particle method
[24]; see Song and Belytschko [34] for a finite element version of the method. This gives

∑
I∈SF

�uFI i

( ∑
J∈SF

MF
I J ü

F
J i − f F,int

I i + f F,ext
I i

)

+ ∑
I∈SS

�uSI i

⎛
⎝ ∑

J∈SS

MS,uu
I J üSJ i +

∑
K∈SS

pum

MS,uq
I K q̈SKi − f S,int

I i f S,ext
I i

⎞
⎠

+ ∑
I∈SS

pum

�qSI i

⎛
⎝ ∑

J∈SS

MS,uq
J I üSJ i +

∑
K∈SS

pum

MS,qq
I K q̈SKi − f

S,int
I i + f

S,ext
I i

⎞
⎠

=0 ∀�uFI i ∀�uSI i ∀�qSI i (30)

where the mass matrix and force vectors of the fluid are

MF
I J = �F0

∫
�F
0

NF
I N

F
J d�

F
0 (31)

f F,int
I i =

∫
�F
0

�NF
I

�X j
Pji (uF)d�F

0, I ∈SF (32)
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and

f F,ext
I i =

∫
�F
0

NF
I bi d�

F
0+
∫

�F
0t

NF
I t̄i d�

F
0, I ∈SF (33)

respectively.

The mass matrices MS,uu,MS,uq and MS,qq along with the force vectors fS,int, fS,ext, f
S,int

and

f
S,ext

of the structure are defined in Rabczuk et al. [24].
Equation (30) can be rewritten in matrix form as

ddF�(MFd̈F−fF)+ddS�(MSd̈S−fS)=0 (34)

where

fF = fF,int−fF,ext (35)

fS =
⎧⎨
⎩
fS,int

f
S,int

⎫⎬
⎭−

⎧⎨
⎩
fS,ext

f
S,ext

⎫⎬
⎭ (36)

and

MS=
⎡
⎣ MS,uu MS,uq

MS,uq�
MS,qq

⎤
⎦ (37)

To introduce the master–slave coupling between the structure and the fluid we substitute (25),
(27) and

�uSI = ∑
J∈SFSI

T u
I J�u

F
J (38)

�qSI = ∑
J∈SFSI

T q
I J�u

F
J (39)

into (34) which gives

ddF�(MFd̈F−fF)+ddFSI�T�(MSTd̈FSI−fS)=0 ∀ddF (40)

Invoking the arbitrariness of �dF in Equation (40) gives the coupled semi-discrete equations:

(MF+T�MST)d̈F−fF−T�fS=0 (41)

where we have made use of the fact that ddFSI⊆ddF. Stress point integration as described in [17]
was used; see [18, 19] for studies on this method. The equations (41) are integrated in time using
the central differencing scheme. Note that the coupling forces from the structure only affect a
small subset of fluid particles, SFSI⊂SF.

Since we used a Kirchhoff–Love shell theory, the displacement field for the shell must be twice-
continuously differentiable, i.e. C1, everywhere except across the crack surfaces �c. This is easily
satisfied by the mesh-free shape functions, see Rabczuk et al. [24] and Krysl and Belytschko [35].

We use the reinitialization of Puso et al. [36]. They have proposed that an updated Lagrangian
kernel formulation with a reinitialization every nth time step of all quantities of the Lagrangian
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kernel to a new reference configuration and showed that this reinitialization does not impair the
stability of the meshfree method and so this scheme is adopted here.

6. NUMERICAL RESULTS

In this section we give several numerical examples to demonstrate the FSI method. We use the
Rankine criterion or a strain-based fracture criterion. Therefore, cracks are initiated or propagated
once the maximum principal stress or the effective plastic strain exceeds a certain threshold. Note
that the corresponding quantities are averaged. We employ linear and exponentially decreasing
cohesive laws and a penalty term is used in order to attenuate the crack face interpenetration. More
details on the cohesive model and also the constitutive model used are given in [24, 32].

6.1. Impact of air- and water-filled cylinders

We study the response of water-filled containers of different thicknesses (0.01–1.0mm) to projectile
impact and penetration, see [37] for the experimental data. In the experiments, the height to
diameter ratio h :d as well as the impact velocity (190–750m/s) were varied. The containers were
perforated by a projectile that enters at mid-height. The experiments revealed that the failure pattern
of water-filled cylinders differs substantially from that of the empty cylinders. Only a small hole
was punched into the cylinder by the projectile for empty cylinders; however, when the container
is completely filled with water, a rhombic crack opening is typical, as shown in Figure 3(a). The

Figure 3. Final deformed shape of water-filled cylinder compared with the experimental result of Timm
[37]; h :d=2.0 and impart velocity is 730m/s. (a) Experiment [37] and (b) simulation result.
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vertical length of the crack depends on the thickness of the shell, the impact velocity and the
ratio h :d of the structure. This problem was previously investigated by a particle method with a
different coupling in [24].

We have used the Johnson–Cook [38] constitutive model for the shell. The material data are
given by [37]: A=175kN/cm2, B=380kN/cm2, n=0.32, m=0.55, Tm =1538◦C and Tr =25◦C.

We first study a water-filled cylinder with a ratio h :d=2 (h=600mm, d=300mm) and thickness
t=1mm. The cylinder is impacted by a projectile with an initial velocity of 730m/s. The fluid
and the structure are discretized by 114 000 and 29 000 particles, respectively. The final deformed
shape of the cylinder is shown in Figure 3(b) and compares well with the final experimental
result shown in Figure 3(a). As can be seen, the principal failure mechanism is reproduced well.
Note that the cylinder in the experiment also failed across the welds at the top and bottom. This
failure mechanism was not observed in several other experiments, and was not predicted by the
computation.

We next consider a water-filled cylinder with a height to diameter ratio of h :d=2.65. The
impact velocity is 190m/s. The impacted cylinder is shown at three different times in Figure 4. The
time history of the speed of the projectile during the perforation process is shown in Figure 5(a)
for two different model refinements; only a little mesh dependence is seen; hence the result for
the 32 000 particle model appears to be a converged solution. The numerical simulation predicts

Figure 4. Deformed impacted water-filled cylinder at different time steps;
h :d=2.65 and impart velocity is 190m/s.
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Figure 5. Time history of the velocity of the projectile and the crack speed:
(a) projectile velocity and (b) crack speed.

that the impactor exits the cylinder approximately 0.4ms after the initial impact which agrees well
with the experiments. The computed exit velocity is approximately 135m/s.

Cracking starts almost immediately after the impactor hits the cylinder. The crack speed time
history for different refinements is shown in Figure 5(b). After reaching an initial peak speed at
about 0.05ms, the crack slows. Then the crack accelerates at approximately 0.1ms and 0.18ms
when the reflecting wave hits the front of the cylinder; the dilatational wave in the water needs
approximately 0.085ms in order to travel twice the diameter of the cylinder.

Timm [37] reports the strain at five locations along the crack path, as shown Figure 6. The
numerical simulations predict that the crack reaches the position of the second strain gauge at
about 0.12ms, which is a little earlier than observed experimentally. At 0.18ms, when the second
reflected wave hits the front of the cylinder, the crack has traveled approximately 7.7 cm. Cracking
takes place until about 0.3ms, at which time the impactor hits the back wall of the cylinder. After
that point, the crack tip does not propagate any more, but the crack continues to open. This agrees
well with observations made experimentally. Owing to the greater height to diameter ratio of this
second model, the crack does not propagate through the entire length of the cylinder. The crack
length is the same as for the cylinders with a height to diameter ratio of 2 which was previously
described; this was also observed experimentally [37].

The final deformation and effective plastic strain of the cylindrical shell are shown in Figures 7
and 8 for two-shell discretizations with approximately 9000 and 32 000 particles, respectively. The
water was modeled by 160 000 and 1 200 000 particles, respectively. Coarser discretizations of the
cylinder with 2300 particles gave almost the same results.

The time history of the kinetic, cohesive and internal energies is shown in Figures 9(a)–(c). The
kinetic energy decreases continuously after the impact. The cohesive energy is relatively small
compared with the overall energy of the system. The error in the energy balance is shown in
Figure 9(d) and is very small relative to the total energy of the system.

For empty cylinders, our computations predict a different failure pattern, as reported in [24].
Only a small hole was created in the shell at the front and back side of the cylinder. This failure
mode was also observed in the experiments.

6.2. Dynamic fracture of shells under detonation

A series of experiments concerned with the quasi-brittle fracture of shells has been reported by
Chao and Shepherd [39], and Chao [40]. These experiments involve notched thin-wall pipes filled
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Figure 6. Strain measurement of four strain gauges used in the Timm [37] experiments.
Inset shows the location of the strain gauges.

Figure 7. Final deformation and effective plastic strain of the impacted water-filled cylinder.
The shell and fluid are modeled by approximately 9000 and 160 000 particles, respectively.

The height to diameter ratio of the cylinder is 2.65:1.

with a gaseous explosives through which a detonation wave is passed. The wave is initiated by a
detonation at the left end of the cylinder.

In this study, we focused on the numerical simulations of three experiments, shot 1 (L=7.6cm),
shot 7 (L=5.08cm) and shot 4 (L=2.54cm) [39, 40], where L is the initial notch length. They
reported that with a notch size of L=5.08cm, the backward crack tip, which is closer to the
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Figure 8. Final deformation and effective plastic strain for the simulation of an impact on a water-filled
cylinder. The shell and fluid are modeled by approximately 32 000 and 1 200 000 particles, respectively.

The height to diameter ratio of the cylinder is 2.65:1.

Figure 9. Time-history plots of kinetic energy, dissipated cohesive energy,
stored energy and energy balance.
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detonation initiation point, showed a curved crack path, whereas the forward crack tip propagates
only a short distance in a straight line and then bifurcates into two cracks. However, with a notch
size of L=2.54cm, the backward crack tip curved, whereas the forward crack tip propagates only
a short distance in a straight line and then is arrested. With a notch size of L=7.6cm, the tube
fractures into three large pieces.

For the numerical simulations, we considered the right section of the experimental cylinder of
length 91.40cm. Models with 7000 and 28 000 structural particles were considered. The results
are very similar so that we show only the results for the finest discretization. The shell material
is aluminum 6061-T6, which we modeled by J2-plasticity; density �=2780.0kg/m3, Young’s
modulus E=69.0GPa, the Poisson ratio 	=0.30 and yield stress �y =275.0MPa. We used a
linear hardening law with constant slope h p =640.0MPa. The critical strain for fracture is taken
as �max=0.12. After fracture, crack behavior is treated by a cohesive law with a cohesive fracture
energy Gf=19.0kJ/m2 (the assigned fracture energy is based on Johnson and Radon [41, 42] and
Roychowdhury et al. [43]). The explosive gas was modeled with an equation of state (EOS) given
in Beltman and Shepherd [44].

Since the densities of the explosive and the surrounding air are similar, we first considered the
influence of the surrounding air as well. The air was modeled with a linear EOS. The outer radius
of the air model was 350mm, so that it takes approximately 1ms for a wave to reach the outer
boundary. At that time, cracking of the shell is completed and spurious wave reflections do not
influence the results. The air did not have a significant influence on the crack pattern and therefore
was not used in all computations.

In order to induce asymmetrical crack propagation of an axisymmetric shell structure and
loading, we introduced a small scatter in the yield strength of the bulk material. The yield strength
at every material points is perturbed by factors ranging from −5.0 to 5.0%: the perturbation factor
is obtained from a log-normal distribution around the mean value of 1.0 and a standard deviation
of 2.0%. We also considered bulk materials in which the yield strength is perturbed by ±10.0%;
the results are almost identical.

6.2.1. Cylinder with notch size of L=7.6cm (shot 1). The deformation of the structure and pres-
sure contours for the external fluid are shown in Figures 10 and 11. Figure 12 compares the
crack pattern obtained by the numerical analysis with the experiment. We show only results of the
PU-based method. The computation agrees with the major features of the crack pattern obtained
in the experiment. In both cases, the pipe breaks into three pieces. On the right end, both the
computation and experiment show a clean circumferential fracture. On the left end, the crack
surface is more irregular. Evidently, the crack first starts at an angle and then turns to the circum-
ferential direction. The center piece in both the experiment and computation also manifest internal
cracks, but two such cracks are computed, whereas only one internal crack is apparent in the
experiment.

The pressure contour in Figures 10 and 11 far from the crack is quite smooth. However, near the
crack, some irregularities are apparent that may not be physical and may result from the discrete
emission of fluid particles from the inside of the pipe.

6.2.2. Cylinder with notch size of L=5.08cm (shot 7). Figure 13 compares the computed deforma-
tion and crack pattern for the PU-based method to the experiments. Figure 14 shows the deformed
configuration of the shell for the cracking particle method. The results of the two methods are
similar though the cracking particles method overestimates the crack length. Also, some short
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Figure 10. Simulation result with the PU-based method (shot 1) just after the crack starts to propagate.
Left figure shows pressure contours in the fluid.

Figure 11. Simulation result with the PU-based method (shot 1) when all cracks are arrested.
Left figure shows pressure contours in the fluid.

artificial cracking is evident in the cracking particle method that results at the left-hand side that
was not observed for the PU-based method. We also observe that the crack on the left end turns
in the opposite direction as compared with the experiment. This is not considered significant since
it seems likely that the crack should be equally likely to turn in either direction. Overall, the
numerical results agree well with the experiment: the crack length, the angle of crack branching
and also the crack opening shape agree closely. We were also able to predict that the right-hand
end of the pipe fails completely. However, the paths of the crack in the computations are smoother
than in the experiment.

6.2.3. Cylinder with notch size of L=2.54cm (shot 4). Figure 15 compares the final numerical
crack pattern to the experiment. The agreement is quite good. The crack in the numerical simulation
curves in the same direction as obtained in the experiment. Also the turning angle, the crack length
and the failure pattern agree very well with the experiment. On the left-hand side, the crack curves
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Figure 12. Final deformed shape of shell subject to explosive loading compared with
the experimental results of Chao and Shepherd (shot 1) [39]. (a) Experiment [39] and

(b) simulation result with the PU-based method.

Figure 13. Final deformed shape of shell subject to explosive loading compared with the experimental
results of Chao and Shepherd (shot 7) [39]. (a) Experiment [39]; (b) simulation result with the PU-based

method; and (c) Simulation result with the PU-based method.
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Figure 14. Simulation result with the cracking particle method (shot 7).

Figure 15. Final deformed shape of shell subject to explosive loading compared with the experimental
result of Chao and Shepherd (shot 4) [39]. (a) Experiment [39]; (b) simulation result with the PU-based

method; and (c) simulation result with the PU-based method.

downward in the circumferential direction, while on the right, the crack grows in a straight line
resulting in a triangular-shaped opening. On the other hand, some of the features of the deformed
shape of the experiments are absent in the computation. The upper lip is almost perfectly smooth
in the computation, whereas there are several small bends in the upper lip of the specimen.

6.3. Cylinder fracture under external pressure

Consider a cylindrical shell that is immersed in water as shown in Figure 16. The thickness of the
shell is 3.175mm, the length of the cylindrical shell is 254mm and the radius is 12.7mm. The
cylindrical shell is clamped at its ends. We assume elasto-plastic material behavior with Young’s
modulus E=71GPa, the Poisson ratio 	=0.3, yield strength �Y=207MPa and hardening modulus
h p =640.0MPa. Cracking is assumed to occur at an effective plastic strain of 0.12. An exponential
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Figure 16. Initial setup of the problem: container under external water pressure (units in mm).

Figure 17. Deformed shape of structure and fluid with 58 000 structural particles; blue and red dots
represent shell and fluid particles, respectively, in online version; in printed version, they are not
distinguished. (a) Just after the onset of the failure of the structure and (b) end of simulation.

decaying cohesive law is assumed with a fracture energy Gf=19.0kJ/m2. A 5mm notch in the
center of the cylinder was simulated by reducing the yield strength by 50%. A linearly increasing
pressure was applied at the outer boundary of the water by 2MPa/ms.

We tested different mesh refinements and will show the results for discretizations with 58 000 and
460 000 fluid particles and 7000 and 29 000 shell particles, respectively. The deformed cylindrical
shell and the water entering the structure after cracking at different time steps are shown for the
two discretizations in Figures 17 and 18. The deformed configuration for the 58 000 fluid particle
model is shown from a different perspective in Figure 19. These figures show a cross section of
the numerical results taken through the middle of the models. Figure 20 shows the deformed shell
without the fluid particles; the deformation changes only slightly with refinement. The free surface
of the fluid changed markedly with refinement; the amount of fluid that enters the shell increases
with refinement.

The time histories of the displacements of two structural particles close to the crack in the
center of the cylinder are plotted in Figure 21. It can be seen that there is barely any deformation
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Figure 18. Deformed shape of structure and fluid with 460 000 structural particles; blue and red dots
represent shell and fluid particles, respectively, in online version; in printed version, they are not distin-
guished. (a) Just before the onset of the failure of the structure; (b) just after the onset of the failure of

the structure; and (c) end of simulation.

Figure 19. Longitudinal cross section of the deformed cylindrical shell surrounded by pressurized
water; blue and red dots represent shell and fluid particles, respectively, in online version; in

printed version, they are not distinguished.

before the onset of cracking. When the crack initiates at about 22ms, the shell quickly deforms
into its final deformed shape. The time histories of these two points are almost identical for the
two discretizations.

The time history of the water pressure at two different fluid particles near the center of the crack
is shown in Figure 22; the water pressure of all the other particles close to the crack is similar.
After cracking at a pressure around 44MPa, the pressure in the water drops rapidly as the water
enters the structure. The pressure time histories for the two discretizations are similar.

7. CONCLUSIONS

We have described a simple immersed particle method for FSI that is able to handle complicated
FSI problems including cracking and perforation with ease. We considered structures immersed
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Figure 20. Deformed cylindrical shell and effective plastic strain at different times from different perspec-
tives: (a) 7000 structural particles; (b) 7000 structural particles; (c) 7000 structural particles; (d) 29 000

structural particles; and (e) 29 000 structural particles.

Figure 21. Displacement time history close to the crack for two different structure discretizations.

in fluids. Both the fluid and the structure are modeled by Lagrangian kernels. For very large
deformation problems, the fluid is reinitialized to stabilize the Lagrangian kernel. Fracturing of
the structure is modeled using either the cracking particle method or by a local partition-of-unity
method. The FSI method described does not require complicated contact algorithms as contact is
realized with a master–slave coupling scheme. Additional fluid particles are placed at the location
of the structural particles and the structure particles are slaved to the fluid particles in the vicinity
of the structure.

We modeled fracture of water-filled cylindrical shells under high-velocity impact loading, such
as those studied in experiments by Timm [37]. The deformed shape of the cylinder, the crack
path and speed agrees well with the experimental results. We also studied cylindrical shells under
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Figure 22. Fluid pressure time history close to the crack for two different fluid discretizations: (a) 58 000
fluid particles and (b) 460 000 fluid particles.

external pressure loading. These simulations demonstrate the ability of the FSI method to model
scenarios where the structure cracks and fluid flows through the crack opening. Cylindrical tubes
under detonation loading, such as those experimentally studied by Chao and Shepherd [39], and
Chao [40], were studied as well. The numerical simulations quite well predict the various crack
paths seen in the experiments, including crack branching. We found that the influence of the air
surrounding the cylindrical tubes has only a minor influence on the crack patterns.

The key capability of this method is that the fluid-flow through cracks is seamlessly handled
because of the properties of the master–slave contact scheme and because fracture is modeled by
enrichment. The method is easy to implement, accurate and will be beneficial for FSI applications
in the medium to high-pressure range.
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